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Methicillin-resistant Staphylococcus aureus (MRSA) is a major problem in clinical settings, and because it is resis-
tant to most antimicrobial agents, MRSA infections are difficult to treat. We previously reported that synthetic
macrocyclic bis(bibenzyl) derivatives, which were originally discovered in liverworts, had anti-MRSA activity.
However, the action mechanism responsible was unclear. In the present study, we elucidated the action
mechanism of macrocyclic bis(bibenzyl) RC-112 and its partial structure, IDPO-9 (2-phenoxyphenol). Survival
experiments demonstrated that RC-112 had a bactericidal effect onMRSA, whereas IDPO-9 had bacteriostatic ef-
fects. IDPO-9-resistant mutants exhibited cross-resistance to triclosan, but not to RC-112. The mutation was
identified in the fabI, enoyl-acyl carrier protein reductase gene, a target of triclosan. We have not yet isolated
the RC-112-resistant mutant. On the other hand, the addition of RC-112, unlike IDPO-9, caused the inflow of
ethidium and propidium into S. aureus cells. RC-112-dependent ethidium outflow was observed in ethidium-
loaded S. aureus cells. Transmission electron microscopy also revealed that S. aureus cells treated with RC-112
had intracellular lamellarmesosomal-like structures. Intracellular Na+ and K+ concentrationswere significantly
changed by the RC-112 treatment. These results indicated that RC-112 increased membrane permeability to
ethidium, propidium, Na+, and K+, and also that the action mechanism of IDPO-9 was different from those of
the other compounds.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Multidrug-resistant bacteria are currently a major problem in
clinical settings. Methicillin-resistant Staphylococcus aureus (MRSA), in
particular, is one of the main causes of nosocomial infection. S. aureus
has been shown to cause suppuration, food poisoning, exfoliative
dermatitis, toxic shock syndrome, urinary infection, and sepsis.More se-
vere symptoms, such as pneumonia andmeningitis, have been reported
in immunocompromised hosts, including the elderly. S. aureus is known
to form biofilms on catheters and joint prostheses, and also causes
persistent infection. Therefore, antimicrobial therapies are needed to
effectively treat patients infected with S. aureus.
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Vancomycin, teicoplanin, linezolid, arbekacin, and daptomycin are
typically used to treat MRSA infections in our country. Previous studies
demonstrated that glycopeptides, including vancomycin and teicoplanin,
inhibited cell wall synthesis [1,2], linezolid and arbekacin inhibited
protein synthesis [3,4], and daptomycin disrupted multiple aspects of
bacterial cell membrane function [5]. Although the effectiveness and
usefulness of these drugs in the treatment of MRSA infections have
been confirmed, resistant mutants to these drugs have been isolated.
Therefore, the discovery and development of new antimicrobial agents
are important.

We previously reported that riccardin C exhibited anti-MRSA
activity [6,7]. Riccardin C, a macrocyclic bis (bibenzyl) compound, was
originally discovered in liverworts [8], and exhibits cyclooxygenase
(COX)-inhibitory [9], HIV-1 reverse transcriptase-inhibitory [10],
antifungal [10], the nuclear receptor family transcription factors Liver
X Receptor (LXR)-modulating [11], and anti-cancer [12] activities.
However, its actionmechanismas an antibacterial agent remains poorly
understood.

We here investigated the antibacterial mechanisms of riccardin C
derivatives and the partial structure of riccardin C. The anti-MRSA
effects of riccardin C derivatives were bactericidal. On the other hand,
the anti-MRSA activity of IDPO-9, a 2-hydroxyl phenyl ether that is
the partial structure of riccardin C, wasweaker than that of the riccardin
C derivatives. Furthermore, the anti-MRSA effects of IDPO-9 were
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bacteriostatic. Our results indicated that the antibacterial mechanism of
riccardin C derivatives was the induction of cell leakage while that of
IDPO-9 was the inhibition of FabI.

2. Materials and methods

2.1. Bacterial strains and growth conditions

S. aureusN315 (MRSA strain) is anMRSA strain inwhich the genome
project has been completed [13]. S. aureus and Bacillus subtilis 168 cells
were grown in Nutrient Broth Nissui (N broth) (Nissui Pharmaceutical
Co., Ltd) at 37 °C with shaking. Enterococcus faecalis NCTC12201 cells
were grown in Brain Heart Infusion broth (Becton, Dickinson and Com-
pany) at 37 °Cwithout shaking. Gram-negative bacteria (Escherichia coli
TG1, Pseudomonas aeruginosa PAO1, and Vibrio parahaemolyticus
AQ3334) were cultured in L-broth. Cell growth was monitored at a
wavelength of 650 nm with a spectrophotometer.

2.2. Antimicrobial agents and chemicals

Riccardin C derivatives were synthesized as described previously
(Fig. 1) [6,7].

2.3. Drug susceptibility testing

Minimal inhibitory concentrations (MICs) were determined using
the broth microdilution method according to the recommendations of
the Japanese Society of Chemotherapy. Briefly, MICs for various drugs
were determined in Mueller–Hinton (MH) broth (Becton, Dickinson
and Company) containing different drugs at various concentrations as
reported previously [14]. Cells were incubated in the medium at 37 °C
for 24 h, and growth was assessed by visual inspection.

2.4. Survival assay

S. aureus cells were cultured in N broth at 37 °C until OD650 = 0.7.
Riccardin C derivatives were added at 1/4, 1, or 4 times the MIC. After
being incubated at 37 °C, a 50 μL portion was collected at each time
point, and the serially diluted culture was plated on the N broth agar.
Plates were incubated at 37 °C for 16–24 h and the number of colonies
was then counted to calculate the colony forming unit (CFU).
Fig. 1. Chemical structure of compounds.
2.5. Ethidium inflow assay

Cells were harvested at the late exponential phase (OD650 = 0.7) of
growth and washed twice with chilled N broth. They were then centri-
fuged, washed, and resuspended in chilled N broth (OD650 = 0.3). The
cells were incubated at 37 °C and 25 μM ethidium bromide was added.
The inflow of ethidiumwas evaluated as an increase in fluorescence in-
tensity after the addition of riccardin C derivatives (excitation 530 nm
and emission 600 nm).

2.6. Propidium inflow assay

Cells were harvested at the late exponential phase (OD650 = 0.7) of
growth and washed twice with chilled N broth. They were then centri-
fuged, washed, and resuspended in chilled N broth (OD650 = 0.4). The
cells were incubated at 37 °C and 10 μg/ml propidium iodide was
added. The inflow of propidiumwas evaluated as an increase in fluores-
cence intensity after the addition of riccardin C derivatives (excitation
535 nm and emission 617 nm).

2.7. Ethidium outflow assay

Cells were harvested at the late exponential phase (OD650 = 0.7) of
growth and washed twice with 20 mM HEPES–NaOH (pH 7.0). Cells
were suspended in the HEPES–NaOH buffer containing 20 μM carbonyl
cyanide m-chlorophenylhydrazone (CCCP) and 40 μM ethidium
bromide, adjusted to adjust the OD650 = 0.4, followed by incubation at
37 °C for 30 min. The cells were centrifuged, washed, and resuspended
in theHEPES–NaOHbuffer tomakeOD650=0.4. The outflowof ethidium
was evaluated as a decrease in fluorescence intensity (excitation 530 nm
and emission 600 nm).

2.8. Scanning electron microscopy

S. aureus or B. subtilis cells were cultured in N-broth and harvested at
the late exponential phase (OD650 = 0.7) of growth. After washing, the
cells were treated with AA-99 (8 μg/ml) and DMSO (0.8%) for 3 h at
37 °C. Cells were dropped on a glass fiber filter (GF-75 (ADVANTEC))
coated with 0.5% agar N-broth. The filters were fixed in a mixture of
2% glutaraldehyde and 2% paraformaldehyde overnight at 37 °C [15].
After washing with buffer (0.1 M phosphate buffer (pH 7.2)), cells
were dehydrated by a graded series of ethanol. Finally, water in cells
was replaced with t-butyl alcohol. These samples were freeze-dried
and sputter coated with OsO4, and examined under a scanning electron
microscope. These experimentswere performed at the Central Research
Laboratory, Okayama University Medical School.

2.9. Transmission electron microscopy

S. aureus cells were cultured in N-broth and harvested at the late ex-
ponential phase (OD650 = 0.7) of growth. After washing, the cells were
treated with RC-112 (8 μg/ml) and DMSO for 90 min at 37 °C. Samples
for the electron micrograph were prepared as described previously
[16]. The pellets of treated cells were fixed in a mixture of 2.5% glutaral-
dehyde and 1% OsO4 for 2 h on ice. After washing with buffer (0.1 M
phosphate buffer (pH 7.4)), the block was prepared with agarose. The
specimens were dehydrated by ethanol, replaced with propylene
oxide, and embedded in TAAB Low Viscosity Resin. Ultrathin sections
(80 nm each) were cut on an ultramicrotome (Leica EM UC7), double
staining was performed with a saturated solution of uranyl acetate
and Reynolds' lead citrate, and specimens were then examined under
an H-7650 transmission electron microscope (Hitachi, Japan). These
experiments were performed at the Central Research Laboratory,
Okayama University Medical School.



Fig. 2. Survival assay for the riccardin C derivatives against S. aureusN315. Mid-log-phase
organisms (108 CFU/ml) were incubated with various concentrations of the riccardin C
derivatives in DMSO, RC-112 (A), IDPO-9 (B), AA-99 (C), and AA-100 (D). Control
(diamond): DMSO, concentrations that were a quarter times the MIC (square): IDPO-9
(2 μg/ml), RC-112 (0.25 μg/ml), AA-99, and AA-100 (0.5 μg/ml), concentrations that
were equivalent with the MIC (circle): IDPO-9 (8 μg/ml), RC-112 (1 μg/ml), AA-99, and
AA-100 (2 μg/ml), concentrations that were four times the MIC (triangle): IDPO-9
(32 μg/ml), RC-112 (4 μg/ml), AA-99, and AA-100 (8 μg/ml). The dashed line indicated
the detection limit of this experiment. Three independent experiments were performed,
and representative data were shown.
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2.10. Measurement of intracellular ion concentrations

Cells were cultured in N broth at 37 °C until OD650 = 0.7. After the
addition of various agents, cells were incubated at 37 °C for 90 min.
Each sample was centrifuged (15,000 rpm at 4 °C for 3 min) to separate
the cells and the cell-free supernatant. Separated cellswere freeze-dried
and acid-digested with nitric acid (HNO3) at 95 °C [17]. Acid-digested
samples were diluted with MilliQ and subjected to an inductively
coupled plasma optical emission spectrometry (ICP-OES) analysis.
ICP-OES was performed by VISTA-PRO (Seiko Instruments, Inc.).

3. Results

3.1. Effect of the riccardin C derivatives on survival of S. aureus

We previously reported that the riccardin C derivatives, RC-112, AA-
99, and AA-100, as well as the partial structure of riccardin C, IDPO-9,
exhibited anti-MRSA activities (Fig. 1) [6,7]. To investigate the action
mechanism of riccardin C derivatives, we first performed a survival
assay for S. aureus N315.

RC-112, AA-99, and AA-100 exhibited strong anti-MRSA activities
(Table 1) [6,7]. When RC-112 was added at the concentration of the
MIC, the number of viable cells was not decreased or significantly differ-
ent from that of the control (no addition). However, a marked decrease
was observed in the number of viable cells when RC-112was added at a
concentration that was 4 times the MIC (Fig. 2A). Regarding AA-99 and
AA-100, the number of viable cells was reduced by at least two orders of
magnitude at the concentration of the MIC, and four orders at 4 times
theMIC (Fig. 2C, D). These results indicated that these three compounds
had bactericidal effects on S. aureus N315.

On the other hand, a decrease in the number of viable cells was not
observed when IDPO-9, the partial structure of riccardin, was added
(Fig. 2B), even at 4 times the MIC. These results suggested that the
action mechanisms of IDPO-9 and the other compounds differed from
each other.

3.2. Isolation of resistant mutants

To investigate antibacterial mechanisms, we attempted to isolate
RC-112- and IDPO-9-resistant mutants from S. aureus N315. To isolate
each resistant mutant, N315 cells were spread on an N agar plate con-
taining 8 μg/ml RC-112 or 32 μg/ml IDPO-9 (4 times MICs). We isolated
the IDPO-9-resistantmutant at a frequency of approximately 10−10, but
have not yet isolated any RC-112-resistant mutants. We named the
IDPO-resistant mutant HDR32.

The IDPO-9-resistant mutant HDR32 had a higher MIC to IDPO-9
(N128 μg/ml) and triclosan (2 μg/ml) (Table 1). However, the MIC of
HDR32 to most other drugs, including arbekacin, vancomycin, tetracy-
cline, and ethidium bromide was identical to that of the parent strain
N315. HDR32 did not have elevated MICs for the riccardin C derivatives
such as RC-112, AA-99, andAA-100. IDPO-9was shown to have a similar
chemical structure to triclosan,which inhibits FabI, an enoyl-acyl carrier
protein reductase [18,19]. Therefore, we attempted to isolate triclosan-
resistant mutants. S. aureus N315 cells were spread on an N agar plate
Table 1
MICs of the Riccardin C derivatives, ethidium bromide, and triclosan.

S. aureus B. subtilis

N315 HDR32 TRR1 TRR2 168

RC-112 1 1 1 1 4
AA-99 2 2 2 2 2
AA-100 2 1 2 2 2
IDPO-9 8 N128 N128 N128 N128
Triclosan 0.0625 2 N2 N2 2
Ethidium Br 8 8 4 4 n.d.

n.d.; not determined.
containing 0.5 μg/ml triclosan (8 times the MIC). The triclosan-
resistant mutants TRR1 and TRR2 showed elevated MICs for IDPO-9
and triclosan, but not for the other riccardin C derivatives and antibacte-
rial agents. These results also implied that riccardin C derivatives may
have different antibacterial mechanisms from that of IDPO-9. IDPO-9
and triclosan were found to share similar antibacterial mechanisms,
such as the inhibition of FabI.

3.3. Identification of a mutation in fabI in triclosan-resistant mutants and
the IDPO-9 mutant

IDPO-9 and triclosan-resistantmutants exhibited cross-resistance to
each other. Therefore, these compounds may have similar antibacterial
mechanisms. Since a single amino acid change in FabI or the overex-
pression of FabI was previously detected in the triclosan-resistant mu-
tant of S. aureus [20,21], we sequenced the fabI coding regions and
promoter regions of triclosan-resistant mutants, TRR1 and TRR2, as
well as the IDPO-9 resistant mutant, HDR32. A single mutation was
identified in the fabI coding region of all mutants (Table 2). The
predicted FabI amino acid change in both TRR1 and TRR2 was Ala 95
to Val relative to the sequence of the wild type parent strain N315.
The predicted FabI amino acid change of HDR32 was Phe 204 to Ser.

The X-ray crystal structure of triclosan bound to the FabI of S. aureus
N315was reported previously [22] (Fig. 3A).We predicted the structure
E. faecalis E. coli P. aeruginosa V. parahaemolyticus

NCTC12201 TG1 PAO1 AQ3334

4 N128 N128 N128
4 N128 N128 N128
2 N128 N128 N128
N128 32 N128 128
2 b1 N8 4
n.d. n.d. n.d. n.d.



Table 2
Mutation in FabI in the S. aureusmutants.

Strain Nucleotide change Amino acid change

HDR32 611T to C F204S
TRR1 284C to T A95V
TRR2 284C to T A95V
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of the mutant FabI based on the alignment of wild type FabI using
SWISS-MODEL [23–27] (Fig. 3B, C and D). The FabI mutation in TRR1
and TRR2 induced structural changes near the triclosan binding site,
such that Val 95 could interfere with the predicted binding of triclosan.
The FabI mutation in HDR32 changed the triclosan-binding hydropho-
bic pocket. Since Ser is known to be a more hydrophilic amino acid
than Phe, this substitution may decrease hydrophobic interactions
between triclosan and the hydrophobic pocket.

When the tertiary structures of the riccardin C derivatives were
compared with triclosan and IDPO-9, riccardin C derivatives were
found to have bulkier structures. It was also difficult to impose riccardin
C derivatives on the simulated structure of FabI (data not shown). These
results indicated that riccardin C derivatives, except for IDPO-9, had no
effect on FabI, and may have other targets.

3.4. Effects of the riccardin C derivatives on ethidium inflow and outflow

The riccardin C derivatives, except for IDPO-9, exhibited bactericidal
effects. Loss ofmembrane function is known to beone of the bactericidal
mechanisms. Therefore, we determinedwhether riccardin C derivatives
influenced the membrane function of several bacteria. If membrane
permeability increased due to the effects of the riccardin C derivatives,
some molecules should have leaked into the cells according to the
concentration gradient. The MICs for the riccardin C derivatives were
lower against Gram-positive bacteria (S. aureus, E. faecalis and B. subtilis)
than those against Gram-negative bacteria (E. coli, P. aeruginosa and
V. parahaemolyticus) (Table 1).We thenmeasured the inflow of ethidium
into Gram-positive bacterial cells.

When RC-112 was added to energized S. aureusN315 cells, the fluo-
rescence of ethidium immediately increased (Fig. 4A). A similar increase
was observed when CCCP was added as the control, which indicated
Fig. 3. Structure of saFabI complexed with NAD+ and triclosan. The X-ray crystal structure of tr
triclosan bound to A95V (B) and to F204S (C) and F204C (D) (21) saFabI. These models were m
that the intracellular ethidium concentration increased. Two possibili-
tieswere considered for the increase observed in intracellular ethidium.
Onewas the increase of membrane permeability, and the other was the
inhibition of multidrug efflux pumps that extrude ethidium. We next
investigated the effects of RC-112 on the outflow of ethidium from
ethidium-loaded S. aureus cells. The addition of RC-112 caused a
rapid decrease in ethidium fluorescence in a RC-112 concentration-
dependent manner, similar to the detergent SDS (Fig. 4B). If RC-112
inhibited efflux pumps, we would not be able to detect any changes in
fluorescence in the ethidium outflow assay. These results strongly
suggested that RC-112 increased the permeability of the cytoplasmic
membrane of S. aureus. The addition of DMSO as a negative control did
not induce any significant changes in ethidium fluorescence intensity.

A previous study reported that triclosan caused the leakage of
intracellular contents when added at a concentration higher than the
MIC [28]. However, the addition of IDPO-9 did not cause the inflow of
ethidium, even at a concentration that was ten times the MIC (Fig. 4A).

3.5. Effects of the riccardin C derivatives on propidium inflow

Since ethidium is known to be exported via multidrug efflux pumps,
we could not exclude the possibility that some efflux pumps may be
damaged by RC-112. Therefore, we used propidium iodide, which stains
dead cells, because it is normally a membrane-impermeable fluores-
cence dye but can enter cells when their membranes are damaged.
When RC-112 was added, propidium fluorescence intensity rapidly
increased (Fig. 5). This result indicated that riccardin C derivatives
cause cell leakage.

3.6. Morphological changes in S. aureus N315 treated with RC-112

As described above, riccardin C derivatives may cause membrane
cell leakage, which may, in turn, induce morphological changes in bac-
teria. However, using light microscopy, we could not observe morpho-
logical changes in S. aureus N315 or B. subtilis 168 cells treated with
RC-112 (data not shown). We then used scanning electron microscopy
(SEM) and transmission electron microscopy (TEM). In B. subtilis, we
found significant changes. After a 3 h incubation with 8 μg/ml AA-99,
the membrane became corrugated and/or partially swelled (Fig. 6). It
iclosan bound to wild-type S. aureus FabI (PDB entry: 4ALIA) (A) and a simulatedmodel of
ade using the molecular modeling system UCSF chimera.



Fig. 5.Effects of the riccardin Cderivatives on thefluorescence intensity of propidium iodide
incubated with S. aureus N315: a, 100 μg/ml SDS; b, 15 μg/ml RC-112; c, 0.25% DMSO.
Propidium iodide (10 μg/ml) was added at 1 min and compounds were added at 3 min.

Fig. 4. Effects of the riccardin C derivatives on the inflow and outflow of ethidium on
S. aureus N315. (A) Ethidium inflow. a, 5 μg/ml RC-112; b, 0.01% Triton-X; c, 50 μM
CCCP; d, 40 μg/ml IDPO-9; e, 0.25% DMSO. EtBr (5 μg/ml) was added at 1 min (downward
arrow) and compounds were added at 5 min (upward arrow). (B) Ethidium outflow. a,
0.25% DMSO; b, 40 μg/ml IDPO-9; c, 100 μg/ml SDS; d and 5 μg/ml RC-112. Compounds
were added at 1 min (upward arrow).
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seemed that the B. subtilis membrane had some defects by riccardin C
derivatives. Although no significant morphological changes were
observed in S. aureus (Fig. 6), TEM revealed the presence of intracellular
lamellar mesosomal-like structures in RC-112-treated cells (Fig. 7).
Membrane defect was previously shown to induce the development of
mesosomes in cells treatedwith essential oil, gramicidin S, and defensin
[29–31]; therefore, these findings supported the ability of RC-112 to
affect membranes in B. subtilis and S. aureus.

3.7. Measurement of intracellular Na+ and K+ concentrations

Based on the TEM images, themembranewas thought to be affected
by RC-112. As we could not find any visible changes in the membrane,
this defect may not have been structural; however, its function as a bar-
rier for small molecules was adversely affected. Figs. 4 and 5 showed
that the permeability of the membrane to ethidium and propidium
was increased. Therefore, the intracellular concentrations of smaller
molecules, such as Na+ and K+, were measured (Fig. 8). In living cells,
intracellular Na+ concentrations are maintained at lower levels
than extracellular concentrations, while K+ concentrations are higher.
When cells were treated with RC-112, intracellular Na+ concentrations
were increased and K+ concentrations were decreased. A similar phe-
nomenon was observed when cells were treated with valinomycin
(K+ ionophore), CCCP (H+ ionophore). This result revealed that al-
though the membrane defect induced by RC-112 was not structural,
the function of the barrier was impaired.

4. Discussion

We performed several analyses to clarify the action mechanisms of
riccardin C and its derivatives. Survival assay revealed that RC-112,
AA-99, and AA-100 exhibited bactericidal effects, while IDPO-9 had
bacteriostatic effects. IDPO-9 did not cause the inflow or outflow of
ethidium, whereas the other derivatives did. IDPO-9-resistant mutants
did not show cross-resistance to RC-112, AA-99, or AA-100.
These results indicated that the action mechanism of RC-112
(also AA-99 and AA-100) differed from that of its partial struc-
ture, IDPO-9.

The chemical structure of IDPO-9 is similar to triclosan, a well-
known antiseptic reagent. A previous study reported that triclosan
inhibited FabI, an enoyl-acyl carrier protein reductase, and identified
the action site of triclosan on FabI [22]. When IDPO-9 was displayed in
the molecular model of FabI already reported [22], IDPO-9 could be
placed in the catalytic pocket, similar to triclosan (Fig. 3), which implied
that the action site of IDPO-9was identical or very close to that of triclo-
san. This indicationwas also supported by the cross-resistance between
IDPO-9 and triclosan on their resistantmutants.Whenwe predicted the
mutated FabI (A95V and F204S) based on the crystal structure of the
wild type FabI, both IDPO-9 and triclosan were predicted to not fit
securely (Fig. 3). As such, we believe that the target of IDPO-9 is FabI
identical to that of triclosan. On the other hand, the tertiary structure
of RC-112 may be bulkier than that of triclosan and IDPO-9. Neither
triclosan-resistant mutants nor IDPO-9-resistant mutants showed
resistance to RC-112, which indicated that the target of RC-112 may
not be FabI.

RC-112 caused the inflow and outflow of ethidium. Since the active
efflux of ethidium is generally mediated via multidrug efflux pumps
[32], the depletion of a driving force, such as an H+-motive force, may
cause the inflow of ethidium. Of the multidrug efflux pumps identified
in S. aureus, NorA, NorB, MdeA, MepA, SdrM, and LmrS have been
shown to induce the efflux of ethidium [14,33–37]. Since all these
pumps utilize anH+-electrochemical gradient for transport, an increase
in H+ permeability in the cell membranemay lead to the disappearance
of the H+-electrochemical gradient, causing a loss of their function, and
the ‘apparent inflow’ of ethidium. This inflowmay also be caused by the
inhibition of efflux pumps themselves. However, the apparent outflow



Fig. 6. Scanning electronmicroscopy images of untreated and treated S. aureusN315 and B. subtilis 168 cells. S. aureus and B. subtilis cells incubated in the presence of 0.8% DMSO (control)
or 8 μg/ml AA-99 (AA-99 treated) for 3 h. Scale bar, 1 μm.
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of ethidiummay not occur even if the efflux pumps are inhibited. Thus,
both the inflow and outflow of ethidium suggest that RC-112 may not
be an inhibitor of efflux pumps. This proposal is supported by similar
findings that were obtained when propidium iodide, which may not
be a substrate for efflux pumps, was used.

Some morphological changes were observed on RC-112 treated
cells. TEM revealed a thinner cell membrane and lower electron density
on the membrane. The formation of mesosomes was also observed in
many RC-112 treated cells. Mesosomes are thought to be intracellular
structures that are formed by invaginations in the cell membrane [38],
and are known to be caused by membrane damage, DNA damage, and
the inhibition of protein synthesis. The appearance of mesosomes indi-
cates that somemembrane defects have occurred. Although the process
of mesosome formation remains to be clarified, some studies have
suggested the involvement of antimicrobial agents in the relationship
between mesosome formation and membrane damage [29,39,40].
Fig. 7. Transmission electron microscopy images of untreated and treated S. aureus N315 cells.
cells incubated in the presence of 8 μg/ml RC-112. Scale bar, 0.2 μm.
Based on these findings, the action mechanism of the riccardin C
derivatives may be to induce cell leakage.

Several ionophores and antibacterial peptides are known to cause
membrane defect. One of the carrier ionophores, valinomycin is a
cyclopeptide antibiotic, and it has twelve carbonyl groups essential for
binding of metal ions. Monensin is a polyether antibiotic, and it forms
a complex with monovalent cations. Riccardin C derivatives (RC-112,
AA-99, AA-100) actually have only one ether linkage (Fig. 1), so it
might not bind to monovalent cations, and not be a carrier ionophore.
Zervamicin IIB is a peptide antibiotic, which forms ion channels [41].
Its monomeric molecules bind to the membrane, inserted into lipid bi-
layers in the presence of membrane potential, and aggregate. From its
chemical structure, riccardin C derivatives would be different from
these ionophores.We previously showed the obvious structure–activity
relationship of riccardin C derivatives [6,7]. This fact reminds us that
riccardin C derivatives may bind to a peculiar target molecule on the
(a, b) S. aureus cells incubated in the presence of 0.8% DMSO (control); (c, d, e, f) S. aureus



Fig. 8. Effect of RC-112 on intracellular Na+ and K+ concentrations. DMSO, 0.5%; CCCP, 10 μg/ml; valinomycin, 10 μg/ml; RC-112, 10 μg/ml; AA-100, 8 μg/ml. After a 90-min incubationwith
various agents, K+ and Na+ concentrations were measured.
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membrane, not at random. Moreover, the target molecule might not be
abundant on the membrane of S. aureus since significant changes were
not observed (Fig. 6). Now, we have been trying to identify its target
molecules.

Resistance to membrane defect appears to require a higher expres-
sion of efflux pumps or a change in the constitution of the membrane.
However, this seems to be rare because it's not always true that the
compounds are the substrates of the efflux pumps. Furthermore, chang-
ing the constitution of the membrane may not be advantageous for the
survival of bacteria. We did not succeed in isolating RC-112-resistant
mutants. These results indicate that riccardin C derivatives may be the
seeds for potential antibacterial agents.

Other antimicrobial peptides have been shown to be able to impair
the cell membrane and also possess other abilities [42]. Therefore,
RC-112 derivatives may have dual targets for their antimicrobial activi-
ties. We recently reported the chemical synthesis of novel RC-112
derivatives and their anti-MRSA activities [6,7]. Further analyses of
these derivatives are required to elucidate their structure–activity
relationships and mechanisms of membrane damage in more detail.
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