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Stimulus uncertainty produced by variations in a target stimulus to be detected or discriminated,
impedes perceptual learning under some, but not all experimental conditions. To account for those dis-
crepancies, it has been proposed that uncertainty is detrimental to learning when the interleaved stimuli
or tasks are similar to each other but not when they are sufficiently distinct, or when it obstructs the
downstream search required to gain access to fine-grained sensory information, as suggested by the
Reverse Hierarchy Theory (RHT). The focus of the current review is on the effects of uncertainty on the
perceptual learning of speech and non-speech auditory signals. Taken together, the findings from the
auditory modality suggest that in addition to the accounts already described, uncertainty may contribute
to learning when categorization of stimuli to phonological or acoustic categories is involved. Therefore, it
appears that the differences reported between the learning of non-speech and speech-related parameters
are not an outcome of inherent differences between those two domains, but rather due to the nature of
the tasks often associated with those different stimuli.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A large body of research in the visual modality has looked at the
effects of stimulus uncertainty on perceptual learning (Aberg &
Herzog, 2009; Adini et al., 2004; Kuai et al., 2005; Otto et al.,
2006; Tartaglia, Aberg, & Herzog, 2009; Yu, Klein, & Levi, 2004;
Zhang et al., 2008). Some of these studies suggest that visual per-
ceptual learning is disrupted by stimulus uncertainty induced by
randomly interleaving training trials involving different stimuli or
tasks (also known as roving) (Adini et al., 2004; Kuai et al., 2005;
Yu, Klein, & Levi, 2004), while others (Tartaglia, Aberg, & Herzog,
2009; Zhang et al., 2008) show that this is not always the case. Dif-
ferent accounts were proposed for those discrepant findings (see
below), but the effects of stimulus uncertainty on learning are
not fully understood. The goal of the current review is therefore
to discuss a parallel group of studies, conducted in the auditory
modality, with the hope that they might contribute to a better
understanding of the effects of stimulus uncertainty in visual per-
ceptual learning. We limit our discussion to cases where two or
more stimulus conditions are randomly interleaved across trials,
such that uncertainty at the level of each trial persists throughout
the experiment.

Two accounts were recently proposed for the effects of uncer-
tainty on learning. On the one hand, based on a series of experi-
ments in which line bisection and vernier acuity tasks were
ll rights reserved.
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practiced, it has been proposed that stimulus uncertainty intro-
duced by randomly interleaving trials of two different types (e.g.,
vernier acuity with bisection trials or bisection trials with two
different bisection stimuli) disrupts perceptual learning when the
stimuli used are distinct but share overlapping (though not identi-
cal) neural representations (Tartaglia, Aberg, & Herzog, 2009). It
has also been shown that practice on two consecutive blocks of a
hyperacuity task lead to no learning if stimuli in the two blocks
were presented at the same orientation and at the same retinal
location, but that learning did occur if the stimuli were presented
in different locations or at different orientations (Seitz et al.,
2005). While these findings were interpreted in the context of
learning consolidation, they also suggest that the degree of overlap
between the neural representations of the trained stimuli influ-
ences learning. Another account of the effects of stimulus uncer-
tainty on perceptual learning is offered by the Reverse Hierarchy
Theory (RHT) (Ahissar & Hochstein, 1997). According to the RHT,
conscious perception under ecological conditions is based on stim-
ulus-relevant information that is represented in high-level neural
populations. When the sensory resolution provided by a high-level
population is not sufficient, as in the case of fine grained discrim-
ination tasks, an attention driven, top-down search process is
initiated to locate the neural populations in which sensory repre-
sentations retain sufficient level of detail. Learning is the process
by which those lower-level representations become more accessi-
ble to conscious perception (Ahissar & Hochestein, 2004). By this
account, stimulus uncertainty should disrupt learning because it
obstructs the top-down search process required to access the
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lower-level neural populations in which fine-grained stimulus
information is represented (Nahum, Nelken, & Ahissar, 2010). Nev-
ertheless, it may be that if the different to-be-learned stimuli are
sufficiently distinct, it is possible to more flexibly shift attention
between the relevant perceptual features and thus initiate multiple
backward search processes, resulting in learning (Zhang et al.,
2008).

In the auditory modality, stimulus uncertainty appears to con-
tribute to the perceptual learning of degraded speech (Davis
et al., 2005; Hervais-Adelman et al., 2008; Loebach & Pisoni,
2008; Stacey & Summerfield, 2007) and novel phonetic categories
(Lively, Logan, & Pisoni, 1993; Logan, Lively, & Pisoni, 1991; Tremb-
lay et al., 1997, 2001). In many of the speech studies, different
stimuli (words, sentences) are used in each trial, or multiple stim-
uli are repeated a few times each. Therefore, it is often hard to dis-
entangle learning and generalization. Nevertheless, the few cases
in which such a distinction is possible suggest that stimulus uncer-
tainty does not facilitate the learning of the trained exemplars, but
rather it augments the transfer of learning to untrained materials
(e.g., Bradlow & Bent, 2008; Clopper & Pisoni, 2004; Lively, Logan,
& Pisoni, 1993). For example, Lively, Logan, and Pisoni (1993)
showed that native speakers of Japanese trained to identify the
English phonemes /r/ and /l/, became more accurate during the
training phase whether the training set was comprised of tokens
presented by a single-talker (no stimulus uncertainty) or five dif-
ferent talkers (uncertainty about talker identity exists on each
trial). Nevertheless, only listeners in the 5-talkers condition gener-
alized their learning to words that were not included in the train-
ing set (see Section 2 for further examples). There is also evidence
that practice with two or more randomly interleaved stimuli either
promotes (Amitay, Hawkey, & Moore, 2005), or has no effect (Kar-
markar & Buonomano, 2003) on the learning of auditory frequency
and temporal interval discrimination as compared to training with
each of the stimuli consistently presented on its own. In the case of
auditory temporal interval discrimination, stimulus uncertainty in-
duced by randomly mixing stimuli drawn from around two distinct
temporal intervals had little effect on the learning rate of the
trained intervals compared to a no-uncertainty training regimen.
Training with either regimen resulted in no generalization to any
untrained temporal interval (Karmarkar & Buonomano, 2003).
Similarly, following training on auditory frequency discrimination
generalization of learning to untrained frequencies was similar for
listeners trained with protocols incorporating either a single or five
randomly-interleaved reference frequencies (Amitay, Hawkey, &
Moore, 2005).

In the following sections, we will thus focus on the effects of
stimulus uncertainty on the perceptual learning of speech and
non-speech acoustic elements. This reviewed body of work sug-
gests that stimulus uncertainty plays a similar role in the learning
of speech and non-speech auditory elements. In particular, it ap-
pears that when classification (based on either phonetic categories
or perceptual anchors – consistently repeating reference stimuli)
can be used to solve a given task, as is often the case in speech
learning, learning is indifferent to stimulus uncertainty. For the
purpose of the current review, the term classification describes
all the cases in which a response to an experimental task requires
assigning a given stimulus to a particular category. Therefore,
deciding whether a stimulus is longer or shorter than a given ref-
erence (Karmarkar & Buonomano, 2003) is a classification task be-
cause the listener determines whether it falls under the category of
‘long’ or ‘short’ stimuli. Likewise, determining that a talker speaks
with the dialect of a particular region (Clopper & Pisoni, 2004), or
identifying that a word one heard was ‘bleed’ rather than ‘breed’
also represent instances of classification. By this definition, the
number of potential categories along an acoustic dimension (e.g.,
tone pitch or duration) is determined in a given experiment by
the number of randomly interleaved ‘base’ stimuli and the ques-
tion posed to the listeners. For example, in the Karmarkar and
Buonomano (2003) study mentioned above, tones from two differ-
ent interval ranges were used and listeners had to decide whether
each tone was shorter or longer than a given reference creating a
total of four different categories. Because we view categories as
ad hoc constructs, defined experimentally, it seems that learning
to categorize involves learning to tag (or label) the different cate-
gories rather than remapping the acoustic space to discrete units.
This means that the classification process does not have to result
in reduced within category sensitivity because it does not neces-
sarily involve changes in acoustic representation per se.
2. Perceptual learning of speech under conditions of stimulus
uncertainty

With training, human listeners can gradually learn to interpret
degraded speech materials that are incomprehensible to naïve lis-
teners (e.g., Davis et al., 2005; Logan, Lively, & Pisoni, 1991; Pallier
et al., 1998; Peelle & Wingfield, 2005; Song et al., 2011; Stacey &
Summerfield, 2007). Speech degradation can be achieved by
embedding the speech signal in background noise (not discussed
here), by using speech materials produced by listeners with foreign
accents or uncommon dialects, or by artificially distorting the
acoustic properties of the signal. In particular, both the spectral
content and the intensity of naturally produced speech change
over time in a characteristic way known as the speech envelope,
and these fluctuations carry information that is relevant for speech
perception (Rosen, 1992). Therefore, it is possible to experimen-
tally degrade the speech envelope or its content (spectrum and fine
structure) independently. A popular form of manipulation is
vocoding. In vocoded speech, the temporal-envelopes are extracted
from natural signals. Those envelopes are then imposed on tone
(single frequency) or band-limited noise (range of frequencies) car-
riers. The result is a signal that maintains the low-level temporal
structure of the original signal, but is devoid of natural spectral
content, and is thought to simulate the speech signal that is avail-
able for cochlear implant users. While natural speech is hard to use
in learning studies because it is so well learned, vocoded speech is
often initially unintelligible, especially when using a limited num-
ber of tones or frequency bands.

In a typical experiment, listeners are exposed to lists of sen-
tences or words during the training phase and are subsequently
tested on a different list to demonstrate learning. In those experi-
ments, there is no consistent across trial repetition of a fixed or
standard comparison stimulus. Furthermore, even though the
vocoding manipulation stays the same across trials, a different
stimulus is vocoded on each trial therefore randomly changing
the acoustics of the trained stimuli on a trial-by-trial basis. None-
theless, robust learning is often observed (Davis et al., 2005; Herv-
ais-Adelman et al., 2008; Loebach & Pisoni, 2008; Stacey &
Summerfield, 2007). Furthermore, because learning generalizes
across words, non-words and environmental sounds, it appears
that learning occurs at a sub-lexical acoustic–phonetic level (Herv-
ais-Adelman et al., 2008; Loebach & Pisoni, 2008; Loebach, Pisoni,
& Svirsky, 2009). Because learning occurred at a level in which
stimulus representation is acoustic and not conceptual, this type
of learning is considered perceptual. The modification of acoustic
representations with training further makes it likely that learning
did not result only due to the use of meaningful language materi-
als. No comparison to consistent (non-variable) training protocols
was conducted within this line of work, but it appears that the pat-
tern of generalization in the degraded speech studies (e.g., from
words to non-words and environmental sounds or across different
carrier stimuli used in the vocoding process) (Hervais-Adelman
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et al., 2011; Loebach, Pisoni, & Svirsky, 2009) is wider than that ob-
tained in non-speech auditory training studies. Although experi-
mental tests of generalization in the non-speech literature are
often limited to different values of the trained acoustic parameters,
there is evidence that there is little generalization between acous-
tic dimensions. For example, listeners trained on an impossible
frequency discrimination task, in which they were asked to dis-
criminate between identical tones based on their frequency, im-
proved on a subsequent test of frequency discrimination but not
on a subsequent test of intensity discrimination (Halliday et al.,
2011). Similarly, learning on frequency discrimination did not gen-
eralize to duration discrimination even though the tones used in
both conditions were similar in frequency and duration (Banai &
Ahissar, 2009).

Direct comparisons between conditions varying in the degree of
training set uncertainty in the domains of accent and dialect learn-
ing suggest that the perceptual learning of both regional dialects
and the ability to comprehend foreign accented English were en-
hanced when the training sets included several, as compared to a
single, talker (Bradlow & Bent, 2008; Clopper & Pisoni, 2004; Wade,
Jongman, & Sereno, 2007). In those studies, uncertainty is intro-
duced into the training set by varying the number of talkers repre-
senting each accent or dialect during training and randomly mixing
the utterances produced by the different talkers. Thus, when asked
to transcribe English sentences produced by novel non-native
English speakers with Chinese or Slovakian accents, listeners who
received practice with a training set of five Chinese-accented
speakers showed more generalization to untrained sentences and
an untrained talker than those who were exposed to a single talker
during training, even though the accuracy of listeners exposed to
multiple talkers during the training phase itself was lower. In both
cases learning did not generalize to an untrained (Slovakian) ac-
cent (Bradlow & Bent, 2008). Similarly, after training on a dialect
categorization task, in which listeners were asked to categorize
utterances based on talkers’ dialects, listeners who practiced with
a variable training set in which each dialect was represented by
three different talkers generalized their learning to novel sentences
spoken by unfamiliar talkers. This is in contrast to listeners who
practiced with only a single speaker of each dialect who showed
no generalization to untrained talkers despite of their higher accu-
racy during the training phase (Clopper & Pisoni, 2004). It could be
that randomly mixing talkers that share an accent or a dialect al-
lows listeners in the multi-talker conditions more opportunity to
extract talker-independent accent-specific information compared
to listeners who were exposed to a single talker. It therefore
appears that stimulus uncertainty during learning facilitates the
creation of abstract representations of the properties unique to
each accent/dialect, at the cost of less learning of the talker-specific
information during the training phase.

Further evidence that learning under conditions of stimulus
uncertainty is not restricted to complex linguistic materials and
can result in modifications to the acoustic representations of
speech comes from studies on learning to discriminate conso-
nant–vowel (CV) syllables (Lively, Logan, & Pisoni, 1993; Logan,
Lively, & Pisoni, 1991; Tremblay et al., 1997, 2001). Learning pho-
netic distinctions that are not present in one’s native language (e.g.,
distinguishing [mba] which does not exist in English from the
native [ba]) is obtained with a roving training protocol in which
different variants of the native and non-native stimuli were pre-
sented on each trial, and furthermore, learning transferred to an
untrained contrast ([ba] vs. [nba]) (Tremblay et al., 1997, 2001).
Perhaps the most compelling evidence for the claim that stimulus
uncertainty facilitates learning by contributing to greater general-
ization to untrained tokens comes from studies in which native
speakers of Japanese were trained to discriminate the English
phonemes /r/ and /l/, a phonetic distinction that does not occur
in Japanese (Bradlow et al., 1999; Iverson, Hazan, & Bannister,
2005; Lively, Logan, & Pisoni, 1993; Logan, Lively, & Pisoni,
1991). In those studies a minimal pair identification task was used.
On each trial listeners heard a word containing either /r/ or /l/ and
were asked to select the word they heard from two alternatives
presented in written form (e.g., breed/bleed). After several weeks
of training, small but significant improvements in both the accu-
racy and speed of identification were observed among listeners
who trained on either single- or multi-talker sets. Generalization
to untrained tokens on the other hand was observed only after
multi-speaker training, in which uncertainty about talker identity
persisted throughout the experiment (Lively, Logan, & Pisoni,
1993). /r/–/l/ identification learning did not depend on the lexical
status of the token (that is whether the token was a real word or
a pseudo-word), but was sensitive to phonetic environment (e.g.,
the position of the critical phoneme within the word). These out-
comes suggest that learning occurred at an acoustic–phonetic
rather than at a lexical level, a conclusion similar to that reached
for the learning of vocoded speech as discussed above.

Considering the studies discussed above in the context of the
theoretical accounts from the visual modality (see Section 1), the
speech learning findings appear consistent with the proposal that
uncertainty does not interfere with learning if the roved stimuli
are sufficiently distinct along the dimension that is relevant to
the task at hand (Tartaglia, Aberg, & Herzog, 2009; Zhang et al.,
2008). They further suggest that this may be the case because
uncertainty allows learners to acquire the invariant, task relevant,
information, and thus allow attention switching to the appropriate
perceptual features, as proposed by Zhang and colleagues (2008).
In the cases of auditory learning described above this relevant,
invariant information would be the information about the dialect
or the phonetic category that is common across speakers, as op-
posed to the information about the identity of each individual talk-
er or the semantic content of each utterance.

Taken together, the studies reviewed in this section suggest that
stimulus uncertainty during auditory training contributes to the
generalization of the perceptual learning of speech. Uncertainty
might promote generalization by allowing listeners to sharpen
the abstract representations of the acoustic–phonetic properties
that underlie the identification of individual tokens based on the
category to which they belong. Although in the auditory system
categorization might play a more critical role in the perception of
speech (Holt & Lotto, 2010) than in the perception of non-speech
acoustic properties of sound, it seems plausible that stimulus
uncertainty could similarly contribute to learning on non-speech
tasks when the training scenario emphasizes (or at-least affords)
categorization rather than within category discrimination. It seems
that a similar distinction can be drawn in the visual modality be-
tween category and shape learning in which stimulus uncertainty
was proven helpful (e.g., Eimas & Quinn, 1994; Posner & Keele,
1968) and visual feature discrimination learning in which uncer-
tainty often impedes learning (see Section 1, above), although a de-
tailed comparison between the two modalities is beyond the scope
of the present review.
3. Perceptual learning of non-speech auditory discriminations
under conditions of stimulus uncertainty

Whereas the measurement of discrimination thresholds for fre-
quency, intensity and other acoustic parameters under roving or
uncertain conditions is relatively common, only few published ac-
counts on learning under such conditions are available. In one
group of studies, listeners learned to discriminate tonal sequences
that differed on a single (adaptively changing) component (Leek &
Watson, 1984; Watson, Kelly, & Wroton, 1976) and found that any



86 K. Banai, S. Amitay / Vision Research 61 (2012) 83–88
variability in the pitch, timing or order of the different components
was detrimental to learning. Similar observations have been made
in the visual modality (Kuai et al., 2005). The common interpreta-
tion of these findings has been that detecting a target in a multi-
component sequence relies on attention to the temporal position
(or timing) of the target within the stimulus sequence, and that
stimulus uncertainty disrupts this attentional process.

More recently, learning under conditions of stimulus uncer-
tainty was demonstrated in the auditory modality using tasks that
are more similar in nature to those used in the visual literature in
that sensory discriminations between simple tones (rather than to-
nal sequences) were used. For example, auditory temporal-interval
discrimination thresholds are known to improve with practice if a
single temporal-interval is consistently practiced over multiple
training sessions using either a discrimination task in which listen-
ers should discriminate between two tones on each trial (Banai
et al., 2010; Lapid, Ulrich, & Rammsayer, 2009; Wright et al.,
1997), or a single interval classification task in which listeners
are presented with a reference tone at the beginning of the exper-
iment and are subsequently required to determine whether subse-
quently presented tones are longer or shorter than that reference
(Karmarkar & Buonomano, 2003). A typical finding is that the dis-
crimination of the trained temporal-interval improves and that
learning transfers across frequency (that is across a task-irrelevant
dimension, to the discrimination of the practiced temporal-interval
marked with tones of untrained frequencies) but not to any un-
trained temporal-intervals. When two distinct temporal intervals
are randomly interleaved, both intervals are learned and the pat-
tern of generalization is similar to that observed under a single
interval training regimen (Karmarkar & Buonomano, 2003). These
findings suggest that stimulus uncertainty does not necessarily
disrupt auditory perceptual learning of fine-grained acoustic dis-
criminations. Similar findings were reported for auditory fre-
quency discrimination (Amitay, Hawkey, & Moore, 2005).

Several factors probably contributed to learning and generaliza-
tion under conditions of uncertainty. Amitay, Hawkey, and Moore
(2005) showed that the patterns of learning and generalization de-
pended on initial discrimination thresholds and on the frequency
difference between the different roved tracks. Thus, compared to
a single condition (non-roving) training regimen with a fixed stan-
dard frequency, learning of listeners with good starting thresholds
(2/3 of the listeners) was slower when the randomly interleaved
base frequencies were 50 Hz apart but not when the differences
between the base frequencies were larger than 200 Hz. Listeners
with poorer initial thresholds, on the other hand, learned more
slowly on both roving conditions remained higher than those of
the good listeners. As for generalization, no transfer to untrained
conditions was observed among poor listeners. Among good listen-
ers, an asymmetric pattern was observed. Listeners who trained on
a roving training regimen transferred their learning fully to a fixed,
untrained condition. Even though they received only one fifth of
the exposure to stimuli drawn from the fixed condition during
training, roving-trained listeners performed it as well as listeners
who practiced on this specific condition throughout the practice
phase. In contrast, listeners who practiced with a fixed regimen
did not transfer their learning to the untrained roving condition,
and performed it equivalently to naïve listeners. This pattern of
findings suggests that learning under conditions of stimulus uncer-
tainty can, under some conditions, be superior to practice with
consistent presentation regimens in that it generalizes more
broadly, in keeping with the speech studies discussed in Section
2 above (for a similar conclusion reached based on visual orienta-
tion and contrast discrimination training see Xiao et al. (2008)).

In contrast to the finding that auditory temporal interval
discrimination can be learned under conditions of uncertainty
(Karmarkar & Buonomano, 2003), we found that, whereas the
discrimination of two temporal intervals (100 and 350 ms) im-
proved with training when the two intervals were practiced
sequentially during each training session (Banai et al., 2010), no
learning on either interval was observed when the two intervals
were randomly interleaved (Banai et al., 2007). Two differences
could account for the discrepancy between these two studies: First,
whereas Karmarker and Buonamano used a single interval classifi-
cation task in which listeners had to determine whether a stimulus
was longer or shorter from reference stimuli that were presented
at the onset of each block of trials (similar to the categorization
tasks used in the speech literature), we have used a 2-alternatives
forced-choice (2AFC) discrimination task in which listeners heard
two tones on each trial (a fixed reference tone of 100 or 350 ms
and a longer test tone) and were asked to determine which of
the two stimuli was longer. This interpretation is consistent with
the findings of the perceptual learning of speech studies discussed
in Section 2, suggesting that identifying stimuli based on either
acoustic or phonetic categories may be learned using similar mech-
anisms. Second, to enable performance on the single interval task,
Karmarkar and Buonomano (2003) had to mark each of the inter-
vals with marker tones of different frequencies, whereas in our
study the marker frequency was the same for both intervals. While
the use of different marker frequencies could potentially result in
less overlap between the representations of the two intervals,
therefore enabling learning (Tartaglia, Aberg, & Herzog, 2009), we
have preliminary data to the contrary. Thus, using two randomly
interleaved trained intervals (100 and 350 ms) and a 2AFC task,
we find no learning even when the two intervals were marked with
different frequencies (1 and 4 kHz).
4. Categorization vs. the use of low level acoustic information

We have suggested above that stimulus uncertainty prompts
‘categorization learning’ of both speech and non-speech auditory
stimuli by facilitating the abstract representation of category spe-
cific information. This proposal is consistent with predictions de-
rived from the RHT (Ahissar & Hochstein, 1997; Ahissar et al.,
2009). According to the RHT the detailed (non-categorical) acoustic
information required to make fine-grained discriminations (such
as temporal-interval discrimination) becomes available to the lis-
tener only if a top-down initiated backward search of that informa-
tion can be carried out. Stimulus uncertainty impedes this
backward search by changing the search parameters on a trial by
trial basis, and therefore the learning outcomes will depend upon
the necessity of low level acoustic information for learning (Ahissar
et al., 2009). The findings of the speech learning studies described
above are generally in line with the suggestions of the RHT. Suc-
cessful learning of novel phonetic categories (like in the /r/–/l/
studies) or of category identification under non-ideal listening con-
ditions (like in the degraded speech studies) does not require the
use of the low level acoustic information that makes the different
tokens taken from each category distinct, but rather the higher le-
vel phonetic information that makes the different instances cate-
gorically similar.

In support of the dissociation of categorical and low level acous-
tic information, Nahum, Nelken, and Ahissar (2010) demonstrated
that listeners could learn to categorize phonetically similar words
without a corresponding improvement in the use of low level (bin-
aural) acoustic information. In this study, listeners were required
to identify pseudo-words embedded in background noise under
conditions differing in how low level binaural information was
presented to the two ears. One condition was diotic, meaning that
the stimuli presented to the two ears were identical. In the other,
dichotic, condition the phase of the speech signal presented to
one of the ears was inverted thus creating a disparity between
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the ears. Training followed either a consistent protocol in which
diotic and dichotic stimuli were presented in separate blocks of tri-
als, or a random protocol in which diotic and dichotic stimuli were
randomly interleaved on a trial-by-trial basis. Diotic thresholds im-
proved with training on either protocol thereby suggesting that
categorization can be learned under conditions of stimulus uncer-
tainty. On the other hand, the magnitude of the binaural advantage
(defined as the threshold difference between the diotic and dich-
otic conditions) which provides an estimate of the use of low-level
acoustic information, did not reach optimal level even after pro-
longed training with the random protocol (Nahum, Nelken, & Ahis-
sar, 2010). This is particular noteworthy because under consistent
presentation conditions, the low-level acoustic information was
fully available even to naïve listeners (Nahum, Nelken, & Ahissar,
2008).

Learning whether stimuli are phonetically similar (as described
in the previous paragraph) or whether they belong to the same
phonetic categories (as in the /r/–/l/ studies that were described
in Section 2) may not require the use of fine-grained low level
acoustic information and can thus proceed even under conditions
of stimulus uncertainty. This doesn’t necessarily mean that the
ability to discriminate between stimuli from the same category
(based on acoustic differences) is lost, but rather that it may de-
pend on whether experimental conditions make it possible for lis-
teners to reach a decision based on acoustics rather than on
category labels. Indeed, within-category discrimination also ap-
pears to improve with practice under roving conditions (Amitay,
Hawkey, & Moore, 2005; Karmarkar & Buonomano, 2003). In these
studies listeners were asked to perform frequency discriminations
(Amitay, Hawkey, & Moore, 2005) or decide whether a presented
temporal-interval was longer or shorter than an exemplar pre-
sented in the beginning of the experimental block (Karmarkar &
Buonomano, 2003). Categorization was therefore not sufficient;
an additional, within-category, decision was also necessary. That
this further decision was possible is inconsistent with the idea that
task similarity between the randomly interleaved conditions
blocks learning (Tartaglia, Aberg, & Herzog, 2009) because in both
studies listeners were required to perform the same task with each
of the different (category) stimuli.

It could be that in those cases of successful learning of within
category discrimination, sufficient acoustic information was main-
tained at the level of categorical representation to allow within
category classifications. This suggestion is consistent with the find-
ing that the generalization of learning on a vocoded speech task de-
pended on the specific acoustics properties of the manipulation
used to degrade the speech (Hervais-Adelman et al., 2011). Alter-
natively, if listeners are able to categorize the interleaved stimuli
correctly, then within a category they may be able to form and
maintain an anchor (based on the repeated reference tone or the
base stimulus) against which subsequent stimuli could be classi-
fied, rather than discriminated (Nahum, Daikhin, et al., 2010). This
latter possibility is consistent with the RHT, as long as the different
categories are sufficiently distinct. In this case, a backward search
of the neural populations in which the required low level informa-
tion is represented might be implemented within each category
from the higher, categorical level to the lower, acoustical level. In-
deed, when listeners trained on frequency discrimination with
randomly interleaved stimuli from five different frequency catego-
ries that were clearly separable (wide roving, 570, 840, 1170, 1600,
2150 Hz), learning was faster than learning under a similar
regimen in which the frequency categories were less separable
(narrow roving, 900, 950, 1000, 1050, 1100 Hz). Furthermore,
uncertainty precluded learning entirely among listeners whose ini-
tial discrimination was poor, and who therefore were less likely to
find the different categories separable (Amitay, Hawkey, & Moore,
2005). Note though that listeners in the narrow roving condition
never reached an asymptotic level of performance on the trained
roving condition. After 3500 trials of training, thresholds on the
roving condition were similar to those of naïve listeners on the
non-roving conditions, yet, as mentioned above, at the same time,
thresholds of the roving-trained listeners on the non-roving condi-
tion were equivalent to those of listeners who trained on that con-
dition the entire time. This is inconsistent with the RHT, unless one
assumes that once learning was initiated on the roving condition,
the low-level information becomes fully accessible, but listeners
are unable to fully use it under roving conditions.

5. Summary and conclusion

Uncertainty about the values of the acoustic parameters or in
the timing of the presentation of the stimuli within the sequence
slows or prevents learning that is dependent on the use of low level
acoustic information such as that required for fine-grained audi-
tory discriminations (Banai et al., 2007; Leek & Watson, 1984; Na-
hum, Nelken, & Ahissar, 2010). This however is not always the case.
Learning under conditions of stimulus uncertainty has been ob-
served across ‘simple’ acoustic parameters (Amitay, Hawkey, &
Moore, 2005; Karmarkar & Buonomano, 2003), and tasks involving
speech stimuli. In particular, talker variability contributes to the
generalization of learning on various speech tasks (phonetic dis-
criminations, dialect identification) (Clopper & Pisoni, 2004; Lively,
Logan, & Pisoni, 1993; Logan, Lively, & Pisoni, 1991), perhaps be-
cause in these cases the information critical for learning is categor-
ical rather than purely acoustic in nature. Therefore, we are led to
the conclusion that learning of speech and non-speech elements
might differ not due to inherent differences between those two do-
mains, but rather due to the different emphasis placed by the tasks
typically used in each domain on categories vs. individual exem-
plars. In the speech domain, identifying talkers or phonetic catego-
ries emphasizes the categorical nature of the stimulus, making
information that is easily available to conscious perception suffi-
cient for learning. In those cases, stimulus uncertainty might help
extracting features that are common to all category members. In
the acoustic domain, the emphasis is often on within category dis-
criminations. This acoustic information is typically represented in
lower levels of the auditory system, and uncertainty might impede
the backward search required to use this information to make per-
ceptual decisions, consistent with the RHT. Nevertheless, some of
the findings (e.g., ‘‘super generalization’’ from a variable to a fixed
condition, Amitay, Hawkey, & Moore, 2005), are inconsistent with
current theories of learning. This conclusion joins a growing body
of work arriving at similar conclusions by analyzing the patterns
of generalization of auditory perceptual learning following training
on non-variable protocols (Wright & Zhang, 2009), as well as by
looking at the learning of task-relevant vs. task irrelevant informa-
tion in auditory tasks (Amitay, 2009).

From a practical standpoint, we suggest that the use of stimulus
uncertainty should depend on the goals of training. Whereas fine
discrimination of acoustic features might be better learned when
there is no uncertainty, the properties of more abstract categories
might are better generalized if learned with multiple, randomly
presented stimuli. Because the effects of uncertainty might also de-
pend on listener characteristics (Amitay, Hawkey, & Moore, 2005),
deciding on an optimal training procedure should take those fac-
tors into account as well.
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