The Sylow 2-Subgroups of the Finite Classical Groups

ROGER CARTER AND PAUL FONG*

Department of Mathematics, The University, Newcastle-upon-Tyne, England
University of California, Berkeley, California

Communicated by Graham Higman
Received January 16, 1964

INTRODUCTION

Let G be a finite classical group over a finite field of characteristic p (the term will be made precise below). The Sylow l-subgroups of G, where l is a prime number, have been given by Weir [7] in the case $l \neq 2, l \neq p$; and by Chevalley [2], and Ree [6] in the case $l = p$. In the latter case the normalizers of the Sylow p-subgroups were obtained as well. It is our purpose in this paper to settle the remaining case $l = 2, p \neq 2$, which is perhaps the most interesting in view of the importance of the prime 2 for the simple group associated to G. For the purposes of this paper a classical group over $GF(q), q = p^n$, will be any one of the following groups:

I. The general linear group $GL_n(q)$, order

$$q^{n(n-1)/2} \prod_{i=1}^{n} (q^i - 1).$$

II. The symplectic group $Sp_{2n}(q)$, order

$$q^{n^2} \prod_{i=1}^{n} (q^{2i} - 1).$$

III. The unitary group $U_n(q)$, order

$$q^{n(n-1)/2} \prod_{i=1}^{n} (q^i - (-1)^i).$$

IV. The proper orthogonal group $O_{2n+1}^+(q)$, order

$$q^{n^2} \prod_{i=1}^{n} (q^{2i} - 1).$$

* The work of the second author was partially supported by National Science Foundation Grant GP-1610.
V. The orthogonal group $O_{2n}(\eta, q), \eta = \pm 1$, order

$$2q^{n(n-1)}(q^n - \eta) \prod_{i=1}^{n} (q^{2i} - 1).$$

(The reason for the choice of $O_{2n+1}(q)$ rather than $O_{2n+1}(q)$ in IV will be apparent in the proofs.) A general description of these groups can be found in Artin [1] and Dickson [3].

The determination of the Sylow 2-subgroups and their normalizers will proceed in three stages (the orthogonal cases differing slightly, however): (i) degree 2, (ii) degree 2^r, (iii) degree n. In (i) these subgroups can be computed directly. Once these are known, the construction given by the wreath product will give the corresponding subgroups in degree 2^r. It is an immediate consequence of the definition of the wreath product $G \wr H$ of two finite groups G and H that if G is a (irreducible) linear group of matrices, then $G \wr H$ is also a (irreducible) linear group. Moreover, if G is a group of symplectic, unitary, or orthogonal matrices, then $G \wr H$ is respectively symplectic, unitary, or orthogonal. The final stage (iii) will follow easily from the results of (ii).

I. Sylow 2-Subgroups of $GL_n(q), Sp_{2n}(q), \text{ and } U_n(q)$

For I, II, or III, let w_r be the exact power of 2 in the order of the corresponding group of dimension $2^r, r \geq 1$. If $r \geq 2$, then w_r/w_{r-1} is the power of 2 in

$$\prod_{i=0}^{2^r-1} (q^{2^r-2i} - 1) \quad \text{in I}$$

$$\prod_{i=0}^{2^{r-1}-1} (q^{2^r-2i} - 1) \quad \text{in II}$$

$$(q^{2^r-2i} - 1)(q^{2^r-2i-1} + 1) \quad \text{in III.}$$

(1)

In I write $w_r/w_{r-1} = 2^{f(q, r)}$; in II write $w_r/w_{r-1} = 2^{g(q, r)}$. If ν is the exponential valuation of the integers with respect to 2, normalized by the condition $\nu(2) = 1$, then in III

$$\frac{w_r}{w_{r-1}} = 2^{2^{r-2\nu(q-1)} + 1} 2^{g(q, r)}.$$
since \(v(q^{m} + 1) = v(q + 1)\) whenever \(m\) is odd. It follows from the definition of \(f(q, r)\), \(g(q, r)\), and from (1) that

\[
\begin{align*}
f(q, r) &= \frac{1}{2} (2^r - 2^{r-1}) v(q - 1) + f(q^2, r - 1) \quad (r \geq 3) \\
g(q, r) &= \frac{1}{2} (2^{r-1} - 2^{r-2}) v(q^2 - 1) + g(q^2, r - 1) \quad (r \geq 3)
\end{align*}
\]

and hence

\[
\begin{align*}
f(q, r) &= v(q^{2^r} - 1) + \sum_{i=0}^{r-2} 2^{r-2-i} v(q^{2^i} - 1) \quad (r \geq 2) \\
g(q, r) &= v(q^{2^r} - 1) + \sum_{i=1}^{r-2} 2^{r-2-i} v(q^{2^i} - 1) \quad (r \geq 2) \quad (2)
\end{align*}
\]

(An empty sum will of course be zero.) By (2) we have

\[
f(q, r + 1) - 2f(q, r) = v(q^{2^{r+1}} - 1) - 2v(q^{2^r} - 1) + v(q^{2^{r-1}} - 1).
\]

Since

\[
v(q^{2^{r+1}} - 1) = v(q^{2^r} + 1) + v(q^{2^r} - 1) = 1 + v(q^{2^r} - 1),
\]

and

\[
v(q^{2^{r-1}} - 1) = v(q^{2^r} - 1) - v(q^{2^{r-1}} + 1) = v(q^{2^r} - 1) - 1,
\]

it follows that \(f(q, r + 1) = 2f(q, r)\). Similarly \(g(q, r + 1) = 2g(q, r)\). If we define

\[
\begin{align*}
F(r) &= f(q, r + 1), \\
G(r) &= g(q, r + 1)
\end{align*}
\]

then for \(r \geq 1\), we have

\[
F(r + 1) = 2F(r), \quad G(r + 1) = 2G(r). \quad (3)
\]

It now follows that

\[
\omega_r = \begin{cases}
2^{F(r)-1} & \text{in I} \\
2^{G(r)-1} & \text{in II} \\
2^{r-1}v(q+1)2^{G(r)-1} & \text{in III.}
\end{cases} \quad (4)
\]

Indeed,

\[
\begin{align*}
F(1) &= v(q^4 - 1) + v(q - 1) = 1 + v(q^2 - 1) + v(q - 1), \\
G(1) &= v(q^4 - 1) = 1 + v(q^2 - 1),
\end{align*}
\]

and these are the correct values in (4) when \(r = 1\). Assuming (4) holds for \(1, 2, \ldots, r - 1\), we have in I,

\[
\omega_r = \omega_{r-1} 2^{F(r-1)} = 2^{2^{F(r-1)-1}} = 2^{F(r)-1}.
\]
in II
\[w_r = w_{r-1} 2^{G(r-1)} \]
in III
\[w_r = w_{r-1} 2^{G(r-1)} \]

Thus (4) holds for all \(r \geq 1 \).

Let \(T_i = Z_2 \times Z_2 \times \cdots \times Z_2 \) be the wreath product of \(Z_2 \) \(i \) times (\(Z_n \) in general is the cyclic group of order \(n \)). If \(W \) is a Sylow 2-subgroup of \(GL_2(q) \), \(Sp_2(q) \), or \(U_2(q) \), then \(W_r = W \wr T_{r-1} \) is certainly a 2-subgroup of the corresponding group in dimension \(2^r \) (we define \(W_1 = W \)). But an induction argument shows that \(W_r \) is even a Sylow 2-subgroup. Indeed, this is true by definition for \(r = 1 \), and if we assume it so for \(1, 2, \cdots, r-1 \), then \(W_r \) has order \(2^r \), by (4). We have thus proved

Lemma 1. Let \(W \) be a Sylow 2-subgroup of \(GL_2(q) \), \(Sp_2(q) \), or \(U_2(q) \). The \(W_r = W \wr T_{r-1} \) is a Sylow 2-subgroup of \(GL_{2^r}(q) \), \(Sp_{2^r}(q) \), or \(U_{2^r}(q) \) respectively.

We determine \(W \) in each of the above cases. It will be useful not only to present \(W \) as a definite group of \(2 \times 2 \) matrices, but to compute as well a lower bound for the number of distinct right translates \(a \times 2 \times 2 \) matrix \(A \), not \((0 \ 0) \), can have under the action of right multiplication by the matrices of \(W \).

I. \(GL_2(q) \) has order \(q(q^2 - 1)(q - 1) \). If \(q \equiv 1 \pmod{4} \) let \(2^s \) be the exact power of 2 dividing \(q - 1 \) (written \(2^s | q - 1 \)). Then \(W \) has order \(2^{2s+1} \). Let \(\epsilon \) be a primitive \(2^s \)-th root of unity in \(GF(q) \). The matrices

\[
\begin{pmatrix}
\epsilon & 0 \\
0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 0 \\
0 & \epsilon
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 \\
1 & \epsilon
\end{pmatrix}
\]

generate a group of order \(2^{2s+1} \), and hence \(W \simeq Z_{2^s} \times Z_2 \). A matrix \(A \) not \((0 \ 0) \) has at least \(2^{s+1} \) distinct right translates under \(W \); moreover, if \(A \) has no columns of zeros, then \(A \) has at least \(2^{2s} > 2^{s+1} \) distinct right translates. If \(q \equiv 3 \pmod{4} \) and \(2^s \nmid q + 1 \), then \(W \) has order \(2^{s+2} \). Let \(\epsilon \) be a primitive \(2^{s+1} \)-st root of unity in \(GF(q^2) \).

\[
X = \begin{pmatrix} 0 & 1 \\ 1 & \epsilon + \epsilon^q \end{pmatrix}
\]

is a matrix in \(GL_2(q) \) of order \(2^{s+1} \), since \(P^{-1}XP = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \), where \(P = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \). The matrix \(Y = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \) transforms \(X \) onto \(X^{-1}X^2 \). The product \(YX \) has order 2; \(W \) is thus a so-called semidihedral group. A matrix \(A \) not \((0 \ 0) \) has at least \(2^{s+1} \) distinct right translates under \(W \). Indeed, \(PAP^{-1} \) has \(2^{s+1} \) distinct
right translates already under the cyclic subgroup generated by \((\sigma_0 \tau_0)\). Note that in both cases the Sylow 2-subgroups of \(PGL_2(q)\) are dihedral.

II. \(Sp_2(q)\) has order \(q(q^2 - 1)\). It is well-known that \(Sp_2(q) \cong SL_2(q)\) and that \(W\) is a generalized quaternion group [4]. If \(q \equiv 1 \pmod{4}\) and \(2^e \mid q - 1\), then \(W\) has order \(2^{e+1}\). Let \(\epsilon\) be a primitive \(2^e\)-th root of unity in \(GF(q)\); the matrices \((\sigma_0 \tau_0)\), \((-\sigma_0 \tau_0)\) generate a group isomorphic to \(W\). A matrix \(A\) not \((\sigma_0 \tau_0)\) has at least \(2^e\) distinct right translates under \(W\). If \(q \equiv 3 \pmod{4}\) and \(2^e \mid q - 1\), then \(W\) has order \(2^{e+1}\). The matrices \(X^2, Y\) discussed in I above generate a group in \(SL_2(q)\) isomorphic to \(W\), so that the number of distinct right translates of \(A\) not \((\sigma_0 \tau_0)\) is at least \(2^e\).

III. \(U_2(q)\) has order \(q(q - 1)(q^2 - 1)\). If \(q = 3 \pmod{4}\), and \(2^e \mid q - 1\), then \(W\) has order \(2^{e+1}\). Let \(\epsilon\) be a primitive \(2^e\)-th root of unity in \(GF(q^2)\). The matrices \((\sigma_0 \tau_0), (\sigma_1 \tau_0), (\sigma_0 \tau_1)\) generate in \(U_2(q)\) a subgroup of order \(2^{e+1}\), and hence \(W \cong Z_2 \times Z_2\). The number of right translates of \(A\) not \((\sigma_0 \tau_0)\) in this case is not less than \(2^{e+1}\), and is not less than \(2^{2e}\) if \(A\) has no columns of zeros. If \(q \equiv 1 \pmod{4}\) and \(2^e \mid q - 1\), then \(W\) has order \(2^{e+2}\). Let \(\epsilon\) be a primitive \(2^e\)-th root of unity in \(GF(q^2)\). Then \(\epsilon^2 = -\epsilon\). Set \(\gamma = (\epsilon + \epsilon^{-1})/2, \delta = (\epsilon - \epsilon^{-1})/2\), so that \(\gamma^2 = -\gamma, \delta^2 = -\delta, \gamma^2 = -\delta^2\). Since \(\gamma^2\) is in \(GF(q)\), we can find nonzero elements \(\rho, \beta\) in \(GF(q)\) with \(\alpha^2 + \beta^2 = \gamma^2\) [3, p. 46]. The matrices \(X = (\frac{\alpha + \beta}{\beta}, -\frac{\alpha - \beta}{\beta}), Y = (\frac{1}{\alpha}, -\frac{1}{\alpha})\) are in \(U_2(q)\). The eigenvalues of \(X\) are \(\epsilon, -\epsilon^{-1}\), so \(X\) has order \(2^{e+1}\). Moreover, \(Y^2 = X^2, Y^{-1}XY = X^{-1}X^2\). Hence \(W = \{X, Y\}\) is semidihedral. The group \(\{X^2, Y\}\) is a subgroup of \(W\) of order \(2^{e+1}\) whose matrices all have the form \((-\frac{\alpha}{\beta}, \frac{\alpha}{\beta}, \frac{\alpha}{\beta}, \frac{\alpha}{\beta})\) with \(a^2 + b^2 = 1\). Let \(A = (\frac{a}{b}, \frac{b}{a}, \frac{b}{a}, \frac{b}{a})\). Then

\[
\begin{pmatrix}
 a_1 & a_2 \\
 a_3 & a_4
\end{pmatrix}
\begin{pmatrix}
 a & b \\
 -b & a
\end{pmatrix}
=
\begin{pmatrix}
 a_1 & a_2 \\
 a_3 & a_4
\end{pmatrix}
\begin{pmatrix}
 a & b \\
 -b & a
\end{pmatrix}
\]

is equivalent to four homogeneous equations in the \(a_i\) with matrix

\[
\begin{pmatrix}
 a - 1 & -b^a & 0 & 0 \\
 b & a^b - 1 & 0 & 0 \\
 0 & 0 & a - 1 & -b^a \\
 0 & 0 & b & a^b - 1
\end{pmatrix}
\]

Since the \(a_i\) are not all zero, the determinant \([\det(a - 1)(a^b - 1) - b^a q]\) must be zero, or equivalently \(a + a^b = 2\). If \(\omega\) and \(\omega'\) are the eigenvalues of \((-\frac{\alpha}{\beta}, \frac{\alpha}{\beta})\), then \(\omega\) and \(\omega'\) are the roots of the equation \(t^2 - 2t + 1 = 0\), which implies \(\omega = \omega' = 1\). Since the order of \((-\frac{\alpha}{\beta}, \frac{\alpha}{\beta})\) is prime to \(p\), this means that \((-\frac{\alpha}{\beta}, \frac{\alpha}{\beta})\) is the identity matrix. Thus at least \(2^{e+1}\) distinct right translates of \(A\) arise.
Consider now the n-dimensional case. In I or III write
\[n = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_t}, \]
in II write
\[2n = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_t}, \]
where $r_1 < r_2 < \cdots < r_t$. If W_r is a Sylow 2-subgroup of the corresponding group in dimension 2^r, then

\[S = W_{r_1} \times W_{r_2} \times \cdots \times W_{r_t}, \]
is clearly a 2-subgroup of the corresponding group in dimension n. Here W_0 in I is the Sylow 2-subgroup of the multiplicative group of $GF(q)$, W_0 in III is the Sylow 2-subgroup of the group of $(q+1)$-st roots of unity in $GF(q^2)$. In order to prove that S is actually a Sylow 2-subgroup, we are reduced by induction to proving w_{r_i} is the exact power of 2 dividing
\[(q^n - 1) (q^{n-1} - 1) \cdots (q^{n+1} - 1) \]
in I (5) holds for $r_i = 0, 1$. For $r_i \geq 2$, the exponent of 2 in
\[v(q^n - 1) = v(q^{2^r} - 1); \]
in II $v(q^{2^n} - 1) = v(q^{2^{r_1}} - 1)$. The proof of the assertions contained in (5) is as follows: In I (5) holds for $r_i = 0, 1$. For $r_i \geq 2$, the exponent of 2 in (5) is
\[v(q^n - 1) + \sum_{i=0}^{r_i-2} 2^{r_i-2-i} v(q^{2^i} - 1), \]
which agrees with the value of w_{r_i} in (2). In II (5) holds for $r_i = 1$. For $r_i \geq 2$ the exponent of 2 in (5) is
\[v(q^{2^n} - 1) + \sum_{i=1}^{r_i-2} 2^{r_i-2-i} v(q^{2^i} - 1), \]
which is the desired one. In III for \(r_1 = 0, \omega_0 = 2^{r(q-1)} \), while the power of 2 in (5) is \(2^{r(q^2+1)} = 2^{r(q-1)} \) since \(n \) is odd. For \(r_1 \geq 1 \), the exponent of 2 in (5) is \(2^{r-1}\varphi(q-1) + G(r_1) - 1 \). This verifies (5) in this case. Hence we have proved

Theorem 1. Let \(S \) be a Sylow 2-subgroup of \(GL_n(q) \), \(Sp_{2n}(q) \), or \(\mathbb{U}(q) \), and let \(2^{r_1} - 2^{r_2} + \cdots + 2^{r_t}, r_1 < r_2 < \cdots < r_t \), be the 2-adic expansion of the dimension of the underlying space. Then \(S \cong W_{r_1} \times W_{r_2} \times \cdots \times W_{r_t} \), where \(W_r \) is a Sylow 2-subgroup of \(GL_{2r}(q) \), \(Sp_{2r}(q) \), or \(\mathbb{U}_{2r}(q) \) respectively.

II. Sylow 2-Subgroups of \(O_{2n+1}^\pm(q) \) and \(O_{2n}(\eta, q) \)

Consider first the case \(O_{2n}^\pm(q) \). Let \(W \) be a Sylow 2-subgroup of \(O_{2n}(\eta, q) \), where \(q \equiv \eta \pmod{4} \), and \(\mathfrak{W} \) its faithful representation in \(O_{2n}(q) \). Since the group \(O_{2n}(\eta, q) \) is dihedral (this is true whether \(\eta = 1 \) or \(\eta = -1 \) (Artin [1], p. 131)), \(W \) is dihedral. The representation \(\mathfrak{W} = \mathfrak{W} \oplus \det \mathfrak{W} \) embeds \(W \) in \(O_{2n}(q) \), and a consideration of the orders shows that \(\mathfrak{W}(W) \) is a Sylow 2-subgroup of \(O_{2n}(q) \). If \(q = 0 \pmod{4} \) and \(2^{t} \| q - 1 \), then \(\mathfrak{W}(W) \) may be taken as the group generated by \((1_{n}, 1_{n}), (1_{n}, -1_{n})\) where \(\epsilon \) is a primitive \(2^n \)-th root of unity. This follows from the fact that the underlying quadratic form may be taken as \(x_1^2 + y_2^2 \) (I, p. 144). In this case, \(W \) has order \(2^{2^{n+1}} \) and the number of distinct right translates of \(A \) not \((0,0)^\circ \) by \(\mathfrak{W}(W) \) is at least \(2^n \). If \(q = 1 \pmod{4} \) and \(2^{t} \| q + 1 \), then \(W \) has order \(2^{2^{n+1}} \). The underlying quadratic form in this case may be taken as \(x_1^2 - x_2^2 \). The matrices of the form \((a, b, -b, a)\), where \(a^2 - b^2 = 1 \), form a subgroup of order \(q - 1 \) in \(O_{2n}(-1, q) \) (3, p. 46). In particular, we may assume that \(\mathfrak{W}(W) \) contains a subgroup of order \(2^n \) whose matrices have this form. If

\[
A = \begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix},
\]

then

\[
\begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix} \begin{pmatrix}
a & b \\
-b & a
\end{pmatrix} = \begin{pmatrix}
a_1 & a_2 \\
a_3 & a_4
\end{pmatrix}
\]

can occur if and only if \((a, b, -b, a)\) is the identity matrix. Thus \(A \) has at least \(2^n \) distinct right translates under \(\mathfrak{W}(W) \).

A comparison of the orders of \(O_{2n+1}^\pm(q) \) and \(Sp_{2n}(q) \), \(n \geq 1 \), shows that their 2-power parts are the same. If we define \(W_r = W \uparrow T_{r-1}, r \geq 1 \), setting \(W_1 = W \), then the order of \(W_r \) is that of a Sylow 2-subgroup of \(O_{2r+1}^\pm(q) \).

In order to embed \(W_r \) in \(O_{2r+1}^\pm(q) \), we need
LEMMA 2. Let \(W \) be a Sylow 2-subgroup of \(O^*_3(q) \), \(\mathfrak{W} \) the faithful irreducible representation of \(W \) discussed above. Let \(W_r = W \cap T_{r-1} \). Then the faithful irreducible representation \(\mathfrak{W}_r \) of \(W_r \) associated to the representation \(\mathfrak{W} \) of \(W \) embeds \(W_r \) as a Sylow 2-subgroup in \(O^*_q(\eta, q) \) with \(q^{2r-1} \equiv \eta \) (mod 4).

Proof. For \(r = 1 \) there is nothing to prove. Assume the lemma has been proved for 1, 2, ..., \(r-1 \). That \(\mathfrak{W}_r \) is a faithful irreducible representation of \(W_r \) in \(O^*_q(\pm 1, q) \) follows from the fact on wreath products mentioned in the introduction. The orders involved imply, moreover, that \(\mathfrak{W}_r \) embeds \(W_r \) in \(O^*_q(\eta, q) \) with \(q^{2r-1} \equiv \eta \) (mod 4). This proves the lemma. As \(\det \mathfrak{W}_r \supseteq \mathfrak{W}_r \) embeds \(W_r \) in \(O^*_q(\eta, q) \), we have

Corollary. \(W_r \) is a Sylow 2-subgroup of \(O^*_2(q) \).

Consider now the general case \(O^*_n(q) \). If

\[
2n = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_l}, \quad r_1 < r_2 < \cdots < r_l,
\]

is the 2-adic expansion of \(2n \), then \(S = W_{r_1} \times W_{r_2} \times \cdots \times W_{r_l} \) is a 2-group whose order is that of a Sylow 2-subgroup of \(O^*_n(q) \). Moreover, \(S \) can be embedded by a faithful representation \(\mathfrak{S} = \mathfrak{W}_{r_1} \oplus \mathfrak{W}_{r_2} \oplus \cdots \oplus \mathfrak{W}_{r_l} \) in \(O^*_n(\eta, q) \) with \(q^{n-1} \equiv \eta \) (mod 4). The orders involved show that \(S \) is a Sylow 2-subgroup of \(O^*_n(\eta, q) \). The representation \(\det \mathfrak{S} \supseteq \mathfrak{S} \) embeds \(S \) in \(O^*_n(q) \). Thus we have proved

Theorem 2. Let \(S \) be a Sylow 2-subgroup of \(O^*_n(q) \) and let

\[
2n = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_l}, \quad r_1 < r_2 < \cdots < r_l.
\]

Then \(S \cong W_{r_1} \times W_{r_2} \times \cdots \times W_{r_l} \), where \(W_r \) is a Sylow 2-subgroup of \(O^*_n(q) \).

Consider, finally, \(V \). If \(q^n = \eta \) (mod 4), then we have already seen that a Sylow 2-subgroup of \(O^*_n(\eta, q) \) is isomorphic to one of \(O^*_n(q) \). Suppose then that \(q^n \equiv -\eta \) (mod 4). For \(n = 1 \), \(O^*_2(\eta, q) \) has order \(4g \), where \(g \) is odd. A Sylow 2-subgroup \(T \) of \(O^*_2(\eta, q) \) is then abelian of type \(Z_2 \times Z_2 \). For \(n \geq 2 \), we note that a Sylow 2-subgroup \(S_0 \) of \(O^*_{\eta-1}(q) \) can be embedded as a Sylow 2-subgroup in \(O^*_2(\eta, q) \) with \(q^{\eta-1} \equiv \eta \) (mod 4). Let \(V \) be the underlying space of \(O^*_{\eta-2}(\eta, q) \) and \(P \) the underlying plane for \(O^*_2(\eta', q) \), where \(\eta' \) is chosen so that \(P \perp V \) is an underlying space for \(O^*_2(\eta, q) \). Indeed, \(\eta' = \eta \) if \(q \equiv 1 \) (mod 4); \(\eta' = 1 \) if \(q \equiv -1 \) (mod 4). Then \(T \times S_0 \) is a Sylow 2-subgroup for \(O^*_n(\eta, q) \). We have therefore proved
THEOREM 3. Let S be a Sylow 2-subgroup of $O_{2n}(\eta, q)$.

(i) If $q^n \equiv \eta \pmod{4}$, then S is isomorphic to a Sylow 2-subgroup of $O_{2n+1}(q)$.

(ii) If $q^n \equiv -\eta \pmod{4}$, then $S \cong Z_2 \times Z_2 \times S_0$, where S_0 is a Sylow 2-subgroup of $O_{2n-1}^+(q)$.

III. NORMALIZERS OF THE SYLOW 2-SUBGROUPS

LEMMA 3. Let G be any one of the groups $GL_2(q)$, $Sp_2(q)$, $U_2(q)$, $O_3^+(q)$, or $O_4(q, q)$, and let $Z(G)$ be the center of G. If W is a Sylow 2-subgroup of G and $N(W)$ its normalizer in G, then

\[(N(W): WZ(G)) = \begin{cases} 1 & \text{if } G \neq Sp_2(q) \\
3 & \text{if } G = Sp_2(q) \end{cases} \quad \text{with} \quad q \equiv \pm 3 \pmod{8} \]

Proof. The groups $O_2(q, q)$ are dihedral, so that their Sylow 2-subgroups are self-normalizing. In all the other cases $G/Z(G)$ has dihedral Sylow 2-subgroups D. If D has order 8 or more, than any automorphism of D has order a power of 2. Thus in those cases where ($D : 1$) \geq 8, and this will be the case as long as $G \neq Sp_2(q)$ with $q \equiv 3 \pmod{8}$, $N(W) \cong C(W) W$. But it is easily computed that $C(W) W = WZ(G)$ in these cases. For $G = Sp_2(q)$ with $q = \pm 3 \pmod{8}$, W is a quaternion group, and $N(W)$ is known to be the extension of W by an automorphism of order 3 [4].

We shall require the following result of P. Hall's:

LEMMA 4. Let S_n be the symmetric group on n symbols. Then the Sylow 2-subgroups of S_n are self-normalizing.

Proof. Let

\[n = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_t}, \]

where $r_1 < r_2 < \cdots < r_t$. If T_r is $Z_2 \times Z_2 \times \cdots \times Z_2$ r times, then it is known that $T = T_{r_1} \times \cdots \times T_{r_t}$ is a Sylow 2-subgroup of S_n (5, pp. 81-82). Note that T has i transitive components of degrees 2^{r_1}, 2^{r_2}, \cdots, 2^{r_t}. Let x be an element of S_n normalizing T. If i, j are symbols in the same transitive component, the $iy = j$ for some y in T.

\[(ix) (x^{-1}yx) = jx, \quad x^{-1}yx \in T. \]

Thus ix, jx are in the same transitive component. But different components have distinct number of elements. Thus x leaves each component fixed.
It is therefore sufficient to show that T_r is self-normalizing in S_{2^r}, and this we do by induction T_r is the semidirect product of $M = T_{r-1} \times T_{r-1}$, by Z_2. Let H be the stabilizer of a symbol in T_r. Then H is a subgroup of M, and M is generated by all the stabilizers in T_r. If x is an element normalizing T_r, then x permutes the stabilizers among themselves, so that x normalizes M. Now M has two transitive components, each of degree 2^{r-1}. As above we can show that x either leaves the components fixed or interchanges them. The normalizer $N(T_r)$ then has a normal subgroup of index 2 leaving both components of M fixed. By induction this subgroup is M itself, and hence $N(T_r) = T_r$. This completes the proof.

Let G be any one of the groups $GL_2(q), Sp_2(q), U_2(q)$, or $O_2(\eta, q)$ with $q^{2r-1} = \eta (\text{mod } 4), r \geq 1$. We have seen in Lemmas 1 and 2 that if W_r is a Sylow 2-subgroup of G, then we may consider the elements of W_r as $2^{r-1} \times 2^{r-1}$ monomial matrices of type T_{r-1}, each coefficient not $(0, 0)$ being a 2×2 matrix in a fixed presentation of $W_1 = W$. (By a monomial matrix of type T_{r-1}, we mean that the associated permutation matrix is in T_{r-1}.)

Lemma 5. Let G, W_r be as above. If A is a matrix of G normalizing W_r, then A, when considered as a $2^{r-1} \times 2^{r-1}$ matrix of 2×2 blocks, is monomial of type T_{r-1}.

Proof. Consider the set of all row vectors $(x_1, \ldots, x_{2^{r-1}})$ with 2^{r-1} components x_i, each x_i being an arbitrary 2×2 matrix over $GF(q)$ (over $GF(2)$ in case $G = U_2(q)$). Say that two such vectors $(x_1, \ldots, x_{2^{r-1}})$ and $(\beta_1, \ldots, \beta_{2^{r-1}})$ are equivalent if there is a matrix M in W_r such that

$$(x_1, \ldots, x_{2^{r-1}}) \cdot M = (\beta_1, \ldots, \beta_{2^{r-1}}).$$

In other words, $(\beta_1, \ldots, \beta_{2^{r-1}})$ can be obtained from $(x_1, \ldots, x_{2^{r-1}})$ by first permuting the components by a permutation of type T_{r-1}, and then multiplying these components on the right by arbitrary elements of W_r. Consider in particular the rows of A. Since A normalizes W_r, every vector equivalent to a row ν of A is obtained from some row ν' of A by multiplying each component of ν' on the left by a fixed element of W_r. Let ν be a fixed row of A and m the number of components of ν not $(0, 0)$. $m > 0$ since A is nonsingular. We show $m = 1$.

Since T_{r-1} is transitive, there is a vector equivalent to ν in which a prescribed component is not $(0, 0)$. There are therefore at least $2^{r-1}/m$ vectors equivalent to ν, no two of which have the nonzero components in the same position. How many distinct vectors are there equivalent to ν? To any given arrangement of the nonzero components, there are at least $(b)^m$ distinct vectors equivalent to ν, where b is a lower bound for the number of right translates a 2×2 matrix not $(0, 0)$ can have under W_r. But this has been computed in
sections I and II. Indeed, define \(s \) as follows: if \(q \equiv 1 \pmod{4} \), let \(2^s \parallel q - 1 \); if \(q = 1 \pmod{4} \), let \(2^s \parallel q - 1 \). Then

\[
\begin{array}{ccc}
q \pmod{4} & (W : 1) & b \\
\hline
1 & 1 & 2^{2s-1} 2^{s+1} \\
1 & -1 & 2^{2s+1} 2^{s-1} \\
\hline
2 & 1 & 2^{s+1} 2^{s} \\
2 & -1 & 2^{s-1} 2^{s} \\
\hline
3 & 1 & 2^{2s-1} 2^{s+1} \\
3 & -1 & 2^{2s+1} 2^{s-1} \\
\hline
5 & 1 & 2^{s+1} 2^{s} \\
5 & -1 & 2^{s-1} 2^{s} \\
\end{array}
\]

The number of distinct vectors obtainable by scalar multiplication on the left from the rows of \(A \) is at most \(2^{r-1}(W : 1) \). Hence

\[
\frac{2^{r-1}}{m}(b)^m \leq 2^{r-1}(W : 1),
\]

or

\[
(b)^m \leq m(W : 1).
\]

(6)

If \((W : 1) = 2^{s+1}, b = 2^{s+1} \), then (6) becomes \(2^{s(m-1)} : m-2 \leq m \), which implies \(m = 1 \). Similarly, if \((W : 1) = 2^{s+1}, b = 2^s \), then \(m = 1 \). If \((W : 1) = 2^{s-1}, b = 2^{s+1} \), then (6) becomes \(2^{s(m-2)+m-1} \leq m \), which implies \(m = 1 \) or 2. Moreover, if \(m = 2 \), the equality must hold in (6). By earlier remarks, this implies that the two nonzero components of \(v \) both contain a column of zeroa. But for this row scalar multiplication on the left by elements of \(W \) yield at most \(2^{2s} \) distinct vectors. Hence the strict inequality would hold in (6), which is impossible. Thus \(m = 1 \).

The matrix \(A \) is therefore monomial when considered as a matrix of \(2 \times 2 \) blocks. The associated permutation normalizes \(T_{r-1} \), so that by Lemma 4, \(A \) is monomial of type \(T_{r-1} \). This proves the lemma. It should be remarked that if \(G \) is symplectic, unitary, or orthogonal, then the \(2 \times 2 \) nonzero blocks in \(A \) are respectively symplectic, unitary, or orthogonal. In the orthogonal case, these \(2 \times 2 \) blocks are in \(O_2(1, q) \) if \(q \equiv 1 \pmod{4} \), in \(O_2(-1, q) \) if \(q = -1 \pmod{4} \).
Lemma 6. Let G be any one of the groups $GL_2(q)$, $Sp_2(q)$, $U_2(q)$, or $O_2(\eta, q)$ with $q^{2z-1} \equiv \gamma \pmod{4}$, and let $Z(G)$ be the center of G. If W_r is a Sylow 2-subgroup of G and $N(W_r)$ its normalizer in G, then

$$(N(W_r) : W_rZ(G)) = \begin{cases} 1 & \text{if } G \neq Sp_2(q) \text{ with } q \equiv \pm 3 \pmod{8} \\ 3 & \text{if } G = Sp_2(q) \text{ with } q \equiv \pm 3 \pmod{8}. \end{cases}$$

Proof. If A normalizes W_r, then by Lemma 5 A is monomial of type T_{r-1} when A is considered as a $2^{r-1} \times 2^{r-1}$ matrix of 2×2 blocks. It follows easily from inspection that the nonzero blocks of A are either all in W_r or in the same coset of W in $N(W)$, where $N(W)$ is the normalizer of W in the corresponding group of degree 2. The lemma then follows from Lemma 3.

Theorem 4. Let G be any one of the groups $GL_v(q)$, $Sp_2(q)$, or $U_2(q)$, and let

$$
2^n = 2^r_1 + 2^r_2 + \cdots + 2^r_t,
$$

where $r_1 < r_2 < \cdots < r_t$, be the 2-adic expansion of the dimension of the underlying space. If $N(S)$ is the normalizer of a Sylow 2-subgroup S of G in G, then

I. $N(S) \cong S \times Z_{k_1} \times Z_{k_2} \times \cdots \times Z_{k_t}$, where Z_{k_i} occurs t times; k_i is given by the condition $q \equiv \pm 1 \pmod{8}$.

II. $(N(S) : S) = \begin{cases} 1 & \text{if } q \equiv \pm 1 \pmod{8} \\ 3 & \text{if } q \equiv \pm 3 \pmod{8}. \end{cases}$

III. $N(S) \cong S \times Z_{k_1} \times Z_{k_2} \times \cdots \times Z_{k_t}$, where Z_{k_i} occurs t times; k_i is given by the condition $q \equiv \pm 1 \pmod{8}$.

Proof. In each of the above cases S is embedded in G by a direct sum of nonequivalent irreducible representations. If A is a matrix of G normalizing S, then Schur's lemma implies that A itself breaks up into a direct sum of matrices corresponding to the irreducible constituents involved. The theorem then follows from Lemma 6. (Note that in II a description of $N(S)$ can be easily obtained from the results of Lemmas 3 and 5.)

Theorem 5. Let G be any one of the groups $O_{2n+1}(q)$, $O_{2n}(\eta, q)$. Then the Sylow 2-subgroups of G are self-normalizing.

Proof. Consider first the case $G = O_{2n+1}(q)$. If

$$2n = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_t},$$

where $r_1 < r_2 < \cdots < r_t$, then a Sylow 2-subgroup S of G is embedded in G by the direct sum $\lambda \oplus \mathbb{W}_{r_1} \oplus \cdots \oplus \mathbb{W}_{r_t}$ of irreducible representations, where λ is a nontrivial character assuming only the values ± 1, and \mathbb{W}_r is a representation in $O_2(\eta, q)$ with $q^{2r-1} \equiv \eta (\pmod{4})$. As in Theorem 4 it follows that $N(S) = S$. Suppose then that $G = O_{2n}(\eta, q)$. If $q^n \equiv \eta (\pmod{4})$, then
this case is included in the discussion of $O_{2n+1}^+(q)$. We may assume then that $q^n = -\eta \pmod{4}$. By Theorem 2, $S \simeq Z_2 \times Z_2 \times S_0$, where S_0 is a Sylow 2-subgroup of $O_{2n-2}(\eta', q)$ with $q^{n-1} = \eta' \pmod{4}$. Moreover, S is embedded into G by the direct sum of a 2-dimensional representation $\mathbb{3}$ of $Z_2 \times Z_2$ in $O_2(q''', q)$ with $q'' = -\eta''' \pmod{4}$ and the natural representation of S_0 in $O_{2n-2}(\eta', q)$. $\mathbb{3}$ decomposes into two non-equivalent linear representations. As before we can conclude that $N(S) = S$.

REFERENCES