The two largest distances in finite planar sets

Katalin Vesztergombi*
Department of Mathematics, Yale University, New Haven, CT 06520. USA

Received 20 December 1993; revised 12 October 1994

Abstract

We determine all homogenous linear inequalities satisfied by the numbers of occurrences of the two largest distances among n points in the plane.

1. Introduction

Let S be a set of n points in the Euclidean plane. Let N_{1} AND n_{2} denote the number of times the largest and second largest distances occur among points in S. It is well known [1,2] that $n_{1} \leqslant n$ and it was proved in [4] that $n_{2} \leqslant 3 n / 2$. Are there any further relations among these numbers? To formalize this question, we consider the pairs ($n_{1} / n, n_{2} / n$), for every finite set S, and the convex hull C of this set in the plane. Determining this convex hull is tantamount to finding all homogeneous linear inequalities involving n, n_{1} and n_{2}.

In an earlier paper [3] the analogously defined set was described for the case when the points in S form a convex n-gon. We also gave a complete description for the case when the points in S form a convex n-gon in the hyperbolic plane.

In this paper we give a complete set of inequalities determining C, for arbitrary set S in the Euclidean plane.

2. Inequalities

Let S be a set of n arbitrary points in R^{2}. We denote the largest distance between two points by d_{1}, the second largest by d_{2} and by n_{1} resp. n_{2} the number of distances equal to d_{1} resp. d_{2}. We give a complete system of homogenous, linear inequalities for n_{1}, n_{2}, n in the sense that any homogenous, linear inequality for n_{1}, n_{2}, n is a consequence of these.

Theorem. For any set of n points in R^{2},
(i) $n_{2} \leqslant 3 / 2 n$,
(ii) $n_{2} \leqslant n+2 n_{1}$,
(iii) $n_{1}+n_{2} \leqslant 2 n$.

Let us consider, for arbitrary point systems S in the Euclidean plane, the point ($n_{1} / n, n_{2} / n$) corresponding to S. Let C be the set of these points. For any point in C the inequalities (i), (ii) and (iii) are valid. Furthermore, since for any set $S, n_{1} \leqslant n[1,2]$ and obviously $n_{i}>0$. Thus, for the closure of C the following inequalities are valid:

$$
\begin{aligned}
x_{1} & \geqslant 0, \\
x_{2} & \geqslant 0, \\
x_{1} & \leqslant 1, \\
x_{2} & \leqslant \frac{3}{2}, \\
x_{1}+x_{2} & \leqslant 2, \\
-2 x_{1}+x_{2} & \leqslant 1 .
\end{aligned}
$$

We shall show that every vertex of this domain is realized (at least asymptotically) by some point set S. This implies that every linear inequality valid for C is implied by these (see Fig. 1).

Before giving the proof of the theorem we give some definitions and recall some results from [4] (called propositions below).

We call segments of length d_{1} red, and segments of length d_{2} blue. Let us consider the convex hull of S. We call a point outer if it is on the convex hull, inner if it is inside the convex hull. We call a blue edge inner blue edge if it has inner endpoint.

Proposition 1. Both endpoints of a red edge are outer points. At least one endpoint of a blue edge is an outer point.

A path of length 3 consisting of red and blue edges in which the two end-edges do not intersect is called an ' N '. An ' N ' with a red end-edge and a blue middle edge is called forbidden.

Proposition 2. No forbidden ' N ' exists.

Definition: The number of blue and red edges incident with a point u will be called the blue degree and red degree, respectively, and will be denoted by $d_{\mathrm{b}}(u)$ and $d_{\mathrm{r}}(u)$. For an outer point u, the number of outer (blue) edges starting at u is the outer degree of u, the number of inner (blue) edges starting at u is the inner degree of u.

Proposition 3. For every inner point $u, d_{\mathrm{b}}(u) \leqslant 3$. If $d_{\mathrm{b}}(u)=3$ then at least one of the neighbors of u has blue degree 1 .

Fig. 1.
Proof of the Theorem. If there is a point v of blue degree at most 1 then the inequalities (i), (ii) and (iii) follow by induction. So in the sequel we suppose

$$
\begin{equation*}
d_{\mathrm{b}}(v)>1 \tag{1}
\end{equation*}
$$

for every point in S. By Proposition 3, this implies that for every inner point v, $d_{\mathrm{b}}(v)=2$.

Definition. Let u be an outer point and v_{1}, \ldots, v_{t} all outer points of S such that the edges (u, v_{i}) are blue. A point v_{i} is a middle neighbor of u if on both sides of the line $u v_{i}, u$ has neighbors at distance d_{2}. The edge $u v_{i}$ is called a middle edge incident with u.

Proposition 4. Let u be an outer vertex of outer degree larger than 2 , and v a middle neighbor of u. Then no inner blue edge can start in v, and at most one outer blue edge can start from v on each side of the line $u v$.

Proposition 5. The inner degree of every outer point is at most 2.
Proposition 6. If the outer degree of u equals 3 , then the inner degree of u is at most 1.

Proposition 7. If the outer degree of u equals 4 , then no inner edge can start at u.

Proposition 8. No outer point of S has outer degree higher than 4.

Definition. Let $G(S,=2)$ be the following graph: the vertices of the graph are the points in S, and vertices u and v are connected by an edge iff their distance is exactly d_{2}. Let $G(S, \leqslant 2)$ be the graph on the same set of vertices in which two vertices are connected by an edge iff their distance is at least d_{2}.

Now we summarize the previous propositions in graph terms.
Let us consider the graph $G(S,=2$). Let us define the following directed graph G^{*}. The vertices are the outer points of S, the edges for every outer point v are the middle edges from v directed away from v (an edge may be directed in both ways). Propositions 4 and 8 imply that in G^{*} every vertex has degree at most 2 . So G^{*} is a point-disjoint union of circuits, paths and isolated points. It also follows from Proposition 4 and Lemma 1 that if a point has degree 2 in G^{*} then either both edges are directed in, or both are directed out or form a pair of antiparallel edges. Thus, the edges along each circuit or path alternate in orientation. The doubly directed edges of G^{*} arise of connecting points in S of outer degree 3, then form separate components of the graph, and we consider these as (degenerate) circuits of length 2. Hence, the components of G^{*} are the following:

- isolated vertices, which correspond to vertices in $G(S,=2)$ of outer and inner degree $\leqslant 2$.
- circuits of length $\geqslant 4$, whose vertices have in $G(S,=2)$ outer degree 4 and 2 alternatingly (where the points of degree 2 are the middle neighbors of the points of degree 4).
- circuits of length 2 , which have points of outer degree 3 and are the middle neighbors of each other. We have seen in Propositions 5 and 7 that the inner degree of any point on a circuit is 0 .
- paths whose edges alternate in direction. The outer degree of each point is its outdegree plus 2 . The inner degree of all points except the endpoints is 0 .
We can partition the vertices of G^{*} using the description above:
m_{1} : the number of isolated vertices of G^{*},
m_{2} : the number of vertices belonging to the circuits of G^{*},
m_{3} : the number of vertices belonging to the paths of G^{*},
k : the number of paths in G^{*},
p_{1} : the number of outer points,
q_{1} : the number of outer blue edges.
Let us denote by p_{2} the number of inner points in S and by q_{2} the number of inner blue edges in $G(S,=2)$.

Then we have

$$
p_{1}=m_{1}+m_{2}+m_{3}
$$

and

$$
q_{1} \leqslant \frac{1}{2}\left(2 m_{1}+3 m_{2}+3 m_{3}-k\right)
$$

because on every circuit in G^{*} the average degree in $G(S,=2)$ equals 3 , on the other hand on every path it is <3, because on every path at least one edge is missing. We get also for the number of inner blue edges

$$
q_{2} \leqslant 2 m_{1}+2 k
$$

Since we may suppose that every inner point is of blue degree exactly 2 , from this we get

$$
p_{2}=\frac{1}{2} q_{2} \leqslant m_{1}+k .
$$

From these we get for the number of edges of $G(S,=2)$, first proved in [3]

$$
\begin{aligned}
n_{2} & =q_{2}+q_{1}=2 p_{2}+q_{1}=\frac{3}{2} p_{2}+q_{1}+\frac{1}{2} p_{2} \\
& \leqslant \frac{3}{2} p_{2}+m_{1}+\frac{3}{2} m_{2}+\frac{3}{2} m_{3}-\frac{1}{2} k+\frac{1}{2} m_{1}+\frac{1}{2} k \\
& =\frac{3}{2} p_{2}+\frac{3}{2}\left(m_{1}+m_{2}+m_{3}\right)=\frac{3}{2}\left(p_{2}+p_{1}\right)=\frac{3}{2} n .
\end{aligned}
$$

Now we give the proof of (ii). We may assume the following inequality on the blue and red degrees of the graph $G(S, \leqslant 2)$:

$$
\begin{equation*}
d_{b}(v)>1+2 d_{r}(v) \tag{2}
\end{equation*}
$$

holds in every vertex of the graph. Suppose the contrary is true for a certain v, then omitting v we may proceed by induction. So in the sequel we suppose that (2) is true in every vertex.

Lemma 9. Suppose an outer vertex u is connected to the outer vertices v_{1}, v_{2} by blue edges in such a way that the edges $u v_{i}$ are middle edges of the vertices v_{i}, then a red edge must start at both v_{1} and v_{2}.

Proof. Suppose $r v_{1}$ (resp. $t v_{2}$) is the blue edge starting in v_{1} (resp. in v_{2}) where r (resp. t) is on the other side of the line $u v_{1}$ (resp. $u v_{2}$), than v_{2} (resp. v_{1}). Then in the quadrangle $r v_{1} v_{2} u$ (resp. $u v_{1} v_{2} t$), the diagonal $r v_{2}$ must be red (resp. $t v_{1}$).

Lemma 10. If we have an all-blue N on the vertices r, u, t, v then at least one red edge must start at each of u and t.

Proof. Obviously $d(r, v)=d_{1}$, since $r u$ and $t v$ are avoiding blue edges. If a blue edge different from $r u$ starts at r, and it is on the other side of the line r, v than t, then this forces a red edge starting at t. So all blue edges other than ru, must go to the same side of the line r, v where t is. On the other hand, at least 2 blue edges must start at r because of inequality (2). Let the other endpoints of these blue edges be r_{i}.

The same argument is true for v, so the blue edges starting at v are $v v_{i}$. But then in these vertices r_{i} and v_{i} no other blue edge may start, because it would give a forbidden N -configuration. Thus, inequality (1) is violated.

Lemma 11. Every nonisolated point of G^{*} is incident with a red edge.

Proof. Obviously, any nonisolated point u of G^{*} is covered by an all-blue N. Furthermore, u is an inner point of the N , so by Lemma 10 , a red edge must start in u.

The isolated points of G^{*} arise from the vertices of $G(S,=2)$ of degree 2 , and the number of outer blue edges starting at these vertices is at most 2 . Furthermore, if an inner blue edge starts at an isolated vertex then, obviously, at least one red edge starts as well. Let m_{1}^{\prime} be the number of those isolated vertices of G^{*} incident with inner blue edges. Then obviously $m_{1}^{\prime} \leqslant m_{1}$.

By Lemma 11 and the above observations we get the following lower bound for the number of red edges:

$$
\begin{equation*}
m_{1}^{\prime}+m_{2}+m_{3} \leqslant 2 n_{1} . \tag{3}
\end{equation*}
$$

Using what we know for n_{2} from the above description, we get

$$
\begin{equation*}
2 n_{2}=2\left(q_{1}+q_{2}\right) \leqslant 2 m_{1}+3 m_{2}+3 m_{3}-k+2 m_{1}^{\prime}+2 k+2 p_{2} . \tag{4}
\end{equation*}
$$

Combining the inequalities (3) and (4) with the trivial inequality $k \leqslant m_{3}$, we get (ii).
Proof of the inequality (iii). Suppose first that there exists an inner vertex u with $d_{b}(u)=3$. Then every other point of S is contained in the circle K with radius d_{2} about u. Let the vertices v_{1}, v_{2}, v_{3} be the neighbours of u, then we have one of the following cases [4]:
(a) the vertices v_{1}, v_{2}, v_{3} form a regular triangle of side d_{1};
(b) the vertices v_{1}, v_{2}, v_{3} form a triangle where two sides are of length d_{1} and the third is at most of length d_{2}.
(a) Draw the circles of radius d_{1} around the v_{i} 's (see Fig. 2(a)). Then no point of S can be outside of the intersection C of these three circles. On the other hand, any point which is not on the boundary of C would give a distance between d_{1} and d_{2} with one of the v_{i} 's. Draw the circles of radius d_{2} around the v_{i} 's and let the intersection of these circles with the boundary of C be the points $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}$. Then only one of the arcs may contain points of S at all, say the arc $a_{1} a_{2}$, because otherwise we would get a distance between d_{1} and d_{2}. This means that we have $n-4$ points on the arc $a_{1} a_{2}$, these points are of distance d_{1} from v_{1} but no other blue or red edge starts at any of them. In this case we have at most 5 blue edges and $3+n-4$ red edges, so (iii) holds.

Fig. 2(a).

Fig. 2(b).
(b) Suppose $d\left(v_{1}, v_{2}\right)=d\left(v_{1}, v_{3}\right)=d_{1}$ and $d\left(v_{2}, v_{3}\right) \leqslant d_{2}$ (see Fig. 2(b)). Observe that the triangle $v_{1} v_{2} v_{3}$ does not contain any inner point, since the distance of such a point from at least one of v_{1}, v_{2} and v_{3} would be strictly between d_{1} and d_{2}.

Let w be any outer point different from v_{1}, v_{2} and v_{3}. We claim that w lies inside the segment $v_{2} u v_{3}$ of K. Assume not, so that w lies in the segment $v_{3} u v_{1}$ of K, say. Then w must be on the same side of the line $v_{2} u$ as v_{3}, else its distance from v_{3} would lie strictly between d_{1} and d_{2}. Hence the triangle $v_{1} v_{2} w$ contains the triangle $v_{1} v_{2} u$, and hence its circumference is larger. Hence at least one of the segments $v_{1} w$ and $v_{2} w$ must be red. But all points in the circle K at a distance d_{1} from v_{1} lie in the angle $v_{2} u v_{3}$, so $d\left(v_{2}, w\right)=d_{1}$. But then an elementary argument shows that the distance of w and v_{3} is strictly between d_{1} and d_{2}, a contradiction.

Thus we know that every point of S other than v_{1} lies in the segment $v_{2} u v_{3}$. Hence it follows that no red segment other than $w v_{1}$ starts from w, and no blue segment starts at w. If we omit w, we may proceed by induction.

This leaves us with the trivial case when $S=\left\{u, v_{1}, v_{2}, v_{3}\right\}$.
So we may suppose that at most 2 blue edges may start at every inner point. Omitting the inner points we can proceed by induction. Thus we may suppose there are no inner points. For such 'convex' sets, however, even the stronger inequality

$$
n_{1}+2 n_{2} \leqslant 3 n
$$

holds [3]. This completes the proof of the Theorem.

3. Construction

Let $n=2 m, n \geqslant \delta$ and let the points v_{1}, \ldots, v_{m} be the vertices of a regular m-gon in this order. The v_{i} are the outer points of S. In this configuration d_{2} occurs m times.

Fig. 3(a).

Fig. 3(b).

We construct t_{1}, \ldots, t_{m} in the following way. Let the t_{i} be the point inside the m-gon determined by the equation

$$
d\left(v_{i}, t_{i}\right)=d\left(t_{i}, v_{i+1}\right)=d_{2}
$$

(where the indices are understood modulo m). Obviously, adding the points t_{i} does not change d_{1} and d_{2}. In this configuration $n=2 m, n_{2}=3 n / 2$, and $n_{1}=n / 4$ if m is even, while $n_{1}=n / 2$ if m is odd (see Figs. 3(a) and 3(b)).

Acknowledgements

I am indebted to the referee who pointed out a gap in an earlier version of this paper, and suggested many improvements.

References

[1] H. Hopf and E. Pannwitz, Jahresbericht der Deutsch. Math. Vereinigung 43 (1934) Problem 167.
[2] J.W. Sutherland, Jahresbericht der Deutsch. Math. Vereinigung 45 (1935) 33.
[3] K. Vesztergombi, On the distribution of distances in finite sets in the plane, Discrete Math. 57 (1985) 129-145.
[4] K. Vesztergombi, On large distances in planar sets, Discrete Math. 67 (1987) 191-198.

