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In human placenta membranes the rate limiting enzyme for PIP 2 formation from PI is PIP kinase. GTPyS 
is shown to activate PIP kinase by increasing Vm,x of the enzyme. It is suggested that a guanine nucleotide 
regulatory protein is involved in the activation of PIP kinase although coupling with a specific receptor is 
not yet known. Since PIP 2 is the preferred substrate of phospholipase C, the possibility exists that an in- 
crease of PIP 2 due to activation of PIP kinase leads to an enhancement of phospholipase C activity and 

hence to an increased production of IP 3 and DAG. 

Placenta membrane Guanine nucleotide regulatory protein 
Phospholipase C 

Phosphatidylinositol-4-phosphate kinase 

1. I N T R O D U C T I O N  

Little is known about the regulation of the lipid 
kinases of the phosphatidylinositol cycle: PI 
kinase, PIP  kinase and DAG kinase. Studies from 
this laboratory [1] recently confirmed by others [2] 
had shown that PI kinase activity remains closely 
associated with the tyrosine protein kinase activity 
during extensive purification of  the insulin recep- 
tor from human placenta membranes.  Moreover, 
these studies also provided evidence for a 
stimulatory effect of insulin on PI phosphoryla- 
tion although this was not a consistent finding. 
The next enzyme, PIP  kinase which catalyses the 
phosphorylation of P I P  to form PIP2 is also pre- 
sent in placenta membranes.  This enzyme is impor- 

Abbreviations: PI, phosphatidylinositol; PIP, phos- 
phatidylinotisol 4-phosphate; PIP2, phosphatidylino- 
sitol 4,5-bisphosphate; IP, inositol monophosphate; 
IP2, inositol 4,5-bisphosphate; IP3, inositol 1,4,5-tris- 
phosphate; DAG, diacylglycerol; PA, phosphatidic 
acid; GTPTS, guanosine 5'-O-(thiotriphosphate); 
NaDoCh, Na-deoxycholate; TX-100, Triton X-100 

tant in providing the substrate proper for 
phospholipase C that cleaves PIPz into IP3 and 
DAG. These products possess specific messenger 
functions the former for mobilisation of cytosolic 
calcium, and the latter for the activation of protein 
kinase C (review [3]). There is now accumulating 
evidence suggesting that a guanine nucleotide 
regulatory (G) protein is important  in regulating 
the activity of  phospholipase C [4]. On the other 
hand, since phospholipase C uses preferably PIP2 
as substrate [5-7] an increase in the concentration 
of the latter could also play a regulatory role by 
enhancing the activity of  the enzyme. On in- 
vestigating this latter possibility we have observed 
that 32p incorporation into endogenous and ex- 
ogenously added PIP  by placenta membranes  is 
enhanced upon addition of  GTPyS.  These results 
suggest that GTPyS leads to an activation of  P IP  
kinase through the participation of  a guanine 
nucleotide regulatory protein. 

2. MATERIALS AND METHODS 

PI, PIP,  PIP2, bovine insulin, NaDoCh,  
TX-100, EGF, vasopressin and phenylephrine were 
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Fig. 1. Effect of GTPyS on PIP2 formation of placenta membranes in the absence and presence of NaDoCh. Placental 
membranes were phosphorylated with [T-32p]ATP for 2 rain at 25°C after 15 rain preincubation with or without 
GTPyS, 10/zmol/l, in the absence (left panel) or presence (right panel) of 0.2% NaDoCh. Phospholipids were extracted 
and separated on silica gel plates as described in section 2.1 The labelled fractions were scraped off and counted. 31p 
incorporated in PIPz in the absence and presence of GTPTS was 740 ___ 36 and 1332 _+ 52 cpm (left panel), and 186 
_+ 7 and 192 + 31 cpm (right panel), respectively. The corresponding values for PIP were 9865 _+ 320 and 10 675 _+ 

411 cpm (left panel)and 11 318 _+ 109 and 10 641 _+ 211 cpm (right panel). 

f rom Sigma (St. Louis,  USA), and G T P y S  and 
A T P  were f rom Boehringer,  Mannheim.  
Phosphatidyl[2-3H]inosi tol  was f rom Amersham,  
Braunschweig,  and [y-32p]ATP f rom NEN,  
Dreieich. All other  chemicals were f rom Sigma or 
Merck, Darmstadt .  Membranes  f rom human  
placenta were prepared as described in [8]. 

2.1. Determination o f  P I  kinase and P I P  kinase 
10/A membranes  corresponding to 250 #g pro-  

tein were incubated at 25°C in 140#1 o f  a mixture 
containing 50 mmol/1 Tris-Maleate, pH  7.4, 10 
mmol / l  MgClz, 1 m m o l / l  E D T A ,  1 mmol /1  
E G T A ,  0.2 mmol/1 dithiothreitol ,  0.1 mmol/1 

vanadate,  0.1 mmol/1  phenylmethylsulfonyl ,  
f luoride 0.1 # m o l / !  leupeptin, 2 IU / I  aprotinin,  
0.14°70 TX-100. PI  and P I P  when added as ex- 
ogenous substrates were given in amounts  o f  100 
and 50 #g,  respectively. Af ter  15 min preincuba- 
t ion with or without  GTP-rS the reaction was in- 
itiated by addi t ion o f  [7-3 /p]ATP (100000 
cpm/nmol ) ,  final concentra t ion 2 mmol / l ,  and in- 
cubat ion cont inued for the times indicated in sec- 
t ion 3. Phosphol ipids  were extracted according to 
[9] by addi t ion o f  150#1 2.5 mmol/1 HC1 and 400 
#1 of  2 :1  (v/v) ch lo ro fo rm/me thano l .  The 
aqueous phase was reextracted with 150 /A 
ch lo ro fo rm and the combined organic extracts 
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xvcrc x~ashed 3 limes ~ith 5(1t)/+I ol a I : 1 (x/v) mix- 
tu rcofu lc thamq and 1 tool I I1C'I. l>hospholipids 
~ crc furl her separated on I I (' plastic ~heets (silica 
~cl 60 1:2'~4 Merck) using a mixture of chloroform/ 
methattol;3.3 ntot/1 anamonia (43: 38: 12. v/v) ac- 
cording 1o 191. PIP, PIP: and PA wcrc spotted by 
autoradiography on Kodak X-()mat films, excised 
and counted on 1219 Rackbcta liquid scintillation 
counter from I.KB %Vallac. PIP, PIP., and PA 
standards ;,,'ere run on the santo plates and stained 
with iodine ~apour. 

2.2. Determination o j phosphr)lil~ase C 
Phospholipase C in placenta membranes was 

determined essentially according to [10] using 
phosphatidyl[2-~H]inositol as a tracer, in general, 
20 t+l membrane suspension (corresponding 1o 500 
/+g protein) wcrc incubatcd m a total voh, me of 140 
/+1 containing 50 mmol~l lris-Malcatc. pH 7.5, 
I mmol/I  phosphatidyll2-+H ]inositol (60000 
dpm, 2 mmol/l CaCIz, 0.2% Nal)oCh, and where 
addcd ATP was 2 mmol/I. After incubation water 
soluble radioactivity was separated according to 
[ I 0] and counted. 

3. RESULI"S AND DISCUSSION 

The possibility that a change in substrate (PIP, 
PIP.,) supply might bear on the regulation of 
phospholipase C focussed our interest on the 
regulatory properties of the responsible enzyme's 
PI kinase and PIP kinase. On studying a variety of 
hormones and other effectors wc observed that 
GTP~S stimulated the SZp incorporation from 
[~,-~"P}ATP into PIP-,. The labelling of PIP re- 
mained unchanged (fig. 1 ). In thesc experiments the 

phosphorylation of  endogenous membrane 
inositoi phospholipid was studied. However, as in- 
dicated in table I the phosphorylation of  ex- 
ogenously added PIP was likewise stimulated by 
GTPTS. Table I further shows that GTPTS pro- 
duced a significant effect at I #tool/I, and a 
maximal effect at 1 0 , a m o l / l .  A s  shown in table 2 
the GTPTS effect depends on the presence of  
T X - 1 0 0  d i sp lay ing  a maximal response at 0 . 3 6 %  
lX-lO0. 

It is important to note in fig.l (right panel) that 
the effect of GTPyS on PIP2 formation is no 
longer demonstrable in incubations containing 
NaDoCh. Under these conditions the 
phosphorylated fraction corr~ponding to PIP2 
has vanished and a new phosphorylated band cor- 
responding to PA appears. This is explained by the 
fact that phospholipase C of  placenta membranes 
becomes activated by NaDoCh while it is essential- 
ly inactive in its absence (not shown). As a conse- 
quence, PIP-, is rapidly cleaved, and one of  the 
products, DAG appears in form of PA after 
phosphorylation by DAG kinase. 

We believe that the effects of GTPTS on PIP 
phosphorylation is attributable to an activation of 
PIP kinase rather than an inhibition of 
phospholipase C. The latter possibility seems 
rather unlikely as under our assay conditions (I 
mmol/! EGTA and no NaDoCh} phospholipase C 
showed no measurable activity even up to 30 rain 
of incubation (not shown). 

Kinetic data on endogenous PIP phosphoryla- 
tion by placenta membranes (fig,2} show linear 
reaction rates at least up to 5 rain both in the 
absence and presence of  GTPTS. From these data 
one can calculate a specific PIP kinase activity of 

Table I 

Effect of (;TP)S on PIP: formation by human placenta membranes 

No PIP added 

PIP2 formed (cpm) 

GTP-;,S Expt I Expt 2 
~mol/ l) 

50 ~g PIP added 

Expt 3 Expt 1 Expt 2 Expt 3 

- 7101 5099 3091 63376 24451 30137 
1 10275 7339 4267 80635 32387 40672 

l0 12724 8711 5927 99412 39401 58371 
100 12692 9427 5140 103602 41865 54108 
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Table 2 

Dependence of stimulated and unstimulated PIP kinase 
on TX-100 

TX-100 P I P  kinase P I P  kinase A G T P y S  
(%) - G T P y S  + G T P y S  (%)  

(cpm) (cpm) 

0 3809 4147 9 
0.07 5921 8346 41 
0.14 6168 9809 59 
0.36 2162 4343 101 
0.72 44 47 0 

0.4 m U / m g  protein and about double that value in 
the presence of GTPyS.  Fig.3 illustrates the 
dependence of  PIP  kinase activity on ATP concen- 
trations. From the Lineweaver-Burk plot it ap- 
pears that GTPTS acts on PIP  kinase by increasing 
Vmax while K .. . .  pp for ATP (0.26 mmol / l )  remains 
unchanged. Guanosine 5 ' -(f l ,7-imido)tr iphosphate 
between 10 and 100/~mol/1 showed a slightly 
weaker effect than GTPTS whereas GTP itself had 
no effect at concentrations between 1/~mol/1 and 
1 mmol / l .  

That the activation of  PIP  kinase by GTPyS and 
the ensuing increase in PIP2 formation 
demonstrated in this study does in fact pertain to 
phospholipase C activity is shown in fig.4. In these 
experiments exogenously added PIP was first coin- 
cubated with placenta membranes and labelled 
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Fig.2. Time dependence of PIP2 formation. After 15 
rain preincubation of placenta membranes with ( o - - ~ )  
or without ( x - - × )  GTPTS, 10/~mol/1, phosphorylation 
was started by addition of [32P]ATP, and 100/A aliquots 
were removed from each batch at the times indicated on 
the abscissa for lipid extraction and separation on TLC 

as indicated in section 2.1 

ATP either in the presence of absence of GPTyS.  
Phospholipids were then extracted, and after 
sonification used as substrates for phospholipase C 
of another batch of placenta membranes.  It is clear 
that phospholipase C was about twice as active in 
the presence of  the liposomes obtained after 
GTPyS pretreatment of  the membranes as com- 
pared t o  the controls. 

In conclusion our findings suggest that PIP  

2 -  o 

1" x 

o 

g 

Vs 

Fig.3. PIP2 formation as a function of ATP concentration. Placental membranes were incubated at different ATP con- 
centrations and with a constant tracer amount of [7-32p]ATP corresponding to 11.2 X 106 cpm/sample after preincuba- 
tion with (C~--<3) or without ( x - - × )  GTPyS, 10/~mol/1, and PIP2 formation measured as described in section 2.1. 
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Fig,4. Time course of phospholipase C activity in 
response to different PIP2 concentrations generated by 
GTPTS. 100/¢1 placental membranes corresponding to 
2.5 mg protein and 1 mg PIP, were incubated 15 rain 
with or without GTyS, 10/~mol/1. Phosphorylation was 
then started by addition of 0.5 mmol/1 [7-32p]ATP 
(100000 cpm/nmol) and continued for 10 min. 
Thereafter phospholipids were extracted as in [9] and 
after sonification [10l added as liposomes to another 
batch of placental membranes. Phospholipase C activity 
is represented by 32p radioactivity of the aqueous phase 
during incubation in the medium described in section 2.2 
except that no tritium labelled PI and no Ca 2+ but 1 
mmol/1 EGTA was added. 3Zp radioactivity of the 
liposomes obtained from GTPTS treated membranes 
was 29 101 and 3032 cpm in PIP2 and PIP, respectively. 
The corresponding values of the controls were 17 235 

and 2720 cpm. 

kinase of human placenta membranes may be a 
regulatable enzyme, and that a nucleotide binding 
protein is involved in its regulation. In this respect 
it is worth comparing the rate of PI kinase of  
10 mU/mg  protein with that of PIP kinase of 
0.4 mU/mg  protein (both calculated from the pre- 
sent study). This would mean that PIP kinase 
represents the rate limiting step during the forma- 
tion of PIP2, and that an activation of this step, 
through an increase of  PIPz, might exert control 
on phospholipase C. That the substrate supply for 
phospholipase C is limited and that the inositol 
lipid kinases may therefore be under separate con- 
trol have also been discussed elsewhere [11]. 

Previous findings from this laboratory that in- 
sulin activates phospholipase C in fat cells [10] 

seem to have been confirmed recently [12,13]. So 
far, in our hands placenta membranes did not res- 
pond to insulin with activation of phospholipase C 
nor of PIP kinase. Likewise, other hormones such 
as vasopressin, angiotensin II, phenylephrine, car- 
bachol and oxytocin had no effect on PIP kinase 
either alone or together with GTPyS. Hence the 
receptor(s) and agonist(s) to which the postulated 
G-protein may be coupled remain to be identified. 
In this context it seems noteworthy that a novel G- 
protein, Gp, of  unknown function, was recently 
purified from human placenta membranes [14]. 
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