
Journal of Computational Physics 228 (2009) 5184–5206

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A sharp interface finite volume method for elliptic equations
on Cartesian grids

M. Oevermann a,*, C. Scharfenberg b, R. Klein b

a Technische Universität Berlin, Institut für Energietechnik, Fasanenstr. 89, 10623 Berlin, Germany
b Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 14, 14195 Berlin, Germany

a r t i c l e i n f o
Article history:
Received 9 September 2008
Received in revised form 2 March 2009
Accepted 7 April 2009
Available online 24 April 2009

MSC:
35J25
65N12
65N30

Keywords:
Elliptic equations
Finite volume methods
Embedded interface
Variable and discontinuous coefficients
Discontinuous solution
doi:10.1016/j.jcp.2009.04.018

* Corresponding author. Tel.: +49 3031422452; fa
E-mail address: michael.oevermann@tu-berlin.d

0021-9991/� 2009 Elsevier Inc. Open access under CC
a b s t r a c t

We present a second order sharp interface finite volume method for the solution of the
three-dimensional elliptic equation r � ðbð~xÞruð~xÞÞ ¼ f ð~xÞ with variable coefficients on
Cartesian grids. In particular, we focus on interface problems with discontinuities in the
coefficient, the source term, the solution, and the fluxes across the interface. The method
uses standard piecewise trilinear finite elements for normal cells and a double piecewise
trilinear ansatz for the solution on cells intersected by the interface resulting always in a
compact 27-point stencil. Singularities associated with vanishing partial volumes of inter-
sected grid cells are removed by a two-term asymptotic approach. In contrast to the 2D
method presented by two of the authors in [M. Oevermann, R. Klein, A Cartesian grid finite
volume method for elliptic equations with variable coefficients and embedded interfaces,
Journal of Computational Physics 219 (2006) 749–769] we use a minimization technique
to determine the unknown coefficients of the double trilinear ansatz. This simplifies the
treatment of the different cut-cell types and avoids additional special operations for degen-
erated interface topologies. The resulting set of linear equations has been solved with a
BiCGSTAB solver preconditioned with an algebraic multigrid. In various testcases – includ-
ing large b-ratios and non-smooth interfaces – the method achieves second order of accu-
racy in the L1 and L2 norm.

� 2009 Elsevier Inc. Open access under CC BY-NC-ND license.
1. Introduction

We seek solutions of the three-dimensional variable coefficient elliptic equation
r � ðbð~xÞruð~xÞÞ ¼ f ð~xÞ; ~x 2 X n C ð1Þ
defined in a domain X n C with an embedded interface C. For simplicity we assume X to be a simple cuboid. The embedded
interface C separates two disjoint sub-domains Xþ and X� with X ¼ ðXþ [X�Þ, see Fig. 1 for an illustration. Along the inter-
face we prescribe jump conditions for the solution
sutC ¼ uþð~xÞ � u�ð~xÞ ¼ gð~xCÞ ð2Þ
and for its gradient in the normal direction
sbuntC ¼ bþuþn � b�u�n ¼ hð~xCÞ; ð3Þ
with the notation un ¼ ðru �~nÞ. The unit normal vector ~n on C is defined to point from Xþ to X�.
x: +49 3031422157.
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Fig. 1. Domain X with sub-domains Xþ , X� , and embedded interface C.
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Elliptic equations of type (1) with variable and discontinuous coefficients and solution discontinuities often arise as a
component in modelling physical problems with embedded boundaries. Examples include incompressible two-phase flow
with surface tension featuring jumps in pressure and pressure gradient across the interface, projection methods for zero
Mach-number premixed combustion with jumps in the dynamic pressure and pressure gradient across the flame front, heat
conduction between materials of different heat capacity and conductivity and interface diffusion processes. In the literature
one can find a vast number of different approaches for the numerical solution of this type of problem. However, we limit our
discussion here to methods on grids which are not aligned with the interface. These methods have the advantage that they
do not need any re-meshing if the interface moves.

In Peskin’s immersed boundary method [31], singular forces arising from discontinuous coefficients and jump conditions
are treated as delta functions. Using discretised discrete delta functions, the discontinuity is spread over several grid cells
making the method first order accurate. The method has been used for many problems in mathematical biology and fluid
mechanics. Cortez and Minion [3] considerably improved Peskin’s method by improving its accuracy through higher order
procedures for representing boundary forces. Recent work by Tornberg and Engquist [38,39,5] generalizes the immersed
boundary approach and allows for high order approximations with minimal distribution of discontinuities or singular source
terms over the computational grid.

Mayo [25,26] presented a second order accurate method for Poisson’s equation and the biharmonic equation on irregular
domains using an integral equation formulation. The resulting Fredholm integral equations of the second kind are solved
with a fast Poisson solver on a rectangular region. Although the method captures solution discontinuities at the embedded
interface, continuous derivatives have been assumed to evaluate the discrete Laplacian. The method can easily be extended
to fourth order accuracy.

The immersed interface method [16–18,20] is a second order finite difference method on Cartesian grids for second order
elliptic and parabolic equations with variable coefficients. Discontinuities in the solution and the normal gradient at the
interface are explicitly incorporated into the finite difference stencil. Second order has been achieved by including additional
points near the interface into the standard 5-point stencil leading to a non-standard six-point stencil in 2D. The resulting
linear equation system is sparse but not symmetric or positive definite. Based on the immersed interface method Li and
Ito [19] present a second order finite difference method which satisfies the sign property on the matrix coefficients which
guarantees the discrete maximum principle. The resulting linear system of equations is non-symmetric but diagonally dom-
inant and its symmetric part is negative definite. The ideas presented in [19] have been extended to 3D in [4].

A first order finite difference method on Cartesian grids was presented by Liu et al. [22]. Interface jump conditions are
explicitly incorporated into the finite difference stencil as in the immersed interface method. Applying a one-dimensional
approach in each spatial direction by implicitly smearing out the gradient jump condition, standard stencils (5-point in
2D, 9-point in 3D) for the discrete Laplacian are achieved leading to a symmetric positive definite matrix for the Poisson
equation. The method shows first order accuracy for the solution u in the L1-norm for constant coefficients b�. A conver-
gence proof of the method has been provided in [23] based on the weak formulation of the problem. Due to its simplicity
and robustness the methods has been used in many engineering and scientific problems. The method has been indepen-
dently developed and applied to incompressible two-phase flow in [29].

A fourth order accurate finite difference method for elliptic problems with complex boundaries has been developed by
Gibou and Fedkiw in [7]. By high order extrapolation of the solution outside the domain they were able to apply high order
finite difference formulas at and near the interface. Similar ideas have been used in a series of papers by Wei and coworkers
[44,43,42] for elliptic problems with embedded interfaces. They developed finite difference methods of up to sixth order in
3D for smooth interfaces and up to second order for complex interfaces with sharp edges, wedges, and tips. Their methods
can be viewed as a higher-order generalization of the immersed interface method. Solutions on both sides of the interface are
smoothly extended beyond the interface allowing the application of standard high order finite difference formulas.

One of the first methods to model discontinuities in the finite element framework without aligning the grid with the
interface has been presented in [27,1]. In the so-called extended finite element method the original finite element space
is enriched by additional basis functions introducing new unknowns to the problems. The choice of additional enrichment
functions depends on the type of discontinuity, e.g. step functions for solution discontinuities or distance functions for kinks
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[1]. Related approaches have been presented in [9,10]. The extended finite element method has been recently applied by
Groß and Reusken to model the pressure discontinuity arising from surface tension in incompressible two-phase flow [8].
They observed locally slightly better than first order of accuracy for the pressure. However, in their method they did not
make use of the jump condition of the pressure gradient in normal direction.

A finite element method on triangular meshes for solving second order elliptic and parabolic equations for interface prob-
lems with ½u� ¼ 0 and ½bun�– 0 has been proposed by Chen and Zou [2]. In their method the triangles are aligned with the
interface. In the L2-norm nearly second order accuracy (h2j log hj) has been proved. The resulting linear system of equations is
symmetric and positive definite. Another finite element method based on uniform triangulations of Cartesian grids was pre-
sented by Li et al. [21]. In contrast to [2], the triangles need not to be aligned with the interface. Numerical results with non-
conforming finite elements demonstrate slightly less than second order of accuracy in L1 and second order of accuracy with
conforming finite elements for a problem with homogeneous jump conditions ½u� ¼ 0, ½bun� ¼ 0. The general case with var-
iable coefficients and non-homogeneous interface conditions ½u�– 0, ½bun�– 0 has been tackled recently by Hou and Liu [11]
with a finite element method. Similar to [21] they use uniform triangulations of Cartesian grids. Their method is second or-
der accurate in L1 if the solution u is C2 and the interface is C2 or C1. To our knowledge these methods have not been ex-
tended to three spatial dimensions.

Johansen and Colella [12] developed a second-order finite volume method on Cartesian grids for the variable coefficient
Poisson equation on irregular domains with Dirichlet and Neumann boundary conditions and combined the method with an
adaptive mesh refinement. Using central differencing for the gradients, their method reproduces the standard five-point
stencil on regular cells. Using linear interpolation of gradients for internal edges and quadratic polynomials in normal direc-
tion to the boundary for irregular cells leads to a non-standard stencil. The final linear system is non-symmetric. Although
remotely related to our work in the sense of using a finite volume method, the authors did not consider embedded bound-
aries with jump conditions of the solution and the normal derivative. To our knowledge, their method has not been extended
to 3D. Furthermore, their method does not allow partial volumes less than 10�6 times the normal cell volume.

Recently the authors presented in [28] a sharp interface finite volume method on Cartesian grids for the solution of the
variable coefficient Poisson equation with solution discontinuities across an embedded interface in two spatial dimensions.
Using a dual bilinear solution ansatz on cells intersected by the interface the method achieves locally second order of accu-
racy. Singularities arising from vanishing partial volumes and certain positions of the interface relative to the underlying grid
are removed in [28] by a two-term asymptotic approach.

In this paper we extend the ideas presented in [28] to 3D. The piecewise bilinear solution ansatz of our 2D method is re-
placed by a piecewise trilinear ansatz. In contrast to the 2D method, where we impose the jump conditions at selected points
of the interface, here we use a minimization approach for the incorporation of the jump conditions and the determination of
the 16 unknown coefficients of the dual piecewise trilinear solution ansatz. This leads to a unified treatment of the different
types of cut-cells and avoids additional special operations for degenerated interface topologies. The only singularity arising
from vanishing partial volumes of intersected cells is removed by an asymptotic approach. The asymptotic treatment of this
singularity leads to a robust method which allows vanishing partial volumes down to the machine accuracy without affect-
ing the condition number of the minimization problem. In various examples including high b ratios, complex and non-
smooth interfaces the method shows locally second order of accuracy.

The vast majority of sharp interface methods on Cartesian grids is based on finite difference methods. However, in many
engineering problems such as fluid flow or heat conduction the governing equations are often derived by a control volume
analysis with appropriate flux boundary and interface conditions. This point of view has led in a natural way to many
conservative finite volume methods. The motivation for the finite volume approach presented in this work stems from
our interest in conservative finite volume projection methods for Zero- and Low-Mach-number flow [32,15,13], with
first-order accurate versions of front tracking methods for flames and contact discontinuities presented in [37,14,34,33].
The divergence constraint of the velocity field leads to an elliptic equation for the pressure in a finite volume form. The
use of piecewise trilinear ansatz function for the solution u makes our method quite similar to finite element methods
and allows us to construct improved exact projection methods [40,41].

Compared to the cited literature, our method differs in the following points: (i) we use a finite volume method instead of
finite difference [16,22,42] or finite elements [11,21,27,1,8], (ii) compared to the second and higher order finite difference
methods [16,42] we achieve always automatically a compact 27-point stencil without explicit incorporation of additional
points near the interface.

In comparison to the finite element method presented in, e.g. [11,8], we present a trilinear finite element which does not
develop singularities for vanishing partial volumes of intersected cells. In contrast to the cited finite element methods our
method results in a non-symmetric matrix. In case of constant and equal coefficients we have a symmetric and positive
definite matrix.

2. Finite volume formulation

Integrating Eq. (1) over an arbitrary control volume X 2 X leads to
Z
X
r � ðbruÞdV ¼

Z
X

f dV :
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For a control volume X ¼ Xþ [X� intersected by the interface C we write
Z
Xþ
r � ðbþruþÞdVaþ

Z
X�
r � ðb�ru�ÞdVa ¼

Z
X

f dV :
After applying the divergence theorem on both integrals on the left hand side we get
Z
@X

bðru �~nÞdS ¼
Z

X
f dV �

Z
CX

sbuntdS; ð4Þ
where CX denotes the part of the embedded interface C lying inside X and @X ¼ ð@Xþ [ @X�Þ n CX. For CX–0 we have for the
source term
Z

X
f dV ¼

Z
Xþ

fþ dV þ
Z

X�
f� dV : ð5Þ
For a regular control volume without an embedded interface we have either X ¼ Xþ 2 Xþ ^ X� � 0 or
X ¼ X� 2 X� ^ Xþ � 0 and the last integral on the right hand side of (4) vanishes. In the following sections we describe
our finite volume method to solve Eqs. (4) and (5).

3. Numerical method

We discretise Eq. (4) on a uniform Cartesian grid in three-dimensional space. Let Dx, Dy, Dz be the grid spacing in x, y, and
z-direction, respectively, see Fig. 2. The values ui;j;k of our discretised solution are located at grid nodes with the coordinates
xi;j;k ¼ x0 þ iDy, yi;j;k ¼ y0 þ jDy, and zi;j;k ¼ z0 þ kDz. The control volumes Xi;j;k are centered around the corresponding grid
nodes ði; j; kÞ having edges of length Dx, Dy, and Dz. The cuboids defined by the Cartesian grid itself are called cells in this work.
We denote the cell defined by grid nodes ði; j; kÞ, ðiþ 1; j; kÞ, ðiþ 1; jþ 1; kÞ, ði; jþ 1; kÞ, ði; j; kþ 1Þ, ðiþ 1; j; kþ 1Þ,
ðiþ 1; jþ 1; kþ 1Þ, and ði; jþ 1; kþ 1Þ as Ci;j;k, see Fig. 3. Let Ci;j;k be the set of cells with joint grid node ði; j; kÞ, i.e. those cells
having a partial volume in Xi;j;k. Furthermore, we denote with Sc

i , c 2 Ci;j;k, i 2 1; 2; 3 the three parts of the surface of Xi;j;k lying
in cell c, see Fig. 3 for an illustration. As an example, the faces with numbers 1, 8, and 11 in Fig. 3 are parts of the surface of Xi;j;k.

With the notations introduced above we can now write the discrete form of (4) for control volume Xi;j as
X
c2Ci;j;k

X3

i¼1

Z
Sc

i

b ðru �~nÞdS ¼
Z

Xi;j;k

f dV �
Z

CXi;j;k

sbuntdS: ð6Þ
To evaluate the left hand side of (6) we approximate the solution u with piecewise trilinear ansatz on each cell c 2 Ci;j;k of the
grid. This allows us to evaluate the surface integrals on the left hand side of (6) analytically in terms of the node values of u
and, in case of an intersected control volume, appropriate jump conditions at the interface.

4. Interface representation

We represent the interface C with a standard levelset approach [35,30] where the interface is implicitly defined by the
zero level of a signed distance function. Geometric quantities such as interface normal vectors at the interface within a cell
Fig. 2. Control volume Xi;j;k . Discrete solution values are located at grid nodes i; j; k.



Fig. 3. Cell Ci;j;k with node indices. The grey shaded internal faces with indices 1–12 are surface parts of the control volumes having a partial volume within
the cell. The eight cuboids formed by the internal faces of the cell with edge lengths Dx=2, Dy=2, and Dz=2 belong to different control volumes and are called
sub-cells.

Fig. 4. Different types of cut-cells considered in this work. Nodes marked with � and �, respectively, are on the same side of the interface.
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ði; j; kÞ are calculated via trilinear interpolation of second order central difference approximations at the nodes of the grid. In
this study we only consider cells which are cut by a single interface. Under this constraint we can identify six different types
of cut-cells which are qualitatively sketched in Fig. 4. Although we allow only cells with a single interface, control volumes
might still be intersected by more than one interface.

For a unique discretisation of the interface we introduce a triangulation of the interface within each cell in the following
manner: In the first step we calculate the intersections of the interface with the edges of the cell by linear interpolation of the
levelset values between the nodes of the cell. In the second step we calculate a point on the surface in the interior of the cell
by averaging the coordinates of the intersections determined in the first step. A third step could be the projection of this
point in normal direction onto the interface assuming a trilinear distribution of the levelset function on the cell. However,
in our numerical tests we did not see a noteworthy improvement of the results and therefore we left this step.



Fig. 5. Interface discretisation by triangulation for the different types of cut-cells. Discrete jump conditions are applied at the triangle corner points and the
triangle barycenters which are marked with circles.
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The connection of the interface midpoint point of step two with all intersections of the interface with the cell edges de-
fines a unique triangulation of the interface within a cell. Fig. 5 shows triangulated interfaces for the different cut-cell types
considered in this work. The chosen triangulation of the interface is a slight variation of the famous marching cubes algo-
rithm [24] in the sense that we use an additional point on the interface within the cell which allows a unique representation
of the interface with triangles.

In addition to the cells composed by the Cartesian grid itself we introduce so called sub-cells. Sub-cells are the (eight)
parts of a cell belonging to different control volumes, see Fig. 3.
5. Piecewise trilinear ansatz

For the evaluation of the left hand side of Eq. (6) we approximate the solution u by piecewise trilinear solution ansatz
functions on cells. In the following presentation we need to distinguish between cells which are intersected by an interface
and those who are not.

5.1. Normal cells

We denote cells without an intersection with the interface as normal cells, and introduce the following set of local orthog-
onal coordinates, see Fig. 6:
~n ¼
n

g
f

264
375 ¼

x�x1
ði;j;kÞ

Dx

y�y1
ði;j;kÞ

Dy

z�z1
ði;j;kÞ

Dz

266664
377775; ð7Þ
where x; y; z are global coordinates and ~x1
ði;j;kÞ ¼ ½x1

ði;j;kÞ; y
1
ði;j;kÞ; z

1
ði;j;kÞ�

T denotes the global coordinates of node number one with

local coordinates n ¼ g ¼ f ¼ 0, see Fig. 6. Obviously, we have n; g; f 2 ½0; 1� within a cell.
At normal cells we apply a trilinear solution ansatz uðn;g; fÞwithin a cell ði; j; kÞ. Using standard finite element shape func-

tions we have
uðn; g; fÞ ¼ x � a ð8Þ



Fig. 6. Node numbering and local coordinate system for a computational cell ði; j; kÞ. For normal cells and non-singular cut-cells the origin of the local
coordinate system used for the trilinear solution ansatz is always at node number 1.
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with
x ¼

ð1� nÞ ð1� gÞ ð1� fÞ
n ð1� gÞ ð1� fÞ
n g ð1� fÞ

ð1� nÞ g ð1� fÞ
ð1� nÞ ð1� gÞ f

n ð1� gÞ f

n g f
ð1� nÞ g f

26666666666664

37777777777775

T

ð9Þ
and
a ¼ ½u1; u2; u3; u4; u5; u6; u7; u8�T : ð10Þ
Here ui denotes the solution value at node i of the computational cell ði; j; kÞ, see Fig. 6 for the node numbering used. We have
introduced the notation a � b for the inner product of two arbitrary vectors a and b. In the case of a normal cell the eight node
values ui of the solution uniquely determine the trilinear ansatz.

With the trilinear ansatz (8) defined in each normal cell of the computational grid we can evaluate the surface integrals
on the left side of (6) analytically in terms of the unknown nodal values. With b ¼ 1 and Dx ¼ Dy ¼ Dz ¼ 1 we get a 27-point
stencil with weights as shown in Fig. 7. The stencil shown in Fig. 7 is the 3D analogue of the second order stencil of Süli [36],
who proved stability and convergence of the scheme.

5.2. Cut cells

On cells intersected by the interface we use separate trilinear solution ansatz functions on both sides of the interface. We
differentiate between cells with a non-vanishing interface area, called non-singular cut-cells, and cut-cells with potential
singularities through vanishing interface areas and/or vanishing partial volumes. For the following presentation we assume
that node number 1, Fig. 6, lies within Xþ.

5.2.1. Non-singular cut-cells
On non-singular cut-cells we apply a dual piecewise trilinear ansatz in the form
uþð~nÞ ¼ x � a;
u�ð~nÞ ¼ x � b;

ð11Þ
with
a ¼ ½a1; . . . ; a8�T and b ¼ ½b1; . . . ; b8�T ; ð12Þ
and a shape function vector n as given in (9)



Fig. 7. Stencil elements for a control volume with b ¼ 1, Dx ¼ Dy ¼ Dz ¼ 1 where all adjacent cells are normal cells not cut by an interface.

M. Oevermann et al. / Journal of Computational Physics 228 (2009) 5184–5206 5191
In (11) we have defined the solutions on both sides of the interface using the same shape functions as used for normal
cells. That means the 16 unknown coefficients a1; . . . ; a8 and b1; . . . ; b8 are the nodal values of the solutions uþ and u� at
the grid nodes 1–8 of cell ði; j; kÞ. Depending on which side of the interface the node exists these values are either real discrete
solution values or extrapolated values from the other side of the interface. In order to determine the 16 unknown coefficients
of the double trilinear solution ansatz we need – apart from the eight nodal values – additional constraints. These constraints
will be derived from the prescribed jump conditions for the solution and its gradient in normal direction at the interface.

The gradients of u in direction of ~n ¼ ½nx; ny; nz�T follow directly from (11) and can be written as
ðruþ �~nÞ ¼ uþn ð~nÞ ¼ y � a;
ðru� �~nÞ ¼ u�n ð~nÞ ¼ y � b;

ð13Þ
with
y ¼ @x
@x

nx þ
@x
@y

ny þ
@x
@z

nz: ð14Þ
The partial derivatives
@x
@x
¼ 1

Dx
@x
@n
;
@x
@y
¼ 1

Dy
@x
@g

; and
@x
@z
¼ 1

Dz
@x
@f
are obtained by simple differentiation of (9). As an example, for the gradient in x-direction we have
@x
@x
¼ 1

Dx
@x
@n
¼ 1

Dx

�ð1� gÞ ð1� fÞ
�ð1� gÞ ð1� f�Þ
�g ð1� fÞ
�g ð1� fÞ

�ð1� gÞ f

�ð1� gÞ f

�g f

�g f

266666666666664

377777777777775

T

:

In addition to the eight nodal values ui; i ¼ 1; . . . ;8 we provide jump conditions for the solution and the gradient in normal
direction at the following points of the triangulated interface: (a) the triangle corner points and (b) the triangle barycenters,
see Fig. 5. As seen in Fig. 5, the total number N of discrete points on the interface at which we prescribe jump conditions
varies between 7 for cut-cells of type I and 13 for cut cells of type V and VI. Given two jump conditions per point (one
for the solution and one for normal derivative), we have eight corner values plus 14 to 26 jump constraints to determine
the 16 unknowns coefficients. We solve this overdetermined system by minimizing the difference between the prescribed
and the calculated jump conditions under the constraint of exact nodal values.

We denote with~nk ¼ ½nk;gk; fk�T ; k ¼ 1; . . . ; N the local coordinates of the kth point on the triangulated interface where we
provide discrete values of jump conditions. The differences between the calculated jumps dsut and dsbunt from the trilinear
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ansatz and the prescribed jump values sut and sbunt can be written in the form of jump residuals ~r1 ¼ ½r1;1; . . . ; r1;N�T and
~r2 ¼ ½r2;1; . . . ; r2;N�T . For the jump residual in u we have
~r1;k ¼dsutk � sutk ¼ ððxk � aÞ � ðxk � bÞÞ � sutk ð15Þ
and for the gradient jump residual
~r2;k ¼ dsbuntl � sbuntk ¼ ðb
þðyk � aÞ � b�ðyk � bÞÞ � sbuntk ð16Þ
with k ¼ 1; . . . ; N. Depending on the location of the interface, the grid spacing, and the values of bþ and b� the individual
components of ~r1 and ~r2 can have different orders of magnitude. To give each jump condition a comparable influence on
the solution of the minimization problem we introduce scaled residuals
r1;k ¼ w1;k ~r1;k and r2;k ¼ w2;k ~r2;k ð17Þ
with weights
w1;k ¼ k½xk; xk�k�1
2 and w2;k ¼ k½bAyk; bByk�k�1

2 : ð18Þ
The scaled jump residuals (17) can be written in compact matrix notation as
r ¼ X c � p ð19Þ
with
X ¼
XC �XC

bþ YC �b� YC

" #
; c ¼

a

b

" #
; p ¼

v

g

" #
;

v ¼

w1;1sut1

..

.

w1;NsutN

26664
37775; g ¼

w2;1sbunt1

..

.

w2;NsbuntN

26664
37775;
and
XC ¼

w1;1 x1

..

.

w1;N xN

2664
3775; YC ¼

w2;1 y1

..

.

w2;N yN

2664
3775:
For completeness we note that X 2 R2N	16; XC; YC 2 RN	8; a 2 R8	1; b 2 R8	1; c 2 R16	1 and p 2 R2N	1. Eq. (19) is a set of 2N
linear equations for the 16 unknown coefficients a and b.

In our minimization approach we seek solutions for the coefficients c ¼ ½a; b�T under the constraint of exact nodal values
u ¼ ½u1; . . . ;u8�T . This constraint can be formulated as
Bc � u ¼ 0; ð20Þ
with
B ¼ ½Bþ B�� ð21Þ
and
B� ¼ diagðb�1 ; . . . ; b�8 Þ: ð22Þ
The elements of the diagonal matrices Bþ and B� are
b�i ¼
1; if ui 2 X�;

0; else;

(
ð23Þ
where ui is the solution at node number i in cell ði; j; kÞ.
Our constraint linear minimization problem may now be formulated using Lagrange multipliers:
Lðc; kÞ ¼ 1
2
ðr � rÞ þ k � ðBc � uÞ ¼min : ð24Þ
A necessary condition for a minimum of Lðc; kÞ are vanishing partial derivatives
@L
@c
¼ 0 and

@L
@k
¼ 0:
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This leads to following set of linear equations:
XT X BT

B 0

" #
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

M

c

k

� �
¼ XT p

u

� �
ð25Þ
with the solution
c

k

� �
¼

M�1
11 M�1

12

M�1
21 M�1

22

" #
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

M�1

XT p

u

� �
;

where the M�1
ij are sub-matrices of M with sizes M�1 2 R24	24, M�1

11 2 R16	16, M�1
12 2 R16	8, M�1

21 2 R8	16, and M�1
22 2 R8	8.

We are only interested in the coefficients c – the actual values of the Lagrange multipliers are irrelevant. Thus it is suf-
ficient to consider
c ¼ M�1
11 XT pþM�1

12 u: ð26Þ
Eq. (26) relates the coefficients c of the double trilinear solution ansatz to the (yet unknown) nodal values u and the pre-
scribed jump values at the interface p.

Remark 5.1. One might ask why we include the triangle barycenters as additional points for prescribing jump conditions.
Even in the case of a type II cut-cell (see Fig. 5) the four triangle corner points alone provide eight jump conditions which
should be (in addition to the eight corner values) sufficient to calculate the 16 unknown coefficients. However, there is a
subtle problem associated with the trilinear ansatz: On a plane interface with a constant normal vector ~n ¼ ½nx; ny; nz�T and
ni ¼ nj ¼ 1=

ffiffiffi
2
p

, nk ¼ 0, i; j; k 2 x; y; z and i – j, k – i; j (that is a plane interface at a 45� angle to one of the coordinate axes) the
gradient of the trilinear ansatz reduces to a linear function with only two degrees of freedom. That means that for a cut-cell
of type II or IV under such conditions the interface triangle corner points provide five independent conditions in the value
jumps but only two in the gradients amounting to a total of seven independent conditions. But also in the case of an interface
that is slightly disturbed from the singular case described above the problem becomes ill conditioned making the solution
numerically difficult. The jump conditions at the triangle barycenters ensure that we always provide sufficiently many
independent jump conditions. We further remark that we have no analytic proof that the matrix M never gets singular for
normal cells using the prescribed number of jump conditions. However, in numerous tests we did not observe any sign of a
developing singularity, e.g. an increased value of the condition number.

Remark 5.2. Instead of solving the constrained minimization problem via Lagrange multipliers we could have used a direct
approach. The coefficients (12) are solution values at the nodes of the cell. Therefore, eight values of a and b are directly given
by the solution of u at the nodes of the grid. Instead of enforcing exact nodal values via Lagrange multipliers in (24), the
known nodal values can be used to formulate the minimization problem directly in the remaining eight unknowns. However,
we have chosen the Lagrange multiplier approach here as it allows (for future applications) a more flexible handling of dif-
ferent types of constraints and boundary conditions.
5.2.2. Singular cut-cells
The minimization approach in the presented form fails in cases of vanishing interface areas or, equivalently, vanishing

partial volumes within a cell. This can only occur for cells of type I and II, see Figs. 4 and 8. For cut-cells of type I the interface
can degenerate either into a point or a line, interfaces of type II cells can degenerate to a line. In case of a vanishing interface
area some or all of the prescribed jump conditions fall onto the same point and the minimization matrix M in (25) becomes
singular. Even in cases of a non-vanishing but small partial volume, the condition number of the matrix M becomes extre-
mely large rendering the calculation of the inverse of M numerically difficult or even impossible. Common approaches found
in the literature, e.g. [11,8] and probably used in many codes is to simply limit the minimal allowed interface area within a
cell, which is not satisfying as it introduces new and unnecessary sources of truncation errors.

In order to obtain a robust method without artificially limiting the minimal interface area within a cell, we follow the
ideas presented in [28] and remove those singularities by a two-term asymptotic approach. For this approach we need to
introduce a second coordinate system with an origin at a node in the vanishing partial volume.

Let n 2 1; . . . ; 8 be the node in cell ði; j; kÞ with global coordinates~xn
ði;j;kÞ ¼ ½xn

ði;j;kÞ; yn
ði;j;kÞ; zn

ði;j;kÞ�
T , see Fig. 6. We introduce the

following set of local orthogonal coordinates with origin at node n of cell ði; j; kÞ:
~nn
ði;j;kÞ ¼

nn
ði;j;kÞ

gn
ði;j;kÞ

fn
ði;j;kÞ

264
375 ¼

x�xn
ði;j;kÞ

Dx
y�yn

ði;j;kÞ
Dy

z�zn
ði;j;kÞ

Dz

26664
37775; n 2 1; . . . ; 8: ð27Þ
For n ¼ 1 we have the same coordinate system as used in the minimization approach for non-singular cells.



Fig. 8. Coordinate systems and naming conventions for the two-term asymptotic solution approach. The pictures show exemplary configurations for a cut-
cell of type I with n ¼ 6 on the left, and n1 ¼ 5, n2 ¼ 6 for a type II cut-cell on the right.
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Without loss of generality we choose X� to be the vanishing partial volume of cell ði; j; kÞ. For cut-cells of type I only one
node with the number n is element of X� (n ¼ 6 in the exemplary configuration shown in Fig. 8). Cut cells of type II have two
nodes n1 and n2 within the vanishing partial volume of the cell (n1 ¼ 5 and n2 ¼ 6 in the example of Fig. 8). Let n̂ 2 n; g; f be
the coordinate direction connecting nodes n1 and n2. Without loss of generality we assume that n1 and n2 are ordered in such
a way that n̂n1 ¼ 0 and n̂n2 ¼ 1, and set n ¼ n1 in (27) for type II cut-cells.

Furthermore, we define sutni
with ni ¼ n for type I cells and ni ¼ n1; n2 for type II cells to be the prescribed value jump on

the triangulated interface closest to the point ni. This ensures that we always use the correct jump of u in the leading order
solution in the case of a vanishing partial volume X�, see below.

With the definitions above we introduce the following two-term ansatz for the solutions uþ and u� on both sides of the
interface:
uþð~n1Þ ¼ uðþ;0Þð~n1Þ þ euðþ;1Þð~n1Þ;

u�ð~nn; ~nÞ ¼ uð�;0Þð~nnÞ þ euð�;1Þð~~nÞ;
ð28Þ
where uðþ;0Þ, uð�;0Þ are leading order solutions, uðþ;1Þ, uð�;1Þ are corrections to the leading order solutions, and e is a measure of
the singularity of the cell to be defined below. With~~n we denote scaled coordinates within the vanishing partial volume X�

which will be introduced below. We remark that we always use coordinates~n1 ¼~n for the solution in Xþ, whereas the origin
for the solution ansatz in X� varies with the orientation of the interface.

5.2.2.1. Leading order solution. The leading order solution is the solution for a vanishing partial volume X�. This situation cor-
responds to an interface touching only node n for cut-cells of type I or nodes n1 and n2 for type II cells. In both cases the whole
domain of the cell is effectively part of XA. The solution values uþn for type I cells, uþn1

and uþn2
for type II cells are directly given

by
uþni
¼ u�ni

þ sutni
¼ uni

þ sutni
ð29Þ
where uni
is the solution value at node ni of the cell. However, with (29) we have eight corner values for uþ on hand and we

can set the leading order solution in Xþ to be a full trilinear function:
uðþ;0Þ ¼ x � að0Þ ð30Þ
with
að0Þi ¼ uþi ¼
ui þ sutni

; if i ¼ ni

ui; else

(
; i ¼ 1; . . . ;8;
and x defined in (9). This can be written in a slightly different form:
að0Þ ¼ uþ D � sut ð31Þ
with
D ¼ diagðd1; . . . ; dNÞ; and dj ¼ dni j; ni ¼ n1; n2:
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For type I cells the spatial distribution of the leading order solution in X� has no importance and is set to be a constant, i.e.
uð�;0ÞI ¼ un1 : ð32Þ

For type II cells we set the leading order solution to be a linear function between the two nodes n1, n2 2 X�, which can be
written as
uð�;0ÞII ¼ ð1� n̂Þun1 þ n̂un2 : ð33Þ

Here, n̂ 2 n;g; f is the coordinate pointing from node n1 to n2 (n̂ ¼ n in Fig. 8). For later purpose we write the leading order
solution in X� in the following form:
uð�;0Þ ¼ x� � bð0Þ ð34Þ

with
bð0Þ ¼ u
and
x� ¼ ½x�1 ; . . . ; x�8 �
T
; ð35Þ
with
x�i ¼ din; i 2 1; . . . ; 8 ð36Þ
for type I cut-cells and
x�i ¼
ð1� n̂Þ; if i ¼ n1;

n̂; if i ¼ n2;

0; else;

8><>: ; i 2 1; . . . ; 8 ð37Þ
for type II cells.
For the construction of the correction solution in the next section we summarise the coefficients of the leading order solu-

tion as:
cð0Þ ¼ ½að0Þ bð0Þ�T ¼ U uþ P p; ð38Þ
with
U ¼ ½I I�T ; I 2 R8	8;

p ¼ ½sut; sbunt�T
and
P ¼
D 0
0 0

" #
:

5.2.2.2. Correction solution. For partial volumes jX�j > 0 we need to correct the leading order solution. For the correction
solution we make a full trilinear ansatz on both sides of the interface:
uðþ;1Þ ¼ x � að1Þ;
uð�;1Þ ¼ ~x � bð1Þ;

ð39Þ
with x defined in (11) and ~x similarly defined with n; g; f replaced with the scaled coordinates ~n; ~g; ~f. The scaled coordinates
for the correction solution uð�;1Þ in X� are given as
~~n ¼
~n

~g
~f

264
375 ¼ nn=dn

gn=dg
fn=df

264
375: ð40Þ
The scaling factors dn, dg, df are defined as the distances from nodes n1 or n2 to the interface along the edges of the cell in
direction of nn, gn, fn axes, respectively, see Fig. 8. For cut-cells of type I we define
dn ¼ dnn; dg ¼ dgn; df ¼ dfn; ð41Þ
and for type II cells we define
dn ¼maxðdnn1 ; dnn2 Þ;
dg ¼maxðdgn1 ; dgn2 Þ;
df ¼maxðdfn1 ; dfn2 Þ

ð42Þ
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and remark that the scaling factor in the connecting direction between the nodes n1 and n2 is defined to be unity. With this
scaling we always achieve Oð~nÞ ¼ Oð~gÞ ¼ Oð~fÞ ¼ 1 within an X� and avoid situations of ~n; ~g;~f!1 for cut-cells of type II. In
addition we define the small parameter e as
e ¼minðdn; dg; dfÞ: ð43Þ
The introduction of scaled coordinates ensures that the distance between the different points of prescribed jump conditions
in ~n; ~g; ~f space is independent of e and always of order Oð1Þ. This guarantees that the prescribed jump conditions always lead
to a set of linearly independent equations for the minimization.

The gradients in direction of ~n follow from (28) as
ðruþ �~nÞð~nÞ ¼ y � að0Þ þ e ðy � að1ÞÞ;

ðru� �~nÞð~nn;
~~nÞ ¼ y� � bð0Þ þ e ð~y � bð1ÞÞ;

ð44Þ
where y is defined in (14). The leading order solution for type I cells is a constant leading to
y� ¼ 0
for such cells. The leading order gradient in X� for type II cells follows from (33) as
y� � bð0Þ ¼ ð�n̂un1 þ n̂un2 Þnn̂
with nn̂ 2 nx; ny; nz corresponding to alignment of n̂.
For the solution gradient in normal direction we have in scaled coordinates
~y ¼ @
~x
@x

nx þ
@~x
@y

ny þ
@~x
@z

nz; ð45Þ
where
@~x
@x
¼ 1

Dxdn
@~x

@~n
;
@~x
@y
¼ 1

Dydg
@~x
@~g

; and
@~x
@z
¼ 1

Dzdf
@~x

@~f
:

As an example, for the gradient in x-direction we have
@~x
@x
¼ 1

Dxdn

�ð1� ~gÞ ð1� ~fÞ
�ð1� ~gÞ ð1� ~fÞ
�~g ð1� ~fÞ
�~g ð1� ~fÞ

�ð1� ~gÞ ~f

�ð1� ~gÞ ~f

�~g ~f

�~g ~f

26666666666666664

37777777777777775

T

:

Note that ~y!1 for e! 0. However, this singularity is canceled by the e term in the asymptotic expansion (44).
Given the two-term ansatz (28) we can write the jump residual in u and bun as
~r1;k ¼dsutk � sutk ¼dsut
ð0Þ
k þ edsut

ð1Þ
k � sutk ¼ ððxk � að0ÞÞ � ðx�k � bð0ÞÞÞ þ eððxk � að1ÞÞ � ð~xk � bð1ÞÞÞ � sutk; ð46Þ

~r2;k ¼ dsbuntk � sbuntk ¼ dsbunt
ð0Þ
k þ e dsbunt

ð1Þ
k � sbuntk

¼ ðbþðyk � að0ÞÞ � b�ðy�k � bð0ÞÞÞ þ eðbþðyk � að1ÞÞ � b�ð~y � bð1ÞÞÞ � sbuntk: ð47Þ
To give each individual component of the residuals a comparable influence on the minimization solution we introduce, as
before, the scaled residuals
r1;k ¼ w1;k ~r1;k and r2;k ¼ w2;k ~r2;k ð48Þ
with weights
w1;k ¼ ke ½xk; xk�k�1
2 and w2;k ¼ ke ½bþyk; b�~y

k
�k�1

2 : ð49Þ
The scaled jump residuals (48) can be written in compact matrix notation as
r ¼ eX cð1Þ þ X cð0Þ � p ð50Þ
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with
X ¼
XC �X�C

bþ YC �b� Y�C

" #
; eX ¼ XC �eXC

bþ YC �b� ~YC

" #
; cð0Þ ¼ að0Þ

bð0Þ

" #
; cð1Þ ¼ að1Þ

bð1Þ

" #
; p ¼

v
g

" #
; v ¼

w1;1sut1

..

.

w1;NsutN

2664
3775;

g ¼

w2;1sbunt1

..

.

w2;NsbuntN

2664
3775
and
XC ¼

w1;1 x1

..

.

w1;N xN

2664
3775; YC ¼

w2;1 y1

..

.

w2;N yN

2664
3775; X�C

w1;1 x�1

..

.

w1;N x�N

2664
3775; Y�C ¼

w2;1 y�

..

.

w2;N y�

2664
3775; eXC ¼

w1;1 ~x1

..

.

w1;N ~xN

2664
3775; eY C ¼

w2;1 ~y
1

..

.

w2;N ~y
N

2664
3775:
The unknowns in (50) are the coefficients cð1Þ ¼ ½að1Þ; bð1Þ�T , whereas cð0Þ is already known from the leading order solution. In
accordance with the procedure for normal cells in Section 5.2.1 we want to minimize the residual r under the constraint of
exact nodal values. Since the leading order solution fulfills already the condition of exact nodal values, the correction solu-
tion has to be zero at the nodes of the cell, i.e.
Bcð1Þ ¼ 0; ð51Þ
where B is given in (21).
The problem of minimizing the residual vector r under constraint (51) can now be stated as
Lðcð1Þ; kÞ ¼ 1
2
ðr � rÞ þ k � ðBcð1ÞÞ ¼min : ð52Þ
The necessary conditions for a minimum of Lðcð1Þ; kÞ are
@L
@cð1Þ

¼ 0 and
@L
@k
¼ 0
leading to the following set of linear equations:
eXT eX BT

B 0

" #
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}eM

cð1Þ

k

" #
¼ �

eXT
Xcð0Þ

0

" #
þ

eXT
p

0

" #
:

ð53Þ
Using (38) we can write for the second order solution
cð1Þ ¼ � eM�1
11
eXT

Xcð0Þ þ eM�1
12
eXT

p
n o

¼ f� eM�1
11
eXT

XUu� ð eM�1
11
eXT

XP � eM�1
12
eXT
Þpg; ð54Þ
where eM�1
11 and eM�1

12 , are sub-matrices of eM�1
in (53):
eM�1
¼

eM�1
11

eM�1
12eM�1

21
eM�1

22

" #
;

with eM�1
2 R24	24, eM�1

11 2 R16	16, eM�1
12 2 R16	8, eM�1

21 2 R8	16, and eM�1
22 2 R8	8.

Fig. 9, left, demonstrates the effectivity of our two-term asymptotic approach. The figure compares the condition number
of the minimization matrix M using a single step minimization as for non-singular cut-cells and the two-term asymptotic
approach using the scaling factors introduced in Eq. (49). For the figure we have used a singular cut-cell of type I with
e ¼ dn ¼ dg ¼ df and different ratios of the coefficients bþ : b�. The condition number for the single step minimization matrix
according to (25) quickly becomes extremely large making the computation of the inverse prone to errors or even impossi-
ble. In contrast, down to the machine accuracy the condition number for the two-term asymptotic approach in (53) is essen-
tially independent of the small parameter e and, due to an appropriate scaling, for small e also independent of the ratio of
coefficients bþ : b�. Fig. 9, right, demonstrates the influence of the ratio of coefficients using scaling factors w1;k ¼ e�1 and
w2;k ¼ 1 instead of (49). This scaling preserves the influence of the ratio of coefficients and effectively removes e in front
of the correction solution in (46) and keeps e in front of the gradient residual (47) which, in turns, cancels the singularity
in ~y. Eq. (53) defines a constraint linear least square problem and we expect a condition number which scales with the square
of the condition number of the original set of equations which is basically the ratio of coefficients bþ : b�. Fig. 9, right, clearly
demonstrates this scaling property.



Fig. 9. Condition number of the minimization matrices M for the single step solution and ~M for the two step asymptotic solution according to (25) and (53),
respectively, for a singular cut-cell of type I with e ¼ dn ¼ dg ¼ df. In the plot on the left side we use the scaling factors defined in (49) for the two-step
asymptotic approach whereas the plot on the right side uses scaling factors w1;k ¼ e�1 and w2;k ¼ 1.
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All results presented in this paper have been obtained using the two-step asymptotic approach for singular cut-cells and
the scaling factors given in (49).

5.2.2.3. Composite solution. With the results from the preceding sections we can now summarise the complete solution (28)
as
uþð~nÞ ¼ x � að0Þ þ eðx � að1ÞÞ;

u�ð~nn;
~~nÞ ¼ xn � bð0Þ þ eð~x � bð1ÞÞ;

ð55Þ
where x, xn, að0Þ, að1Þ, bð0Þ, and bð1Þ are given by (9), (35), (37), (38) and (54), respectively. The shape function vector ~x is for-
mally identical to (9) with n; g; f replaced with the scaled coordinates ~n; ~g; ~f.

5.3. Evaluation of the discrete Laplacian

With (8)–(10) for normal cells, (11) with (26) for non-singular cut-cells, and (55) for singular cut-cells we can express the
piecewise trilinear distribution of u on each cell of the grid as function of discrete node values and jump conditions. This
allows us to evaluate the surface integrals on the left hand side of (6) analytically which leads to a sparse system of linear
equations for the solution values ui;j;k on the nodes of the grid.

If the surface element Sc
i in (6) has an intersection with the interface we split the integral in two parts,
Z

Sc
i

bru �~ndS ¼
Z

Sc;þ
i

bþruþ �~ndSþ
Z

Sc;�
i

b�ruB �~ndS; ð56Þ
and evaluate each part of the integral analytically using (11) and (26) or (55) for the solutions on the different sides of the
interface.

For the evaluation of the integrals on the right hand side of (56) we assume the intersection between the interface C and
Sc

i to be a straight line, i.e. Sc;þ
i and Sc;þ

i can always be represented by triangles and/or rectangles, see Fig. 10 for an illustration.
The dependence of the piecewise trilinear solution on the jump conditions at the interface leads – in addition to the terms

on the right hand side of (6) – to a contribution of surface integrals to the right hand side of the global linear system of equa-
tions. However, for normal cells as well as for cut cells we always get a compact 27-point stencil.

For bþ ¼ b� we end up with a symmetric and diagonally dominant matrix. However, in the general case of bþ–b� the
resulting matrix is non-symmetric. That also means that we cannot a priori guarantee that our methods fulfills a discrete
maximum principle.

5.4. Evaluation of source terms

For a second order approximation of (5) we use
Z
X

f dV 
 jXþj fþðxþs Þ þ jX
�j f�ðx�s Þ; ð57Þ
where x�s denotes the barycenter of X�.



Fig. 10. Piecewise linear representation of the intersections between the boundary of control volume Xi;j;k and the interface C. The parts of the surface
bounded by the dashed lines are the inner faces of cells around node ði; j; kÞ as shows in Fig. 3.
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For the integral of the gradient jump over the interface C we use a triangulation of the interface as described in Section 4
based on sub-cells. Let Ci;j;k denote the set of sub-cells composing control volume Xi;j;k. If T c; c 2 Ci;j;k is the set of interface
triangles in sub-cell c we can write for the second integral on the right hand side of (5)
Z

CXi;j;k

sbuntdS ¼
X

c2Ci;j;k

X
s2T c

Z
s

sbuntdS 

X

c2Ci;j;k

X
s2T c

jsjsbunts; ð58Þ
where sbunts is the discrete value of the gradient jump in the barycenter of triangle s. Eq. (58) is a standard second order
approximation of an integral over a triangulated surface.

6. Results

In the following examples we compare numerical results with given analytic solutions uþð~xÞ and u�ð~xÞ and prescribed
coefficients bþð~xÞ and b�ð~xÞ. We use the analytic solutions to provide values for f�ð~xÞ in the barycenter(s) of Xþ and/or Xþ

of (57) and to evaluate discrete values of the jump conditions sut and sbunt. Furthermore, the analytic solutions provide
Dirichlet boundary conditions on @X.

All geometric information about the interface is evaluated to second order of accuracy using standard levelset techniques
as described in textbooks [35,30]. The interface is defined by the zero level of the signed normal distance function /ð~xÞ. We
set Xþ and X� to be the region with /ð~xÞ > 0 and /ð~xÞ < 0, respectively. Intersections of the interface with the edges of cells
and sub-cells have been evaluated assuming linear distributions of / between grid points. The unit normal vector pointing
from Xþ to X� is given by ~n ¼ � r/

jr/j. The normal vectors needed at various locations of the triangulated interface, see Fig. 5,
are evaluated by trilinear interpolation of second order node centered normal vectors.

The arising linear systems of equations have been solved with the hypre library [6] using a BiCGSTAB solver precondi-
tioned with an algebraic multigrid solver using the standard parameters for the multigrid solver as described in the manuals
of the hypre library.

We evaluate the performance of our method by convergence studies in the usual L1 and L2 norms. Furthermore, we pro-
vide convergence results for an interface norm LB, which is the L2-norm of all grid points of intersected cells. The order of
convergence for all examples below has been evaluated by a linear least square fit of the error results on successively refined
grid from 10	 10	 10 to 120	 120	 120 grid points. Usually we omit the results on the coarsest grid levels for the linear
least square fit as the results on very coarse grids are usually not suitable for convergence studies. Furthermore, in all exam-
ples with a geometric symmetry of the interface we have shifted the interface by a small value exjyjz < Dx; Dy; Dz in all coor-
dinate directions to avoid the (positive) influence of symmetries on the solutions.

6.1. Example 1

The first example is the 3D analogue of a 2D test case used in [11,28]. We solve (1) in the domain�1 6 x; y; z 6 1. The inter-
face is a simple sphere with radius 0.5 and midpoint at ð0; 0;0Þ. The analytic solutions u� and the coefficients b� are given as:
uþ ¼ lnðx2 þ y2 þ z2Þ; u� ¼ sinðxþ yþ zÞ;
bþ ¼ sinðxþ yþ zÞ þ 2; b� ¼ cosðxþ yþ zÞ þ 2:
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The solution as well as the normal derivative are discontinuous across the interface. This example is characterized by a
simple geometry of the interface with constant curvature, nonlinear solutions on both sides of the interface, and a relatively
small ratio of the coefficients bþ and b�.

Fig. 11 shows on the left side the solution at z ¼ 0. The figure demonstrates the sharp and discontinuous representation of
the solution without any peaks. The convergence results for this example are summarised on the right hand side of Fig. 11.

For this test case the method shows second order of accuracy in the L2, L1, and the boundary norm LB. Not surprising, the
error in the L1-norm is the largest and about one order of magnitude larger than the error in the LB-norm, but the order of
convergence is 
 2:0 in allnorms.

6.2. Example 2

This case follows an example investigated by Li in [18,28] in 2D. We use again a spherical interface radius 0.5 and mid-
point at ð0;0; 0Þ. The analytic solutions on the computational domain 0 6 x; y; z 6 1 are given as
Fig.
uþ ¼ r4 þ C0 logð2rÞ
bþ

; u� ¼ r2

b�
;

bþ ¼ const:; b� ¼ const:;
with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and C0 ¼ �0:1. The solution and the gradient are discontinuous across the interface, however, the

jump of the gradient in normal direction sbunt is independent of the b ratio here. We use this test case to evaluate the per-
formance of our scheme under various ratios of the coefficients bþ : b�. For large values of b� the solution becomes nearly
constant in X�.

Fig. 12 shows convergence results for different ratios of the coefficients bþ : b�. For all combinations of bþ : b� we see sec-
ond order (or above for bþ : b� ¼ 1000 : 1) of accuracy in the L1-, LB-, and L2-norms. It can further be observed from Fig. 12
that the absolute value of the error at a certain grid resolution seems to depend more on the values of b v itself than on their
ratio. For the b-ratios investigated here we see an increasing difference between the errors in the L1- and LB-norm with
increasing b-ratio. Furthermore, at large b ratios we see occasionally a non-smooth convergence in the L1 norm.

Fig. 13 shows CPU times for solving the set of linear equations as a function of grid size and b-ratio. All results have been
obtained on an Intel 8400 Core 2 Duo processor running at 3 GHz clock speed. The BiCGSTAB solver of the hypre package pre-
conditioned with the algebraic multigrid solver BOOMER has been used here. The convergence tolerance for the solver has
been set to 1e�13. The scaling factor s in Fig. 13 has been obtained by a linear least square fit. The results show a slightly less
than linear scaling of the CPU time over the number of grid points for all b-ratios. It is a known fact that the condition number
of the resulting set of linear equations strongly depends on the ratio of the coefficient b and that problems of the type con-
sidered here become notoriously difficult to solve numerically for limitingly large ratios of the coefficients. In our examples
we made the experience that the algebraic multigrid solver BOOMER used as a direct solver works very reliably and fast for
low ratios of the coefficient b. However, for high b-ratios it was necessary to use a preconditioned solver as mentioned above.

The CPU times in Fig. 13 for the high b-ratio cases bþ : b� ¼ 1 : 1000 and bþ : b� ¼ 1000 : 1 are roughly 2–3 times longer
than for bþ : b� ¼ 1 : 1 on the same grid. The CPU times shown in Fig. 13 are representative for all other results presented in
this paper. For brevity we omit the detailed CPU times for most other examples.
11. Solution for example 1 at z ¼ 0 (left) and convergence results (right). The slope s of the linear least square fit is the order of convergence.



Fig. 12. Convergence results for example 2 with a spherical interface and different ratios of the coefficients bþ:b� . The slope s of the linear least square fit is
the order of convergence.
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6.3. Example 3

In this example we consider the case of a complex interface, varying and high b-ratios, and nonlinear solutions on both
sides of the interface. The interface is given in parametric form as
rð/; hÞ ¼ Rþ DR/ cos3ðhÞ cosðx//Þ þ DRh cosðxhhÞ; ð59Þ
with 0 6 / 6 2p;0 6 h 6 p;R ¼ 0:65;DR/ ¼ DRh ¼ 0:15;x/ ¼ 6, and xh ¼ 4, see Fig. 14 for an illustration of the interface.
We use the same nonlinear solutions uþ and u� as in example 1 with the following different combinations of b values:
I :bþ ¼ sinðxþ yþ zÞ þ 2; b� ¼ cosðxþ yþ zÞ þ 2;
II :bþ ¼ sinðxþ yþ zÞ þ 2; b� ¼ 250 cosðxþ yþ zÞ þ 500;
III :bþ ¼ 250 cosðxþ yþ zÞ þ 500;b� ¼ sinðxþ yþ zÞ þ 2:
Cases II and III lead to a maximum ratio of the coefficients bþ : b� ¼ 1 : 750 and bþ : b� ¼ 750 : 1, respectively.
Fig. 15 summarises the convergence results for the different test cases. For all combinations of bþ : b� values we get

second order of accuracy in the L1, LB, and L2 norm. As in the examples before, the difference between the error in the L1
and LB-norm increases with increasing ratio of the coefficients bþ and b�. From the results in Fig. 15 and the results of
the preceding examples we conclude that the convergence ratio seems not to decrease with (a) increasing b-ratio and (b)
complexity of the interface. However, the absolute value of the error is strongly affected by the b-ratio.

CPU times for the solution of the linear system of equations are shown in Fig. 16 for the different cases. We see again an
almost linear scaling of the CPU time with the number of grid points. The numbers are in the same order of magnitude as in
Example 2 indicating a weak influence of the interface complexity on solution times of the linear equation system solver.
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Fig. 13. CPU times for solving the resulting set of linear equations of example 2 as a function of the total number of grid points and the ratio of the
coefficient bþ:b�. The scaling factors s has been evaluated using a linear least square fit.

Fig. 14. Surface error plot of the star like interface of example 3.
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6.4. Example 4 – oak acorn

This example has been taken from [42]. The solutions and coefficients on both sides of the interface are given as
uþ ¼ 10ðxþ yþ zÞ þ 1; u� ¼ 10 cosðkxÞ cosðkyÞ cosðkzÞ;
bþ ¼ 80; b� ¼ 1;

ð60Þ
with k ¼ 3. The interface is an oak acorn defined by
x
d

� �2 þ y
d

� �2 ¼ ðz� qÞ2; if z > 0;

x2 þ y2 þ ðz� gÞ2 ¼ R2; if z 6 0;
with q ¼ �6=7, g ¼ 1=2, R ¼ 15=7, and d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR2 � g2Þ=q2

q
. The interface is depicted as a plot of the error at the interface in

Fig. 17. The computational domain is set to �5 6 x; y; z 6 5. The oak acorn is an example of a non-smooth interface featuring
a tip and an edge. The surface error plot in Fig. 17 shows a maximum at the tip and some minima at and around the edge of
the oak acorn.

The convergence plots in Fig. 17 for different ratios of the coefficients bþ =b� demonstrate second order of accuracy in the
L1, LB, and L2 norm for a moderate ratio bþ=b� ¼ 1=80. For large ratios of the coefficients bþ=b� ¼ 1=1000 and
bþ=b� ¼ 1000=1 we see decreased convergence rates of 1.3 and 1.1, respectively, in the L1 norm, whereas the convergence
rates in the LB, and L2 norm still show second order of accuracy. Furthermore, for bþ=b� ¼ 1=1000 we also observe a non-
smooth convergence under grid refinement. However, it is known for interface problems that the error does not necessarily
behave monotonically under grid refinement [28]. Some preliminary investigations suggest a possibility that this behaviour
is due to non-smooth intersections of the trilinear ansatz on the side-faces of neighbouring cells. Unfortunately, the paper of
Yu and Wei [42] does not provide comparable results for non-smooth interfaces with a high ratio of the coefficients bþ=b�.



Fig. 15. Solution for example 3 at z ¼ 0:2 and convergence results for different b-ratios for the star-example. The convergence rates s have been evaluated
using a linear least square fit.

102 103 104 105 106 107

number of grid points

10 3

10 2

10 1

100

101

102

103

C
PU

tim
e

/s

case I, s = 1.2
case II, s = 1.2
case III, s = 1.3

Fig. 16. CPU times for solving the resulting set of linear equations as a function of the total number of grid points and different ratios of the coefficient b. The
scaling factors s has been evaluated using a linear least square fit.
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Fig. 17. Error at the interface and convergence results for the oak acorn (example 4). The surface error plot has been obtained on a grid with
100	 100	 100 points. The convergence rates s have been evaluated using a linear least square fit.

Fig. 18. Surface error plot and convergence results for a cylinder interface. The convergence rates s have been evaluated using a linear least square fit.
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6.5. Example 5 – cylinder

The last example has also been taken from [42]. The interface is a cylinder with diameter p and height 2p, see Fig. 18. The
computational domain has been set in accordance with [42] to�4 6 x; y 6 4 and�2 6 z 6 8:4. The analytic solutions and the
coefficients on the two sides of the interface are given by (60). The cylinder is another example of a non-smooth interface
featuring two edges.

Fig. 18 shows on the left hand side a surface error plot on a grid with a resolution of 120	 120	 120 points. Although the
analytic solution is identical to the example of the oak acorn, we observe the extreme values of the error not at the edges but
on the sides of the cylinder correlating with the large amplitudes of the harmonic solution u�, Eq. (60). Yu and Wei observed
a similar behaviour of their method in [42].

On the right hand side of Fig. 18 we see second order of convergence in the L1, LB, and L2 norms. In contrast to the oak
acorn example the errors in the LB and L2 norms show the same order of magnitude. The order of magnitude in the L1-norm
is comparable to the example of the oak acorn.
7. Conclusion

We have developed a second order sharp interface finite volume method on Cartesian grids for the solution of elliptic
equations in 3D with variable coefficients and discontinuities across an embedded interface.

In contrast to most sharp interface methods in the literature we use a finite volume approach on Cartesian grids using
ideas from finite element methods in reconstructing the solution within grid cells. On cells which are intersected by the
interface we apply a dual piecewise trilinear solution ansatz leading to a finite element for irregular cut-cells taking into ac-
count known jump conditions of the solution and the normal gradient across the interface. The work extends our 2D method
presented in [28] to 3D and introduces new concepts for the construction of the double trilinear solution ansatz via a min-
imization approach. Singularities arising from vanishing partial volumes within a cell are removed in analogy to [28] by a
two-term asymptotic approach. This asymptotic approach allows partial volumes down to machine accuracy without affect-
ing the condition number of the local minimization problem.

In the 2D method [28] we were always able to impose exactly as many jump conditions as unknowns at the cost of an-
other singularity besides vanishing partial volumes. However, the analog of the 2D method in 3D would have lead to addi-
tional singularities of the type mentioned in Remark 5.1. The present minimization approach avoids additional special
asymptotics for this type of degenerated interface topologies and, therefore, simplifies the treatment of the different cut cell
types.

Our discretisation scheme always leads to a compact 27-point stencil for the discrete Laplacian, with appropriately ad-
justed weights near the interface. The resulting set of linear equations is usually non-symmetric and reduces to a symmetric
and diagonally dominant system in cases of equal coefficients bþ ¼ b�. We used the BiCGSTAB solver preconditioned with
the algebraic multigrid BOOMER of the public domain package hypre [6] for the solution of the system of linear equations.
Near optimal scaling for all test cases including complex interfaces and large ratios of the coefficients bþ and b� was
observed.

Except for the case of a non-smooth interfaces at high ratio of the coefficients all examples investigated in this work
demonstrate locally second order of accuracy of the method.

Although the subject of this work is the numerical solution of elliptic equations we note that our trilinear finite element
might be equally useful for the reconstruction of any other discontinuous function on Cartesian grids (e.g.: the velocity field
in premixed combustion) and, of course, for finite element methods itself.

Problems of the type considered here become notoriously difficult to solve numerically for limitingly large ratios of the
coefficients, say bþ : b� ! 1. We will address this issue systematically, again using asymptotic methods, in a forthcoming
publication.
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