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Abstract

In this note, we give a description of the graded Lie algebra of double derivations of a path algebra as a
graded version of the necklace Lie algebra equipped with the Kontsevich bracket. Furthermore, we formally
introduce the notion of double Poisson–Lichnerowicz cohomology for double Poisson algebras, and give
some elementary properties. We introduce the notion of a linear double Poisson tensor on a quiver and
show that it induces the structure of a finite-dimensional algebra on the vector spaces Vv generated by the
loops in the vertex v. We show that the Hochschild cohomology of the associative algebra can be recovered
from the double Poisson cohomology. Then, we use the description of the graded necklace Lie algebra to
determine the low-dimensional double Poisson–Lichnerowicz cohomology groups for three types of (linear
and nonlinear) double Poisson brackets on the free algebra C〈x, y〉. This allows us to develop some useful
techniques for the computation of the double Poisson–Lichnerowicz cohomology.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper we will work over an algebraically closed field of characteristic 0 which
we denote by C. Unadorned tensor products will be over C. We will use Sweedler notation to
write down elements in the tensor product A ⊗ A for A an algebra over C.
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A double Poisson algebra A is an associative unital algebra equipped with a linear map

{{−,−}} :A ⊗ A → A ⊗ A

that is a derivation in its second argument for the outer A-bimodule structure on A ⊗ A, where
the outer action of A on A ⊗ A is defined as a.(a′ ⊗ a′′).b := (aa′) ⊗ (a′′b). Furthermore, we
must have that {{a, b}} = −{{b, a}}o and that the double Jacobi identity holds for all a, b, c ∈ A:

{{
a, {{b, c}}′}} ⊗ {{b, c}}′′ + {{c, a}}′′ ⊗ {{

b, {{c, a}}′}}
+ {{

c, {{a, b}}′}}′′ ⊗ {{a, b}}′′ ⊗ {{
c, {{a, b}}′}}′ = 0,

where we used Sweedler notation, that is {{x, y}} = ∑{{x, y}}′ ⊗ {{x, y}}′′ for all x, y ∈ A. Such
a map is called a double Poisson bracket on A.

Double Poisson algebras were introduced in [12] as a generalization of classical Poisson
geometry to the setting of noncommutative geometry. More specifically, a double Poisson bracket
on an algebra A induces a Poisson structure on all finite-dimensional representation spaces
repn(A) of this algebra. Recall that the coordinate ring C[repn(A)] is generated as a com-
mutative algebra by the generators aij for a ∈ A and 1 � i, j � n, subject to the relations∑

j aij bjk = (ab)ik . For each n, the Poisson bracket on the coordinate ring C[repn(A)] of the
variety of n-dimensional representations of A is defined as {aij , bk�} := {{a, b}}′kj {{a, b}}′′i�. This

bracket restricts to a Poisson bracket on C[repn(A)]GLn , the coordinate ring of the quotient vari-
ety issn(A) under the action of the natural symmetry group GLn of repn(A).

In case the algebra is formally smooth (i.e. quasi-free in the sense of [4]), double Poisson
brackets are completely determined by double Poisson tensors, that is, degree two elements in
the tensor algebra TA Der(A,A ⊗ A). For example, the classical double Poisson bracket on the
double Q of a quiver Q is the bracket corresponding to the double Poisson tensor

Psym =
∑
a∈Q

∂

∂a

∂

∂a∗

and its Poisson bracket corresponds to the symplectic form on the representation space of the
double of a quiver used in the study of (deformed) preprojective algebras (see [3] and references
therein for further details on deformed preprojective algebras).

We will denote by Der(A) the space Der(A,A ⊗ A) of all derivations of A, with value in
A⊗A, for the outer A-bimodule structure on A⊗A. This space Der(A) becomes a A-bimodule,
by using the inner A-bimodule structure on A⊗A: if δ ∈ Der(A) and a, b, c ∈ A, then (aδb)(c) =
δ(c)′b ⊗ aδ(c)′′.

As in the classical case, it is possible to define Poisson cohomology for a double Poisson
bracket. This was briefly mentioned in [11] and will be formalized and illustrated in this note.
More specifically, in Section 2, we will recall and formalize the definition of the double Poisson
cohomology from [11]. We will then give, in Section 3, an explicit formulation of the Gersten-
haber algebra of poly-vectorfields and its noncommutative Schouten bracket for the path algebra
of a quiver in terms of its graded necklace Lie algebra equipped with a graded version of the
Kontsevich bracket. This description will first of all be used to define and classify linear double
Poisson structures on path algebras and quivers in Section 4. On the free algebra in n variables,
treated in Section 5, this classification becomes
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Proposition 1. (See Proposition 10, Section 5.) There is a one-to-one correspondence be-
tween linear double Poisson brackets on C〈x1, . . . , xn〉 and associative algebra structures on
V = Cx1 ⊕ · · · ⊕ Cxn. Explicitly, consider the associative algebra structure on V determined by

xixj :=
n∑

i,j,k=1

ck
ij xk,

where ck
ij ∈ C, for all 1 � i, j, k � n, then the corresponding double Poisson bracket is given by

{{xi, xj }} =
n∑

k=1

(
ck
ij xk ⊗ 1 − ck

ji1 ⊗ xk

)
,

which corresponds to the Poisson tensor:

P =
n∑

i,j,k=1

ck
ij xk

∂

∂xi

∂

∂xj

.

Next we show there is a connection between the Hochschild cohomology of finite-dimensional
algebras and the double Poisson cohomology of linear double Poisson structures. We obtain

Theorem 1. (See Theorem 3, Section 5.) Let A = Cx1 ⊕ · · · ⊕ Cxn be an n-dimensional vector
space and let

P =
n∑

i,j,k=1

ck
ij xk

∂

∂xi

∂

∂xj

be a linear double Poisson structure on TCA = C〈x1, . . . , xn〉. Consider A as an algebra through
the product induced by the structure constants of P (the ck

ij ∈ C) and let HH •(A) denote the
Hochschild cohomology of this algebra, then(

H •
P (TCA)

)
1
∼= HH •(A).

Here the grading on (H •
P (TCA)) is induced by the grading on (

TTCA

[TTCA,TTCA] )i , which is defined

through deg(xi) = 1.

From the appendix in [12] we know that the double Poisson cohomology of a double Poisson
bracket corresponding to a bi-symplectic form (as defined in [2]) is equal to the noncommutative
de Rham cohomology computed in [1], which is a translation of a similar result in classical
Poisson geometry. In general, little is known about the classical Poisson cohomology and it is
known to be hard to compute. In Section 6, we will compute, using the description of the algebra
of poly-vectorfields in Section 3, the low-dimensional double Poisson cohomology groups for
the free algebra C〈x, y〉, equipped with three different types of nonsymplectic double Poisson
brackets. This will in particular allow us to develop some tools (including a noncommutative
Euler formula, Proposition 12) and techniques, that seem to be useful for the determination of
the double Poisson cohomology.
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2. Double Poisson cohomology

In [8], Lichnerowicz observed that dπ = {π,−} with π a Poisson tensor for a Poisson man-
ifold M ({−,−} is the Schouten–Nijenhuis bracket) is a square zero differential of degree +1,
which yields a complex

0
dπ−→ O(M)

dπ−→ Der
(
O(M)

) dπ−→ ∧2 Der
(
O(M)

) dπ−→ · · · ,

the homology of which is called the Poisson–Lichnerowicz cohomology. In this section, we
show there is an analogous cohomology on TA Der(A) that descends to the classical Poisson–
Lichnerowicz cohomology on the quotient spaces of the representation spaces of the algebra.

In [12, §4], the notion of a differentiable double Poisson algebra was introduced. For an al-
gebra A, the noncommutative analogue of the classical graded Lie algebra (

∧
O(M) Der(O(M)),

{−,−}) of poly-vectorfields on a manifold M , where {−,−} is the Schouten–Nijenhuis bracket,
is the graded Lie algebra

TA Der(A)/
[
TA Der(A),TA Der(A)

][1]

with graded Lie bracket {−,−} := μA ◦ {{−,−}} where μA is the multiplication map on A and
{{−,−}} is the double Schouten bracket defined in [12, §3.2]. The classical notion of a Poisson
tensor in this new setting becomes

Proposition 1. (See [12, §4.4].) Let P ∈ (TA Der(A))2 such that {P,P } = 0, then P determines
a double Poisson bracket on A. We call such elements double Poisson tensors.

In case A is formally smooth (for example if A is a path algebra of a quiver), there is a one-
to-one correspondence between double Poisson tensors on A and double Poisson brackets on A.
For a double Poisson tensor P = δΔ, the corresponding double Poisson bracket is, for a, b ∈ A,
determined by

{{a, b}}P = δ(a)′Δδ(a)′′(b) − Δ(a)′δΔ(a)′′(b).

In order to obtain the noncommutative analogue of the classical Poisson–Lichnerowicz coho-
mology, we observe that TA/[TA,TA][1] is a graded Lie algebra, so it is a well-known fact that
if P satisfies {P,P } = 0 the map

dP := {P,−} :TA/[TA,TA][1] → TA/[TA,TA][1]

is a square zero differential of degree +1. This leads to

Definition 2. Let A be a differentiable double Poisson algebra with double Poisson tensor P ,
then the homology H •

P (A) of the complex

0
dP−→ TA/[TA,TA][1]0

dP−→ TA/[TA,TA][1]1
dP−→ TA/[TA,TA][1]2

dP−→ · · ·

is called the double Poisson–Lichnerowicz cohomology of A.
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Analogous to the classical interpretation of the first Poisson cohomology groups, we have the
following interpretation of the double Poisson cohomology groups:

H 0
P (A) = {double Casimir functions}

:= {
a ∈ A

∣∣ a mod [A,A] ∈ Z
(
A/[A,A])},

H 1
P (A) = {double Poisson vector fields}/{double Hamiltonian vector fields},

where in analogy to the classical definitions, a double Poisson vector field is a degree 1 element
δ ∈ TA/[TA,TA] satisfying {P, δ} = 0 and a double Hamiltonian vector field is a degree 1 element
of the form {P,f } with f ∈ A/[A,A]. Indeed, let us illustrate the first claim. We have for a ∈ A

that

{δΔ,a} = +Δ(a)′δΔ(a)′′ − δ(a)′Δδ(a)′′

whence for any P ∈ (TA Der(A))2 we get

{P,a}(b) = −{{a, b}}P
so if P is a double Poisson tensor and this expression is zero modulo commutators then
a mod[A,A] is indeed a central element of the Lie algebra (A/[A,A], {−,−}P ).

Let A be an associative algebra with unit. From [12, §7] we know that the Poisson bracket
on repn(A) and issn(A) induced by a double Poisson tensor P corresponds to the Poisson ten-
sor tr(P ). We furthermore know that the map tr :TA/[TA,TA][1] → ∧

Der(O(repn(A))) is a
morphism of graded Lie algebras, so we have a morphism of complexes

0 (TA/[TA,TA])0

tr

dP
(TA/[TA,TA])1

tr

dP
(TA/[TA,TA])2

tr

· · ·

0 O(repn(A))
dtr(P )

Der(O(repn(A)))
dtr(P ) ∧2 Der(O(repn(A))) · · ·

which restricts to a morphism of complexes

0 (TA/[TA,TA])0

tr

dP
(TA/[TA,TA])1

tr

dP
(TA/[TA,TA])2

tr

· · ·

0 O(issn(A))
dtr(P )

Der(O(issn(A)))
dtr(P ) ∧2 Der(O(issn(A))) · · · .

So there is a map from the double Poisson–Lichnerowicz cohomology to the classical Poisson–
Lichnerowicz cohomology on repn(A) and issn(A).

Remark 1. It is a well-known fact that in classical Poisson cohomology, because of the bideriva-
tion property satisfied by the Poisson bracket, the Casimir elements form an algebra. The higher
order cohomology groups all are modules over this algebra. Note that in case of double Casimir
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Fig. 1. Lie bracket [w1,w2] in NQ.

elements, this no longer is the case, as for two double Casimir elements f and g of a double
Poisson tensor P , we have

{{P,fg}} = f {{P,g}} + {{P,f }}g whence {P,fg} ∈ f [A,A] + [A,A]g ⊆ [A,A].

It is a natural and interesting question to ask whether the map from the double Poisson coho-
mology to the classical Poisson cohomology is onto or not. For finite-dimensional semi-simple
algebras it is onto (see [11]), but for some of the double Poisson brackets considered in Section 6,
the map is not onto.

3. NC multivector fields and the graded necklace Lie algebra

For a quiver Q, the necklace Lie algebra was introduced in [1] in order to generalize the
classical Karoubi–De Rham complex to noncommutative geometry. We will briefly recall the
notions from [1] needed for the remainder of this section.

Definition 3. For a quiver Q, define its double quiver Q as the quiver obtained by adding for
each arrow a in Q an arrow a∗ in the opposite direction of a to Q.

Now recall that the necklace Lie algebra was defined as

Definition 4. The necklace Lie algebra NQ is defined as NQ := CQ/[CQ,CQ] equipped with
the Kontsevich bracket which is defined on two necklaces w1 and w2 as illustrated in Fig. 1.
That is, for each arrow a in w1, look for all occurrences of a∗ in w2, remove a from w1 and a∗
from w2 and connect the corresponding open ends of both necklaces. Next, sum all the necklaces
thus obtained. Now repeat the process with the roles of w1 and w2 reversed and deduct this sum
from the first.

Now consider the following grading on CQ: arrows a in the original quiver are given degree 0
and the starred arrows a∗ in Q are given degree 1. We now can consider the graded necklace
Lie algebra CQ/[CQ,CQ]super equipped with a graded version of the Kontsevich bracket, as
introduced in [7].
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∑
a∈Q1

(−1)d
1
a

• •

•

p1
a

w1 •

•q1
a

a

• a∗

•

p2
a∗

q2
a∗

w2 •

• •

+ (−1)d
2
a

• •

•

p2
a

w2 •

•q2
a

a

• a∗

•

p1
a∗

q1
a∗

w1 •

• •

Fig. 2. The graded Kontsevich bracket {w1,w2} in nQ. The dashed links, the beads in between these links (denoted

as a and a∗ = ∂
∂a

) and the round ornamentation are removed and the open necklaces are connected as indicated. The

exponents used are d1
a = (|w1| − 1)|p2

a∗ | + |p1
a ||q1

a | + 1 and d2
a = (|w2| − 1)|p2

a | + |p1
a∗ ||q1

a∗ |.

Definition 5. The graded necklace Lie algebra is defined as

nQ := CQ/[CQ,CQ]super

equipped with the graded Kontsevich bracket defined in Fig. 2. Monomials in nQ are depicted
as ornate necklaces, where the beads represent arrows in the necklace and where one bead is
encased, indicating the starting point of the necklace.

An example of an ornate necklace is

◦ g

f •

• h

representing the element f δgΔhΔ if we let ◦ represent δ and • represents Δ. The identities
coming from dividing out supercommutators then look like

◦ g

f •

• h

=
◦ g

f •

• h

.

This graded necklace Lie algebra is the noncommutative equivalent of the classical graded
Lie algebra of multivector fields.
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Theorem 1. Let Q be a quiver, then

TCQ Der(CQ)/
[
TCQ Der(CQ),TCQ Der(CQ)

] ∼= nQ

as graded Lie algebras.

Proof. From [12] we know that the module of double derivations Der(CQ) is generated as a
CQ-bimodule by the double derivations ∂

∂a
, a ∈ Q1, defined as

∂

∂a
(b) =

{
et(a) ⊗ eh(a), b = a,

0, b = a.

Now note that we may identify ∂
∂a

with an arrow a∗ in Q in the opposite direction of a: ∂
∂a

=
eh(a)

∂
∂a

et (a), so TCQ Der(CQ) ∼= CQ. The arrows a∗ correspond to the degree 1 elements in the
tensor algebra and the original arrows to the degree 0 arrows. That is, supercommutators in the
algebra on the left correspond to supercommutators in the algebra on the right.

Now note that the NC Schouten bracket on a path in Q becomes

{{a∗, a1 . . . an}} =
n−1∑
i=0

(−1)|a1|+···+|ai |a1 . . . ai{{a∗, ai+1}}ai+2 . . . an

=
n∑

i=0, ai+1=a

(−1)|a1|+···+|ai |a1 . . . ai ⊗ ai+2 . . . an,

where a0 = t (a1). But this is the graded version of the necklace Loday algebra considered in [12].
This becomes the graded necklace Lie algebra when restricting to closed paths and modding out
commutators. �

An immediate corollary of the theorem above is

Corollary 6. A nonzero double bracket on the path algebra CQ is completely determined by a
linear combination of necklaces of degree 2.

For the remainder of the paper, we will assume the brackets to be nonzero.

4. Linear double Poisson structures

In classical Poisson geometry, linear Poisson structures are defined on C
n through a Poisson

tensor of the form

π = ck
ij xk

∂

∂xi

∧ ∂

∂xj

,

where we use Einstein notation, that is, we sum over repeated indices. For this expression to be
a Poisson tensor, the constant factors ck must satisfy
ij
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ch
jkc

p
hi + ch

kic
p
hj + ch

ij c
p
hk = 0,

i.e. ck
ij are the structure constants of an n-dimensional Lie algebra.

In order to translate this setting to NC Poisson geometry, we first of all note that the role of
affine space is assumed by the representation spaces of quivers and the bivector ∂

∂xi
∧ ∂

∂xj
is

replaced by the degree 2 part of a necklace, ∂
∂a

∂
∂b

, by Corollary 6. We define

Definition 7. Let Q be a quiver. A linear double bracket on CQ is a double bracket determined
by a double tensor of the form

Plin :=
∑

a,b,c∈Q1
a ∂

∂b
∂
∂c

=0∈nQ

ca
bca

∂

∂b

∂

∂c
,

with all ca
bc ∈ C. Note that the condition a ∂

∂b
∂
∂c

= 0 ∈ nQ means h(a) = h(b), t (b) = h(c) and
t (c) = t (a).

We can characterize the linear double Poisson brackets as follows.

Theorem 2. A linear double bracket

Plin :=
∑

a,b,c∈Q1
a ∂

∂b
∂
∂c

=0∈nQ

ca
bca

∂

∂b

∂

∂c
,

is a double Poisson bracket on CQ if and only if for all p,q, r, s ∈ Q1 such that p ∂
∂q

∂
∂r

∂
∂s

= 0 ∈
nQ we have

∑
x∈Q

(p,q,rs)
1

cx
rsc

p
qx −

∑
y∈Q

(qr,p,s)
1

c
p
ysc

y
qr ,

where

Q
(p,q,rs)

1 =
{
a ∈ Q1

∣∣∣ a
∂

∂r

∂

∂s
,p

∂

∂q

∂

∂a
= 0 ∈ nQ

}

and

Q
(qr,p,s)

1 =
{
a ∈ Q1

∣∣∣ a
∂

∂q

∂

∂r
,p

∂

∂a

∂

∂s
= 0 ∈ nQ

}
.

Proof. We have to verify when {Plin,Plin} = 0 modulo commutators. First of all observe that a
straightforward computation yields that for any x, y, z,u, v,w ∈ Q1
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{
x

∂

∂y

∂

∂z
,u

∂

∂v

∂

∂w

}
= δxwu

∂

∂v

∂

∂y

∂

∂z
+ δuzx

∂

∂y

∂

∂v

∂

∂w

− δuyx
∂

∂v

∂

∂w

∂

∂z
− δxvu

∂

∂y

∂

∂z

∂

∂w

modulo commutators. Next, note that this equality implies that {Plin,Plin} lies in the subvector
space of nQ that has as basis B all ornate necklaces of the form p ∂

∂q
∂
∂r

∂
∂s

with p,q, r, s ∈ Q1
and where p is the encased bead. We now write

{Plin,Plin} =
∑
x,y,z

∑
u,v,w

{
cx
yzx

∂

∂y

∂

∂z
, cu

vwu
∂

∂v

∂

∂w

}

=
∑
x,y,z

(∑
u,v

cx
yzc

u
vxu

∂

∂v

∂

∂y

∂

∂z
+

∑
v,w

cx
yzc

z
vwx

∂

∂y

∂

∂v

∂

∂w

−
∑
v,w

cx
yzc

y
vwx

∂

∂v

∂

∂w

∂

∂z
−

∑
u,w

cx
yzc

u
xwu

∂

∂y

∂

∂z

∂

∂w

)
,

where in order to lighten notation, we do not explicitly write down the additional restrictions on
x, y, z,u, v,w for a cx

yz and cw
uv to be defined. Regrouping this expression with respect to the

basis p ∂
∂q

∂
∂r

∂
∂s

, we get

{Plin,Plin} =
∑

p ∂
∂q

∂
∂r

∂
∂s

∈B

2

( ∑
x∈Q

(p,q,rs)
1

cx
rsc

p
qx −

∑
y∈Q

(qr,p,s)
1

c
p
ysc

y
qr

)
p

∂

∂q

∂

∂r

∂

∂s
,

where the summation sets simply list which coefficients are defined. Equating this last expression
to zero concludes the proof. �

We have the following immediate corollary for the induced Poisson bracket on the represen-
tation and quotient spaces.

Corollary 8. Let Plin be a linear double Poisson bracket, then the induced bracket tr(Plin) on
repn(CQ) and on issn(CQ) is a linear Poisson bracket.

Proof. This is immediate from the definition of the induced bracket. �
Note that this proof immediately indicates that not all linear Poisson structures are induced

by linear double Poisson structures, as the condition on the coefficients of the latter is more
restrictive than the condition on the coefficients of the former. We even have

Corollary 9. With notations as above, let Plin be a linear double Poisson bracket and v ∈ Q0,
then Plin induces an associative algebra structure on the vector space generated by all loops
in v.

Proof. It suffices to observe that the condition in Theorem 2 exactly determines the structure
constants of an associative algebra structure on the loops in a vertex. �
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5. Cohomology of linear double Poisson brackets and Hochschild cohomology

In this section, we will first of all specialize the description of linear double Poisson brackets
obtained in the previous section to the free algebra in n variables. Then, we will give a link be-
tween the double Poisson cohomology of such linear double Poisson brackets and the Hochschild
cohomology of the corresponding associative algebra.

First of all observe that Corollary 9 becomes much stronger for the free algebra in n variables.

Proposition 10. There is a one-to-one correspondence between linear double Poisson brackets
on C〈x1, . . . , xn〉 and associative algebra structures on V = Cx1 ⊕· · ·⊕Cxn. Explicitly, consider
the associative algebra structure on V determined by

xixj :=
n∑

i,j,k=1

ck
ij xk,

then the corresponding double Poisson bracket is given by

{{xi, xj }} =
n∑

i,j,k=1

(
ck
ij xk ⊗ 1 − ck

ji1 ⊗ xk

)
.

Proof. This holds because the free algebra in n variables is the path algebra of the quiver Q with
one vertex and n loops, for which we have Q

(p,q,rs)

1 = Q
(qr,p,s)

1 = Q1. �
As a corollary we obtain for the noncommutative affine plane.

Corollary 11. Up to affine transformation, there are only 7 different linear double Poisson brack-
ets on C〈x, y〉. Their double Poisson brackets are

P C×C

lin = x
∂

∂x

∂

∂x
+ y

∂

∂y

∂

∂y
,

P C×Cε2

lin = x
∂

∂x

∂

∂x
,

P C⊕Cε2

lin = x
∂

∂x

∂

∂x
+ y

∂

∂x

∂

∂y
+ y

∂

∂y

∂

∂x
,

P Cε⊕Cε2

lin = y
∂

∂x

∂

∂x
,

P
B1

2
lin = x

∂

∂x

∂

∂x
+ y

∂

∂x

∂

∂y
,

P
B2

2
lin = x

∂

∂x

∂

∂y
+ y

∂

∂y

∂

∂y
,

P Cε2⊕Cε2

lin = 0.
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Proof. This follows immediately from Proposition 10 and the classification of all (nonunital)
2-dimensional associative algebras obtained in [6]. The upper indices of the brackets listed here
correspond to the algebra structures they induce. �

Moreover, there is a direct connection between the Hochschild cohomology of the finite-
dimensional algebra and the double Poisson cohomology of the free algebra.

Theorem 3. Let A = Cx1 ⊕ · · · ⊕ Cxn be an n-dimensional vector space and let

P =
n∑

i,j,k=1

ck
ij xk

∂

∂xi

∂

∂xj

be a linear double Poisson structure on TCA = C〈x1, . . . , xn〉. Consider A as an algebra through
the product induced by the structure constants of P and let HH •(A) denote the Hochschild
cohomology of this algebra, then (

H •
P (TCA)

)
1
∼= HH •(A).

Here the grading on (H •
P (TCA)) is induced by the grading on (

TTCA

[TTCA,TTCA] )i , which is defined

through deg(xi) = 1.

Proof. First of all observe that we have a basis for (
TTCA

[TTCA,TTCA] )i,1 consisting of all possible

elements of the form

∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

x�.

Now consider the linear map

ϕi :A∗ ⊗ A∗ ⊗ · · · ⊗ A∗︸ ︷︷ ︸
i factors

⊗A →
(

TTCA

[TTCA,TTCA]
)

i,1

defined as

ϕi

(
x∗
k1

⊗ x∗
k2

⊗ · · · ⊗ x∗
ki

⊗ x�

) = ∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

x�,

then ϕ := (ϕi) is a morphism of complexes

0 A
d

ϕ0

A∗ ⊗ A
d

ϕ1

A∗ ⊗ A∗ ⊗ A

ϕ2

· · ·

0 (
TTCA

[TTCA,TTCA] )0,1
dP

(
TTCA

[TTCA,TTCA] )1,1
dP

(
TTCA

[TTCA,TTCA] )2,1 · · ·

where the upper complex is the Hochschild complex with d defined as
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d
(
x∗
k1

⊗ x∗
k2

⊗ · · · ⊗ x∗
ki

⊗ x�

) =
n∑

s,t=1

ct
s�x

∗
s ⊗ x∗

k1
⊗ x∗

k2
⊗ · · · ⊗ x∗

ki
⊗ xt

+
i−1∑
r=1

(−1)r
n∑

s,t=1

c
kr
st x

∗
k1

⊗ · · · ⊗ x∗
s ⊗ x∗

t︸ ︷︷ ︸
rth factor

⊗· · · ⊗ x∗
ki

⊗ x�

+ (−1)i+1
n∑

s,t=1

ct
�sx

∗
k1

⊗ x∗
k2

⊗ · · · ⊗ x∗
ki

⊗ x∗
s ⊗ xt .

In order to see ϕ is a morphism of complexes, we compute

{{
P,

∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

x�

}}
= (−1)i

∂

∂xk1

. . .
∂

∂xki

{{P,x�}}︸ ︷︷ ︸
T1

+
{{

P,
∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

}}
x�︸ ︷︷ ︸

T2

.

The first term in this expression is mapped by the multiplication on the tensor algebra to

μ(T1) = (−1)i
∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

{P,x�}

= (−1)i
∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

n∑
r,s=1

(
cr
s�xr

∂

∂xs

− cr
�s

∂

∂xs

xr

)

=
n∑

r,s=1

cr
s�

∂

∂xs

∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

xr

− (−1)i
n∑

r,s=1

cr
�s

∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

∂

∂xs

xr .

The second term in the expression is mapped to

μ(T2) =
i−1∑
r=0

(−1)r
∂

∂xk1

. . .
∂

∂xkr

{
P,

∂

∂xkr+1

}
∂

∂xkr+2

. . .
∂

∂xki

x�

= −
i−1∑
r=0

(−1)r
n∑

s,t=1

c
kr+1
st

∂

∂xk1

. . .
∂

∂xkr

∂

∂xs

∂

∂xt

∂

∂xkr+2

. . .
∂

∂xki

x�.

Adding these two expressions together indeed yields
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dP

(
∂

∂xk1

∂

∂xk2

. . .
∂

∂xki

x�

)
= dP

(
ϕi

(
x∗
k1

⊗ x∗
k2

⊗ · · · ⊗ x∗
ki

⊗ x�

))
= ϕi

(
d
(
x∗
k1

⊗ x∗
k2

⊗ · · · ⊗ x∗
ki

⊗ x�

))
,

so we have a morphism of complexes. It is easy to see this is an isomorphism when restricting to
degree 1 terms in the lower complex, which finishes the proof. �
Remark 2. Note that Theorem 3 can be seen as the noncommutative analogue of the fact that
for a Lie–Poisson structure associated to a compact Lie group the Poisson cohomology can be
written as the tensor product of the Lie algebra cohomology with the Casimir elements of the
Poisson bracket.

The relation between higher degree components of the double Poisson cohomology and the
Hochschild cohomology of the corresponding finite-dimensional algebra is less obvious. How-
ever, we have

Theorem 4. With notations as in the previous theorem, there is a canonical embedding

H 0
P (TCA) ↪→ C ⊕

⊕
k�1

HH 0(A,A⊗k
)
,

where the action of A on A⊗k is the inner action on the two outmost copies of A in the tensor
product.

Proof. We have already shown in Theorem 3 that the Hochschild cohomology HH 0(A)

corresponds to the degree 1 terms in H 0
P (TCA). We will now show that (H 0

P (TCA))k ↪→
HH 0(A,A⊗k). Consider the map

ϕ0 :
TCA

[TCA,TCA] → A⊗k :xi1 ⊗ · · · ⊗ xik �→
k−1∑
�=0

σ�
(1...k)xi1 ⊗ · · · ⊗ xik ,

where for s ∈ Sk a permutation we define σs(a1 ⊗ · · · ⊗ ak) := as(1) ⊗ · · · ⊗ as(k). It is easy to
see that this map is well defined. We will also need the map

ϕ1 :

(
TTCA

[TTCA,TTCA]
)

1,k

→ A∗ ⊗ A⊗k

defined as

ϕ1

(
∂

∂xi

xj1 . . . xjk

)
= x∗

i ⊗ xj1 ⊗ · · · ⊗ xjk
,

where we fixed a similar basis as in Theorem 3 for (
TTCA

[TTCA,TTCA] )1,k .

Now compute for f = xi1 . . . xik (using Einstein notations)
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dP (f ) =
(

cr
pq

∂f

∂xq

′′ ∂f

∂xq

′
xr − cr

qpxr

∂f

∂xq

′′ ∂f

∂xq

′) ∂

∂xp

=
k−1∑
s=0

(
cr
pq

∂xis+1

∂xq

′′
xis+2 . . . xik xi1 . . . xis

∂xis+1

∂xq

′
xr

− cr
qpxr

∂xis+1

∂xq

′′
xis+2 . . . xik xi1 . . . xis

∂xis+1

∂xq

′) ∂

∂xp

=
k−1∑
s=0

(
cr
pis+1

xis+2 . . . xik xi1 . . . xis xr

− cr
is+1p

xrxis+2 . . . xik xi1 . . . xis

) ∂

∂xp

.

This is mapped by ϕ1 to

k−1∑
s=0

(
cr
pis+1

x∗
p ⊗ xis+2 ⊗ · · · ⊗ xik ⊗ xi1 ⊗ · · · ⊗ xis ⊗ xr

− cr
is+1p

x∗
p ⊗ xr ⊗ xis+2 ⊗ · · · ⊗ xik ⊗ xi1 ⊗ · · · ⊗ xis

)
.

On the other hand, we have

dϕ0(f ) =
k−1∑
s=0

d(xis+1 ⊗ · · · ⊗ xik ⊗ xi1 ⊗ · · · ⊗ xis )

=
k−1∑
s=0

(
cr
pis

x∗
p ⊗ xis+1 ⊗ · · · ⊗ xik ⊗ xi1 ⊗ · · · ⊗ xis−1 ⊗ xr

− cr
is+1p

x∗
p ⊗ xr ⊗ xis+2 ⊗ · · · ⊗ xik ⊗ xi1 ⊗ · · · ⊗ xis

)
.

So, after reindexing the first term, we obtain d(ϕ0(f )) = ϕ1(dP (f )), which finishes the
proof. �
6. Examples of H 0 and H 1 for several double Poisson structures on CCC〈x,y〉

In this section, we will determine the double Poisson cohomology groups H 0 and H 1, of
three different double Poisson structures on the free algebra C〈x, y〉. To do this, we will use
some tools and techniques that could be useful to compute other double Poisson cohomology
groups, associated to other double Poisson algebras.

In order to compute the double Poisson cohomology of C〈x, y〉 with the different brackets
we will introduce below, the following noncommutative version of the Euler formula will prove
useful.
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Proposition 12 (NC-Euler formula). Let Q be a quiver, p a path in Q and a an arrow of Q, then

μ ◦
(

a
∂

∂a

)
(p) = (

dega(p)
)
p.

Whence

∑
a∈Q1

μ ◦
(

a
∂

∂a

)
(p) = |p|p,

with |p| the length of the necklace.

Proof. From the definition of a d
da

, for any path in Q, of the form a1 ·a2 · · ·an−1 ·an (with n ∈ N
∗

and a1, a2, . . . , an, some arrows of Q), we have:

∂

∂a
(a1 · a2 · · ·an−1 · an) =

n∑
i=1

a1 · · ·ai−1 · ∂ai

∂a
· ai+1 · · ·an

=
n∑

i=1
a=ai

a1 · · ·ai−1 · et(ai ) ⊗ eh(ai ) · ai+1 · · ·an

=
n∑

i=1
a=ai

a1 · · ·ai−1 ⊗ ai+1 · · ·an.

So that, by definition of the inner product, we obtain:

(
a

∂

∂a

)
(a1 · a2 · · ·an−1 · an) =

n∑
i=1
a=ai

a1 · · ·ai−1 ⊗ ai · ai+1 · · ·an,

proving the proposition. �
The rest of this section will be devoted to the determination of the low-dimensional double

Poisson cohomology groups H 0 and H 1 of the free algebra C〈x, y〉, equipped with the following
(linear and nonlinear) double Poisson tensors:

(1) the linear double Poisson brackets P0 = x d
dx

d
dx

and x d
dx

d
dx

+ y d
dy

d
dy

, for which the corre-
sponding Poisson bracket on rep1(C〈x, y〉) = C[x, y] is zero;

(2) the linear double Poisson brackets P1 = x d
dx

d
dx

+ y d
dx

d
dy

or x d
dx

d
dy

+ y d
dy

d
dy

, for which the
Poisson bracket obtained with the trace on rep1(C〈x, y〉) is a nontrivial Poisson bracket;

(3) the quadratic double Poisson bracket P = x d
dx

x d
dy

, which induces a quadratic (nontrivial)
Poisson bracket on rep1(C〈x, y〉).
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6.1. The linear double Poisson tensors x d
dx

d
dx

and x d
dx

d
dx

+ y d
dy

d
dy

Let us first consider the linear double Poisson tensor, given by

P0 := P C×Cε2

lin = x
d

dx

d

dx
.

Our aim, in this subsection, is to give an explicit basis of the double Poisson cohomology groups
H 0

P0
(C〈x, y〉) and H 1

P0
(C〈x, y〉), associated to this double Poisson tensor P0.

First of all, let us consider the operator d0
P0

and the space H 0
P0

(C〈x, y〉).

Proposition 13. For f ∈ C〈x, y〉, we have

dP0(f ) = ◦ ( df
dx

′′ df
dx

′
x − df

dx

′′ df
dx

′
x
)
,

where ◦ represents d
dx

. This leads to

H 0
P0

(
C〈x, y〉) � C[x] ⊕ C[y].

Proof. Let f ∈ C〈x, y〉 and let recall that P0 denotes the double Poisson tensor P0 = x d
dx

d
dx

.
Then, using the properties of the double Gerstenhaber bracket {{−,−}}, given in [12, §2.7], we
compute the double Schouten–Nijenhuis bracket of f and P0:

{{f,P0}} =
{{

f,x
d

dx

d

dx

}}

= −x
d

dx

{{
f,

d

dx

}}
+

{{
f,x

d

dx

}}
d

dx

= x
d

dx

df

dx

′′
⊗ df

dx

′
− x

df

dx

′′
⊗ df

dx

′ d

dx
,

so that, computing modulo the commutators, we obtain exactly

dP0(f ) = μ
({{P0, f }}) =

(
df

dx

′′ df
dx

′
x − x

df

dx

′′ df
dx

′) d

dx
.

Then, a 0-cocycle for the double Poisson cohomology, corresponding to P0 is an element f ∈
C〈x, y〉 satisfying dP0(f ) = 0, which means that

df

dx

′′ df
dx

′
x − x

df

dx

′′ df
dx

′
= 0,

that is to say, the element df
dx

′′ df
dx

′ ∈ C〈x, y〉 commutes with x, so is necessarily an element
of C[x]. According to the NC-Euler formula (Proposition 12), we have

degx(f )f = μ ◦
(

x
∂

)
(f ) = df ′

x
df ′′

∈ df ′′ df ′
x + [

C〈x, y〉,C〈x, y〉],

∂x dx dx dx dx
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so that, modulo commutators, we either have degx(f ) = 0 and hence f ∈ C[y], or f ∈ C[x]. But
then

H 0
P0

(
C〈x, y〉) � C[x] ⊕ C[y]. �

Next, let us determine the first double Poisson cohomology group, related to P0. First of all,
observe that an element of (TC〈x,y〉/[TC〈x,y〉, TC〈x,y〉])1 can be uniquely written as f d

dx
+ g d

dy
,

with f,g ∈ C〈x, y〉. By a direct computation (analogous to what we did for dP0(f )), we obtain
the value of the coboundary operator dP0 on such an element. We obtain that

dP0

(
f

d

dx
+ g

d

dy

)
= Φ1(f ) + Φ2(g),

where the operators Φ1 and Φ2 from C〈x, y〉 to (TC〈x,y〉/[TC〈x,y〉, TC〈x,y〉])2 are defined, for
f,g ∈ C〈x, y〉, by:

Φ1(f ) := −

◦

f 1

◦
+

◦

df
dx

′
x

df
dx

′′

◦

−

◦

df
dx

′
x

df
dx

′′
,

◦

(1)

and

Φ2(g) :=

◦

dg
dx

′
x

dg
dx

′′

•

−

◦

dg
dx

′
x

dg
dx

′′
,

•

(2)

where ◦ represents d
dx

and • represents d
dy

. Now, to compute H 1
P0

(C〈x, y〉), we have to consider
elements f,g ∈ C〈x, y〉, satisfying the two independent equations: Φ1(f ) = 0 and Φ2(g) = 0.
We first consider the second equation, Φ2(g) = 0. We then have

Proposition 14. The kernel of the linear map Φ2, from C〈x, y〉 to (TC〈x,y〉/[TC〈x,y〉, TC〈x,y〉])2 is

ker(Φ2) = C[y].

Proof. Let g ∈ C〈x, y〉 be polynomial in x and y, such that Φ2(g) = 0. Let us write g = xg0 +
yg1 + a, where g0, g1 ∈ C〈x, y〉 and a ∈ C. Then, we have dg

dx
= 1 ⊗ g0 + x

dg0
dx

+ y
dg1
dx

and the
equation Φ2(g) = 0 becomes:

0 = Φ2(g) =
◦

x g0

•
+

◦

x
dg0
dx

′
x

dg0
dx

′′

•

+

◦

y
dg1
dx

′
x

dg1
dx

′′

•
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−
◦

1 xg0

•
−

◦

x
dg0
dx

′
x

dg0
dx

′′

•

−

◦

y
dg1
dx

′
x

dg1
dx

′′
.

•

Then, we see that the term

◦

1 xg0

•

has to cancel itself, which means that xg0 = 0 and g = yg1 + a ∈ yC〈x, y〉 + C.
Now, we know that we can write g = a +∑

k�1 ykgk with, for any k � 1, gk ∈ xC〈x, y〉+ C.

We then have dg
dx

= ∑
k�1 yk dgk

dx
= ∑

k�1 yk dgk

dx

′ ⊗ dgk

dx

′′
and the equation Φ2(g) = 0 becomes

Φ2(g) = 0 =
∑
k�1

ykΦ2(gk).

So that, for each k � 1, we must have Φ2(gk) = 0. But we have seen above that this implies
gk ∈ yC〈x, y〉 + C, while we have assumed that gk ∈ xC〈x, y〉 + C, thus gk ∈ C, for all k ∈ N

∗.
We then conclude that g ∈ C[y]. �

Now, let us study the first equation Φ1(f ) = 0. To do this, we will need the following

Lemma 1. Let s ∈ N
∗ and (k1, k2, k3, . . . , ks) ∈ (N∗)2s . Let m = xk1yk2xk3 · · ·xk2s−1yk2s ∈

C〈x, y〉. We have

Φ1(m) =
s∑

i=1

◦

xk1 · · ·yk2(i−1)xk(2i−1) yk2i · · ·yk2s

◦

−
s∑

i=2

◦

xk1 · · ·yk2(i−1) xk(2i−1)yk2i · · ·yk2s .

◦

(3)

Next, let n = yk1xk2yk3 · · ·yk2s−1xk2s ∈ C〈x, y〉, then
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Φ1(n) = −
s∑

i=1

◦

yk1 · · ·xk2(i−1)yk(2i−1) xk2i · · ·xk2s

◦

+
s∑

i=2

◦

yk1 · · ·xk2(i−1) yk(2i−1)xk2i · · ·xk2s .

◦

(4)

Proof. We will prove the first statement of the lemma. The proof of the second statement
is completely analogous. Let m = xk1yk2xk3 · · ·xk2s−1yk2s ∈ C〈x, y〉, where s ∈ N

∗ and where
k1, k2, k3, . . . , ks ∈ N

∗ are (nonzero) integers. First of all, we compute:

dm

dx
=

s∑
i=1

k(2i−1)−1∑
j=0

xk1 · · ·yk2(i−1)xj ⊗ x(k(2i−1)−1−j)yk2i · · ·yk2s .

Then, by definition of Φ1, we have

Φ1(m) = −

◦

xk1 · · ·yk2s 1

◦

+
s∑

i=1

k(2i−1)−1∑
j=0

◦

xk1 · · ·yk2(i−1)xj+1 x(k(2i−1)−1−j)yk2i · · ·yk2s

◦

−
s∑

i=1

k(2i−1)−1∑
j=0

◦

xk1 · · ·yk2(i−1)xj x(k(2i−1)−j)yk2i · · ·yk2s

◦

= −

◦

xk1 · · ·yk2s 1

◦
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+
s∑

i=1

◦

xk1 · · ·yk2(i−1)xk(2i−1) yk2i · · ·yk2s

◦

−
s∑

i=1

◦

xk1 · · ·yk2(i−1) xk(2i−1)yk2i · · ·yk2s ,

◦

which yields the formula (3). �
We will also need the following formula that gives a nice interpretation of dP0(m), where m

is a monomial like in the previous lemma.

Lemma 2. Let s ∈ N
∗ and (k1, k2, k3, . . . , ks) ∈ (N∗)2s . We consider the monomial in C〈x, y〉,

written as m = xk1yk2xk3 · · ·xk2s−1yk2s . Then, we have

dm

dx

′′ dm

dx

′
x − x

dm

dx

′′ dm

dx

′
= −

s∑
i=1

xk2i−1 · · ·xk2s−1yk2s xk1yk2 · · ·yk2(i−1)

+
s∑

i=1

yk2i · · ·yk2s xk1 · · ·yk2(i−1)xk(2i−1) .

That is, d0
P0

(m) is obtained by considering all the cyclic permutations of the blocks xj and yj

in m (together with the sign of the permutation) and multiplying the result by d
dx

.

Proof. Similar to the proof of the previous lemma, we have

dm

dx
=

s∑
i=1

k(2i−1)−1∑
j=0

xk1 · · ·yk2(i−1)xj ⊗ x
(
k(2i−1)−1−j

)
yk2i · · ·yk2s .

From this, it is straightforward to obtain Eq. (5). �
We are now able to determine the first double Poisson cohomology group of the double Pois-

son algebra (C〈x, y〉,P0).

Proposition 15. Let us consider the linear double Poisson tensor P0 = x d
dx

d
dx

on C〈x, y〉. The
first double Poisson cohomology space, associated to P0 is given by:

H 1
P0

� C
d

dx
⊕ C[y] d

dy
.



A. Pichereau, G. Van de Weyer / Journal of Algebra 319 (2008) 2166–2208 2187
Proof. Let f d
dx

+g d
dy

be a 1-cocycle of the double Poisson cohomology associated to the double
Poisson algebra (C〈x, y〉,P0). We have seen that the cocycle condition can be written as:

{
Φ1(f ) = 0,

Φ2(g) = 0,

where the operators Φ1 and Φ2 are defined in (1) and (2). According to Proposition 14, we know
that g ∈ C[y]. As for any h ∈ C〈x, y〉, dP0(h) ∈ C〈x, y〉 d

dx
, it is clear that the elements of C[y] d

dy

give nontrivial double Poisson cohomology classes in H 1
P0

(C〈x, y〉).
Remains to consider the equation Φ1(f ) = 0. First of all observe this equation implies f ∈

xC〈x, y〉y + yC〈x, y〉x + C. In fact, suppose that there is a monomial in f that can be written
as xf0x, where f0 ∈ C〈x, y〉. Then, we have

Φ1(xf0x) =

◦

x f0x

◦
+

◦

x
df0
dx

′
x

df0
dx

′′
x

◦

+

◦

xf0 x 1

◦

−

◦

x
df0
dx

′
x

df0
dx

′′
x

◦

−

◦

xf0 x.

◦

But then Φ1(f ) = 0, implies that the term

◦

xf0 x 1

◦

has to cancel itself, so that xf0x has to be zero. Now suppose a monomial of the form yf0y

appears in f . We have

Φ1(yf0y) = −

◦

yf0 y 1

◦
+

◦

y
df0
dx

′
x

df0
dx

′′
y

◦

−

◦

y
df0
dx

′
x

df0
dx

′′
y.

◦
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The term

◦

yf0 y 1

◦

cannot appear in Φ1(f ) in any other way and hence has to vanish, i.e. yf0y has to be zero.
But then we know that f can be written as f = ∑

s∈N∗ f2s +a, where a ∈ C and f2s ∈ C〈x, y〉
is of the form

f2s :=
∑

K=(k1,...,k2s )

∈(N∗)2s

cKxk1yk2xk3 · · ·xk2s−1yk2s −
∑

L=(�1,...,�2s )

∈(N∗)2s

c̃Ly�1x�2y�3 · · ·y�2s−1x�2s ,

where cK and c̃L are constants. According to Lemma 1, the equation Φ1(f ) = 0 implies that, for
each s ∈ N

∗, Φ1(f2s) = 0 (i.e., Φ1(f2s) cannot be canceled by another Φ1(f2s′)).
Let us then consider the equation Φ1(f2s) = 0. According to Lemma 1, by collecting the terms

of the form

◦
x · · ·x y · · ·y

◦

and of the form

◦
x · · ·y x · · ·y

◦

(which have to be canceled by terms of the same form), we get the three following equations:

0 =
∑

K=(k1,...,k2s )

∈(N∗)2s

cK

s∑
i=1

◦

xk1 · · ·yk2(i−1)xk(2i−1) yk2i · · ·yk2s

◦

+
∑

L=(�1,...,�2s )

∈(N∗)2s

c̃L

s∑
i=1

◦

yk1 · · ·xk2(i−1)yk(2i−1) xk2i · · ·xk2s

◦

(5)
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and

0 =
∑

K=(k1,...,k2s )

∈(N∗)2s

cK

s∑
i=2

◦

xk1 · · ·yk2(i−1) xk(2i−1)yk2i · · ·yk2s .

◦

(6)

From Eq. (5), we conclude, as the first sum cannot cancel itself, that, for each 1 � i � s

∑
K=(k1,...,k2s )

∈(N∗)2s

cK

◦

xk1 · · ·yk2(i−1)xk(2i−1) yk2i · · ·yk2s

◦

= −
∑

K=(k1,...,k2s )

∈(N∗)2s

cK

◦

yk2i · · ·yk2s xk1 · · ·xk(2i−1)

◦

= −
∑

L=(�1,...,�2s )

∈(N∗)2s

c̃L

◦

yk1 · · ·xk2(i−1)yk(2i−1) xk2i · · ·xk2s

◦

and this can only happen if, for each 1 � i � s:

∑
K=(k1,...,k2s )

∈(N∗)2s

cKyk2i · · ·yk2s xk1 · · ·xk(2i−1) =
∑

L=(�1,...,�2s )

∈(N∗)2s

c̃Lyk1 · · ·xk2s . (7)

Then, in Eq. (6), the sum obtained for 2 � i � s has to be canceled by the one obtained for the
s − i + 2, i.e.,

∑
K=(k1,...,k2s )

∈(N∗)2s

cK

◦

xk1 · · ·yk2(i−1) xk(2i−1)yk2i · · ·yk2s

◦

= −
∑

K=(k1,...,k2s )

∈(N∗)2s

cK

◦

xk(2i−1)yk2i · · ·yk2s xk1 · · ·yk2(i−1)

◦
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=
∑

K=(k1,...,k2s )

∈(N∗)2s

cK

◦

xk1 · · ·yk2(s−i+1) xk(2(s−i)+3)yk2(s−i+2) · · ·yk2s

◦

when written with exactly 2(s − i + 1) blocks of the form xj or yj in the box. This implies, for
each 2 � i � s, that

−
∑

K=(k1,...,k2s )

∈(N∗)2s

cKxk(2i−1) · · ·yk2s xk1 · · ·yk2(i−1) =
∑

K=(k1,...,k2s )

∈(N∗)2s

cKxk1 · · ·yk2s . (8)

Now let

h2s :=
∑

K=(k1,...,k2s )

∈(N∗)2s

cKxk1 · · ·yk2s ∈ C〈x, y〉.

According to Lemma 2, we have:

dh2s

dx

′′ dh2s

dx

′
x − x

dh2s

dx

′′ dh2s

dx

′

= −
s∑

i=1

∑
K=(k1,...,k2s )

∈(N∗)2s

cKxk2i−1 · · ·xk2s−1yk2s xk1yk2 · · ·yk2(i−1)

+
s∑

i=1

∑
K=(k1,...,k2s )

∈(N∗)2s

cKyk2i · · ·yk2s xk1 · · ·yk2(i−1)xk(2i−1) .

From Eqs. (7) and (8), we obtain

dh2s

dx

′′ dh2s

dx

′
x − x

dh2s

dx

′′ dh2s

dx

′
= −sf2s .

According to Proposition 13, this yields

f
d

dx
=

∑
s∈N∗

f2s

d

dx
+ a

d

dx
= dP0

(
−1

s
h2s

)
+ a

d

dx
,

and we conclude that H 1
P0

(C〈x, y〉) � C
d
dx

⊕ C[y] d
dy

. �
An analogous proof shows that
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Proposition 16. Let us consider the linear double Poisson tensor

P̃0 := P C×C

lin = x
d

dx

d

dx
+ y

d

dy

d

dy

on C〈x, y〉. Then, we have:

H 0
P̃0

(
C〈x, y〉) � C[x] ⊕ C[y]

and the first double Poisson cohomology space, associated to P̃0 is given by:

H 1
P̃0

(
C〈x, y〉) � C

d

dx
⊕ C

d

dy
.

Remark 3. On rep1(C〈x, y〉), the double Poisson tensors P0 = P C×Cε2

lin and P̃0 = P C×C

lin induce
the trivial Poisson bracket. However, on repn(C〈x, y〉) (n � 2) the double Poisson tensor P C×C

lin
is mapped (by the trace map) to the canonical linear Poisson structure on the product gl∗n × gl∗n.
For the Lie algebra gln, we know [5] that the Lie algebra cohomology space H 1

L(gln;C) is of
dimension 1. To obtain the first Poisson cohomology group of gl∗n × gl∗n, we have to consider the
tensor product of H 1

L(gln ×gln;C) which is of dimension two and the algebra of the Casimir’s of
gl∗n ×gl∗n, which is an infinite-dimensional vector space. That is, the trace map from H 1

P̃0
(C〈x, y〉)

to H 1
tr(P̃0)

(repn(C〈x, y〉)) is not onto.

6.2. The linear double Poisson tensors x d
dx

d
dx

+ y d
dx

d
dy

, x d
dx

d
dy

+ y d
dy

d
dy

Now we consider the linear double Poisson tensor:

P1 := P
B1

2
lin = x

d

dx

d

dx
+ y

d

dx

d

dy
.

We will determine the double Poisson cohomology groups H 0
P1

(C〈x, y〉) and H 1
P1

(C〈x, y〉). We
begin by observing

Lemma 3. Let us consider the free algebra C〈x1, . . . , xn〉, associated to the quiver Q, with one
vertex and n loops x1, . . . , xn. For each h ∈ C〈x1, . . . , xn〉, we have

n∑
i=1

((
d

dxi

◦ xi

)
(h) −

(
xi ◦ d

dxi

)
(h)

)
= h ⊗ 1 − 1 ⊗ h

(where ◦ denotes the inner multiplication). This can also be written as:

n∑
i=1

((
dh

dxi

)′
xi ⊗

(
dh

dxi

)′′
−

(
dh

dxi

)′
⊗ xi

(
dh

dxi

)′′)
= h ⊗ 1 − 1 ⊗ h.
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Proof. This can easily be seen from the definition of the d
dxi

, but it is also a particular case
of Proposition 6.2.2 of [12], which states that the gauge element E of Q is given by E =∑

a∈Q1
[ d
da

, a]. �
Now, let us first consider the double Poisson cohomology space H 0

P1
(C〈x, y〉).

Proposition 17. For f ∈ C〈x, y〉, we have

d0
P1

(f ) = ◦ y
df
dy

′′ df
dy

′ − • y
df
dx

′′ df
dx

′
.

This means that

H 0
P1

(
C〈x, y〉) = C.

Proof. In fact, by computing dP1(f ) = {P1, f }, one obtains exactly:

d0
P1

(f ) = ◦ ( df
dx

′′ df
dx

′
x − x

df
dx

′′ df
dx

′ + df
dy

′′ df
dy

′
y
)− • y

df
dx

′′ df
dx

′
.

According to Lemma 3, we have

df

dx

′
x ⊗ df

dx

′′
+ df

dy

′
y ⊗ df

dy

′′
+ 1 ⊗ f = df

dx

′
⊗ x

df

dx

′′
+ df

dy

′
⊗ y

df

dy

′′
+ f ⊗ 1.

Applying −op and μ, this last formula gives:

df

dx

′′ df
dx

′
x + df

dy

′′ df
dy

′
y = x

df

dx

′′ df
dx

′
+ y

df

dy

′′ df
dy

′
,

which leads to the expression for dP1(f ) given above.
Suppose now that f is a 0-cocycle, that is to say dP1(f ) = 0. This is equivalent to say that

y
df

dy

′′ df
dy

′
= y

df

dx

′′ df
dx

′
= 0,

which yields

df

dy

′′ df
dy

′
= df

dx

′′ df
dx

′
= 0

and

y
df

dy

′′ df
dy

′
+ x

df

dx

′′ df
dx

′
= 0.

This implies

df ′
y

df ′′
+ df ′

x
df ′′

∈ [
C〈x, y〉,C〈x, y〉].
dy dy dx dx
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Using the NC-Euler formula (Proposition 12), we can then write

f ∈ C ⊕ [
C〈x, y〉,C〈x, y〉].

Finally, H 0
P1

(C〈x, y〉) = ker(d0
P1

)/[C〈x, y〉,C〈x, y〉] = C, which concludes the proof. �

Let us now determine H 1
P1

(C〈x, y〉). We will first use Lemma 3 to obtain a useful expression

for the coboundary operator d1
P1

.

Lemma 4. Let f d
dx

+ g d
dy

∈ (TC〈x,y〉/[TC〈x,y〉, TC〈x,y〉])1, then

d1
P1

(
f

d

dx
+ g

d

dy

)
= −

◦

1 f

◦
+

◦

df
dy

′
y

df
dy

′′

◦

−
◦

1 g

•

+

◦

dg
dy

′
y

dg
dy

′′

•

+

◦

y
df
dx

′′ df
dx

′

•

−

•

dg
dx

′
y

dg
dx

′′
.

•

Proof. First, by computing dP1(f
d
dx

+ g d
dy

) = {P1, f
d
dx

+ g d
dy

}, one can write

dP1

(
f

d

dx
+ g

d

dy

)
= (A) + (B) + (C),

where

(A) = −

◦

f 1

◦
+

◦

df
dx

′
x

df
dx

′′

◦

−

◦

df
dx

′
x

df
dx

′′

◦

+

◦

df
dy

′
y

df
dy

′′
,

◦
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(B) = −
◦

g 1

•
+

◦

dg
dx

′
x

dg
dx

′′

•

−

◦

dg
dx

′
x

dg
dx

′′

•

+

◦

dg
dy

′
y

dg
dy

′′

•

+

◦

y
df
dx

′′ df
dx

′

•

and

(C) = −

•

dg
dx

′
y

dg
dx

′′
.

•

According to Lemma 3, we have

df

dx

′
x ⊗ df

dx

′′
+ df

dy

′
y ⊗ df

dy

′′
+ 1 ⊗ f = df

dx

′
⊗ x

df

dx

′′
+ df

dy

′
⊗ y

df

dy

′′
+ f ⊗ 1,

and the same for g. Applying − ◦ d
dx

(where ◦ means the right inner multiplication) and then the
right (outer) multiplication by d

dx
, we obtain:

◦

df
dx

′
x

df
dx

′′

◦

+

◦

df
dy

′
y

df
dy

′′

◦

+

◦

1 f

◦

=

◦

df
dx

′
x

df
dx

′′

◦

+

◦

df
dy

′
y

df
dy

′′

◦

+

◦

f 1 ,

◦
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whence

(A) = −

◦

1 f

◦
+

◦

df
dy

′
y

df
dy

′′
.

◦

A similar argument for g (applying − ◦ d
dx

and then the right multiplication by d
dy

) yields

(B) = −
◦

1 g

•
+

◦

dg
dy

′
y

dg
dy

′′

•

+

◦

y
df
dx

′′ df
dx

′
.

•

Adding the expressions obtained for (A), (B) and (C), leads to the expression of d1
P1

(f d
dx

+g d
dy

)

stated in the lemma. �
Now we can consider the double Poisson cohomology space H 1

P1
(C〈x, y〉) = ker(d1

P1
)/

Im(d0
P1

). To do this, let f d
dx

+ g d
dy

∈ ker(d1
P1

) be a 1-cocycle. According to Lemma 4, this
means

(A) = −

◦

1 f

◦
+

◦

df
dy

′
y

df
dy

′′

◦

= 0, (9)

(B) = −
◦

1 g

•
+

◦

dg
dy

′
y

dg
dy

′′

•

+

◦

y
df
dx

′′ df
dx

′

•

= 0 (10)

and

(C) = −

•

dg
dx

′
y

dg
dx

′′

•

= 0. (11)
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Equation (9) yields f = yf̃ + a, with a ∈ C and f̃ ∈ C〈x, y〉. Indeed, write f = yf̃ + xh̃ + a,
with f̃ , h̃ ∈ C〈x, y〉 and a ∈ C. Then, as

◦

1 1

◦
= 0

(up to commutators), we have

(A) = −

◦

1 xh̃

◦

+

◦

y
df̃
dy

′
y

df̃
dy

′′

◦

+

◦

x dh̃
dy

′
y dh̃

dy

′′

◦

= 0.

For this equality to hold, the first term has to cancel itself, so that h̃ has to be zero and f = yf̃ +a.
A similar argument for Eq. (10) shows that g = yg̃, with g̃ ∈ C〈x, y〉 (but, in contrast with f ,

g cannot be a constant because

◦

1 1

•
= 0).

Now, Eq. (11) becomes

(C) = −

•

y
dg̃
dx

′
y

dg̃
dx

′′

•

= 0,

so that

dg̃

dx
= m′ ⊗ m′′ + m′′ ⊗ m′,

with m′,m′′ ∈ C〈x, y〉 (using Sweedler notation). Using the NC-Euler formula (Proposition 12),
we can now write

g̃ = 1

degx(m
′m′′) + 1

(m′xm′′ + m′′xm′) + p(y), (12)

where p ∈ C〈y〉. Then, computing dg̃ again, we get

dx
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m′ ⊗ m′′ + m′′ ⊗ m′ = 1

degx(m
′m′′) + 1

(
dm′

dx
xm′′ + m′ ⊗ m′′ + m′x dm′′

dx

+ dm′′

dx
xm′ + m′′ ⊗ m′ + m′′x dm′

dx

)
,

that is to say

(
degx(m

′m′′)
)
(m′ ⊗ m′′ + m′′ ⊗ m′) = dm′

dx
xm′′ + m′x dm′′

dx
+ dm′′

dx
xm′ + m′′x dm′

dx
. (13)

Now let h = −(m′′xm′x + m′xm′′x) and k = −p(y)x and let us compute −y dh
dx

′′ dh
dx

′
and

−y dk
dx

′′ dk
dx

′
. First, we have

dh

dx
= −dm′′

dx
xm′x − m′′ ⊗ m′x − m′′x dm′

dx
x − m′′xm′ ⊗ 1

− dm′

dx
xm′′x − m′ ⊗ m′′x − m′x dm′′

dx
x − m′xm′′ ⊗ 1,

dk

dx
= −p ⊗ 1,

so that

−y
dh

dx

′′ dh

dx

′
= 2y

(
dm′′

dx

)′′
xm′x

(
dm′′

dx

)′
+ 2ym′xm′′

+ 2y

(
dm′

dx

)′′
xm′′x

(
dm′

dx

)′
+ 2ym′′xm′,

−y
dk

dx

′′ dk

dx

′
= yp(y).

But, applying the left outer multiplication by x, −op and μ to Eq. (13), we obtain

(
degx(m

′m′′)
)
(m′′xm′ + m′xm′′)

= 2

(
dm′

dx

)′′
xm′′x

(
dm′

dx

)′
+ 2

(
dm′′

dx

)′′
xm′x

(
dm′′

dx

)′
.

This implies

−y
dh

dx

′′ dh

dx

′
= (

degx(m
′m′′) + 2

)
(ym′xm′′ + ym′′xm′).

In combination with (12) we obtain

g = yg̃ = −1
′ ′′ ′ ′′ y

dh ′′ dh ′
− y

dk ′′ dk ′
.

(degx(m m ) + 1)(degx(m m ) + 2) dx dx dx dx
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Now, we want to write f in terms of dh
dy

and dk
dy

. To do this, we will use Eq. (10). Using f =
yf̃ + a and g = yg̃, this equation can be written as follows:

(B) =

◦

y
dg̃
dy

′
y

dg̃
dy

′′

•

+

◦

y
df̃
dx

′′
y

df̃
dx

′

•

= 0. (14)

This implies

df̃

dx
= −dg̃

dy

′′
⊗ dg̃

dy

′
.

Using this expression and the NC-Euler formula (Proposition 12), we get:

f̃ = 1

(degx(
df̃
dx

′
df̃
dx

′′
) + 1)

df̃

dx

′
x

df̃

dx

′′
+ l(y)

= −1

(degx(
dg̃
dy

′ dg̃
dy

′′
) + 1)

dg̃

dy

′′
x

dg̃

dy

′
+ l(y),

where l ∈ C〈y〉. Now, the expression for g̃ obtained in (12) yields

f̃ = −2

(degx(
dm′
dy

m′′) + 2)(degx(m
′m′′) + 1)

((
dm′

dy

)′′
xm′′x

(
dm′

dy

)′)

− 2

(degx(
dm′′
dy

m′) + 2)(degx(m
′m′′) + 1)

((
dm′′

dy

)′′
xm′x

(
dm′′

dy

)′)

− 1

(degx(
dp
dy

′ dp
dy

′′
) + 1)

dp

dy

′′
x

dp

dy

′
+ l(y).

Now, as degx(
dm′
dy

) = degx(m
′) (unless m′ ∈ C〈x〉, that is, unless dm′

dy
= 0), which also holds

for m′′, we have exactly

f̃ = −2

(degx(m
′m′′) + 2)(degx(m

′m′′) + 1)

((
dm′

dy

)′′
xm′′x

(
dm′

dy

)′)

− 2

(degx(m
′′m′) + 2)(degx(m

′m′′) + 1)

((
dm′′

dy

)′′
xm′x

(
dm′′

dy

)′)

− dp

dy

′′
x

dp

dy

′
+ l(y)

= 1
′′ ′ ′ ′′

dh ′′ dh ′
(degx(m m ) + 2)(degx(m m ) + 1) dy dy
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+ dk

dy

′′ dk

dy

′
+ l(y).

So that, if

L = 1

(degx(m
′′m′) + 2)(degx(m

′m′′) + 1)
h + k

= −1

(degx(m
′′m′) + 2)(degx(m

′m′′) + 1)
(m′′xm′x + m′xm′′x) − p(y)x,

we have shown that

g = −y
dL

dx

′′ dL

dx

′
, f = y

dL

dy

′′ dL

dy

′
+ yl(y) + a.

Finally, as for every n ∈ N
∗, yn = y

dq
dy

′′ dq
dy

′
, with q = 1

n
yn ∈ C〈y〉, the element yl(y) is of the

form y
dQ
dy

′′ dQ
dy

′
, with Q ∈ C〈y〉 (and in particular y

dQ
dx

′′ dQ
dx

′ = 0) and

f
d

dx
+ g

d

dy
= d0

P1
(L + Q) + a

d

dx
.

As d
dx

/∈ Imd0
P1

, we have shown

Proposition 18. The first double Poisson cohomology group of C〈x, y〉, associated to the double
Poisson tensor P1 = x d

dx
d
dx

+ y d
dx

d
dy

is given by

H 1
P1

(
C〈x, y〉) � C

d

dx
.

Remark 4. If we consider the double Poisson tensor

P̃1 := P
B2

2
lin = x

d

dx

d

dy
+ y

d

dy

d

dy
,

we obtain in a similar fashion to the computations above for P1 = P
B1

2
lin ,

H 0
P̃1

� C and H 1
P̃1

� C
d

dy
.

Let us now consider the (classical) Poisson bracket on C[x, y], associated to P1, that is
tr(P1) = π1 = y d

dx
∧ d

dy
. According to [9] or [10], or by a direct computation, we have

H 0
π1

(
C[x, y]) = C, H 1

π1

(
C[x, y]) = C

d

dx
,

H i
π1

(
C[x, y]) = 0, for all i � 2.

So that the map tr :Hi (C〈x, y〉) → Hi
π (C[x, y]) is bijective, for i = 0,1.
P1 1
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6.3. The nonlinear double Poisson tensor P = x d
dx

x d
dy

We conclude this section with the determination of the first two double Poisson cohomology
groups of a nonlinear double Poisson bracket on the free algebra in two variables.

Lemma 5. The double bracket {{−,−}} defined on C〈x, y〉 as

{{x, x}} = {{y, y}} = 0 and {{x, y}} = x ⊗ x

is a double Poisson bracket.

Proof. First of all note that this bracket is defined by the double Poisson tensor x d
dx

x d
dy

. Repre-

senting d
dx

by ◦ and d
dy

by •, this double Poisson bracket corresponds to the necklace P depicted
as

◦
x x.

•

The NC-Schouten bracket of P with itself now becomes

◦ x

x •
• x

+
• x

x ◦
• x

−
◦ x

x •
• x

−
• x

x ◦
• x

= 0.

�
Remark 5. To stress the difference between double Poisson brackets and ordinary Poisson brack-
ets, note that y d

dx
y d

dy
is also a double Poisson tensor. However, taking higher degree monomials

in x or y no longer yields double Poisson tensors. Whereas, of course, for C[x, y], any polyno-
mial ψ in x and y defines a Poisson bracket ψ d

dx
∧ d

dy
.

For the remainder of this section, P will be the double Poisson tensor x d
dx

x d
dy

. First of all,
observe that

Proposition 19. For f ∈ C〈x, y〉, we have

dP (f ) = ◦ x
df
dy

′′ df
dy

′
x − • x

df
dx

′′ df
dx

′
x.

This means that

H 0
P

(
C〈x, y〉) = C.
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Proof. The computation of dP (f ) was already done in greater generality in Section 1. To com-
pute H 0

P (C〈x, y〉), note that

◦ x
df
dy

′′ df
dy

′
x − • x

df
dx

′′ df
dx

′
x = 0

implies

df

dx

′′ df
dx

′
= df

dy

′′ df
dy

′
= 0.

But then

x
df

dx

′′ df
dx

′
+ df

dy

′′ df
dy

′
y = 0.

This means

df

dx

′
x

df

dx

′′
+ df

dy

′
y

df

dy

′′
∈ [

C〈x, y〉,C〈x, y〉],
which by the NC-Euler formula (Proposition 12) implies that

f ∈ C ⊕ [
C〈x, y〉,C〈x, y〉].

Now H 0
P (C〈x, y〉) = ker(d0

P )/[C〈x, y〉,C〈x, y〉], finishing the proof. �
Next, we can state that

Lemma 6. Let f d
dx

+ g d
dy

∈ (TC〈x,y〉/[TC〈x,y〉, TC〈x,y〉])1, then

dP

(
f

d

dx
+ g

d

dy

)
= −

◦

x f

•
−

◦

f x

•
+

◦

df
dy

′
x x

df
dy

′′

◦

+

◦

x
df
dx

′′ df
dx

′
x

•

+

◦

dg
dy

′
x x

dg
dy

′′

•

−

•

dg
dx

′
x x

dg
dx

′′
.

•

We will denote this expression by (∗).
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Proof. Straightforward. �
Using this lemma, we can determine the kernel of d1

P . So assume now that f d
dx

+ g d
dy

∈
ker(d1

P ). First of all note that if dP (f d
dx

+ g d
dy

) = 0, the third term in the expression (∗) for

dP (f d
dx

+ g d
dy

) in Lemma 6 has to cancel itself and the sixth term in this expression has to
cancel itself. This implies (using the Sweedler notations)

df

dy
= xm′

f ⊗ m′′
f x + xm′′

f ⊗ m′
f x + n′

f ⊗ n′′
f x + xn′′

f ⊗ n′
f + cf 1 ⊗ 1

with m′
f ,m′′

f , n′′
f ∈ C〈x, y〉, cf , n′

f ∈ C and

dg

dx
= xm′

g ⊗ m′′
gx + xm′′

g ⊗ m′
gx + n′

g ⊗ n′′
gx + xn′′

g ⊗ n′
g + cg1 ⊗ 1

with m′
g,m

′′
g, n

′′
g ∈ C〈x, y〉, cg, n

′
g ∈ C.

Using the NC-Euler formula (Proposition 12), this implies

f = 1

degy(m
′
f m′′

f ) + 1
x
(
m′

f ym′′
f + m′′

f ym′
f

)
x

+ 1

degy(n
′′
f ) + 1

(
n′

f yn′′
f x + xn′′

f yn′
f

) + p(x) + cf y

and

g = 1

degx(m
′
gm

′′
g) + 3

x
(
m′

gxm′′
g + m′′

gxm′
g

)
x

+ 2n′
g

degx(n
′′
g) + 2

xn′′
gx + q(y) + cgx.

Now note that for cf y, the first two terms of (∗) yield

−cf

◦
x y

•
− cf

◦
y x.

•

Because of the degree in x of the remaining terms, these terms cannot vanish unless cf = 0.
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Using this last remark and the expression for f above to compute df
dy

again, we obtain

df

dy
= 1

degy(m
′
f m′′

f ) + 1
x

(
dm′

f

dy
ym′′

f + m′
f ⊗ m′′

f + m′
f y

dm′′
f

dy
+ dm′′

f

dy
ym′

f

+ m′′
f ⊗ m′

f + m′′
f y

dm′
f

dy

)
x

+ 1

degy(n
′′
f ) + 1

(
n′

f ⊗ n′′
f x + n′

f y
dn′′

f

dy
x + x

dn′′
f

dy
yn′

f + xn′′
f ⊗ n′

f

)
.

This expression should be equal to the first expression found for df
dy

. That is,

xm′
f ⊗ m′′

f x + xm′′
f ⊗ m′

f x + n′
f ⊗ n′′

f x + xn′′
f ⊗ n′

f

= 1

degy(m
′
f m′′

f ) + 1
x

(
dm′

f

dy
ym′′

f + m′
f ⊗ m′′

f + m′
f y

dm′′
f

dy
+ dm′′

f

dy
ym′

f

+ m′′
f ⊗ m′

f + m′′
f y

dm′
f

dy

)
x

+ 1

degy(n
′′
f ) + 1

(
n′

f ⊗ n′′
f x + n′

f y
dn′′

f

dy
x + x

dn′′
f

dy
yn′

f + xn′′
f ⊗ n′

f

)
,

whence, by comparing elements of the form x . . . x we obtain

degy

(
m′

f m′′
f

)(
m′

f ⊗ m′′
f + m′′

f ⊗ m′
f

) = dm′
f

dy
ym′′

f + m′
f y

dm′′
f

dy
+ dm′′

f

dy
ym′

f + m′′
f y

dm′
f

dy

and n′′
f ∈ C[x].

Letting y act on the equality obtained in the previous paragraph by the left outer action, we
obtain

degy

(
m′

f m′′
f

)(
ym′

f ⊗ m′′
f + ym′′

f ⊗ m′
f

) = y
dm′

f

dy
ym′′

f + ym′
f y

dm′′
f

dy

+ y
dm′′

f

dy
ym′

f + ym′′
f y

dm′
f

dy
.

This yields, using −op and μ, the equality

degy

(
m′

f m′′
f

)(
m′′

f ym′
f + m′

f ym′′
f

)
= 2

((
dm′

f
)′′

ym′′
f y

(
dm′

f
)′

+
(

dm′′
f

)′′
ym′

f y

(
dm′′

f
)′)

.

dy dy dy dy
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Now let h = 2
(degy(m′

f m′′
f )+2)(degy(m′

f m′′
f )+1)

m′′
f ym′

f y, then

x
dh

dy

′′ dh

dy

′
x = 1

degy(m
′
f m′′

f ) + 1

(
xm′

f ym′′
f x + xm′′

f ym′
f x

)
and

x
dh

dx

′′ dh

dx

′
x = 2

(degy(m
′
f m′′

f ) + 2)(degy(m
′
f m′′

f ) + 1)
x

((
dm′′

f

dx

)′′
ym′

f y

(
dm′′

f

dx

)′

+
(

dm′
f

dx

)′′
ym′′

f y

(
dm′

f

dx

)′)
x.

So, writing

f1 := f − x
dh

dy

′′ dh

dy

′
x := yp1(x) + p1(x)y + p(x)

with p1 := ∑n
i=1 aix

i and p = ∑m
i=0 bix

i and

g1 := g + x
dh

dx

′′ dh

dx

′
x,

we again obtain an element f1
d
dx

+ g1
d
dy

in ker(d1
P ) by Proposition 19. Observe moreover that

xi for i � 2 can be written as x
dhi

dy

′′ dhi

dy

′
x with hi = xi−2y, so we may assume (modifying f and

g by the image of a suitable h) p(x) = b1x + b0. Now note that b0 has to be equal to zero as only
the first two terms of (∗) contain b0 and these do not cancel each other. That is, we may assume
p(x) = b1x.

The image under d1
P of this element becomes

dP

(
f1

d

dx
+ g1

d

dy

)
= −

n∑
i=1

ai

◦

yxi x

•

−
n∑

i=1

ai

◦

x xiy

•

+
n∑

i=2

ai

i−1∑
j=1

◦

xi−j+1 yxj

•

+
n∑

i=2

ai

i∑
j=2

◦

xi−j+1y xj

•

− b1

◦
x x

•
+

◦

dg1
dy

′
x x

dg1
dy

′′

•

−

•

dg1
dx

′
x x

dg1
dx

′′
.

•
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Note that we canceled two terms

−
n∑

i=1

ai

◦

xiy x

•

−
n∑

i=1

ai

◦

x yxi

•
against the similar terms obtained in the second row of (∗) for j = i in the first sum and j = 1 in
the second sum.

Now observe that for n � 2, the terms in the second row of the expression above cannot be
eliminated by any other term because of the location of the y factor, whence ai = 0 for i � 2.
That is, f1 = a(xy + yx) + p(x). Moreover, if a = 0, the expression

−a

⎛
⎜⎜⎜⎝

◦
yx x

•
+

◦
x xy

•

⎞
⎟⎟⎟⎠

can only be canceled if g1 = g2 + ay2. That is, the image becomes

dP

(
f1

d

dx
+ g1

d

dy

)
= −b1

◦
x x

•
+

◦

dg2
dy

′
x x

dg2
dy

′′

•

−

•

dg2
dx

′
x x

dg2
dx

′′
.

•

Now if b1 = 0, this expression can only be zero if g2 = g3 + b1y, and we get

dP

(
f1

d

dx
+ g1

d

dy

)
=

◦

dg3
dy

′
x x

dg3
dy

′′

•

−

•

dg3
dx

′
x x

dg3
dx

′′
.

•

However, the first term in this expression can only be zero if dg3
dy

= 0, so g3 ∈ C[x]. Finally,

observe that in g3, we can cancel all monomials xi with i � 2 using h = xi−1 (which does not
modify f in any way).

But then we have shown that

Theorem 5. For P as above, we have that

H 1
P

(
C〈x, y〉) �

{(
a(xy + yx) + bx

) d

dx
+ (

ay2 + by + cx + d
) d

dy

∣∣∣ a, b, c, d ∈ C

}
,

so in particular dimH 1 (C〈x, y〉) = 4.
P
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Let us now consider the Poisson bracket that corresponds to the double Poisson tensor P =
x d

dx
x d

dy
. We then obtain the Poisson algebra (C[x, y],π), where π = tr(P ) = x2 d

dx
∧ d

dy
.

According to [10], as the polynomial x2 is not square-free, the first Poisson cohomology space
H 1

π (C[x, y]) is infinite-dimensional, so that

Corollary 20. The map H 1
P (C〈x, y〉) → H 1

tr(P )(C[x, y]) is not onto.

Let us give an explicit basis for this vector space H 1
π (C[x, y]), in order to make explicit this

map.
First of all, we recall that the Poisson coboundary operator is given by: dk

π =
{π,−} :

∧k Der(C[x, y]) → ∧k+1 Der(C[x, y]), where {−,−} denotes the (classical) Schouten–
Nijenhuis bracket and Der(C[x, y]) denotes the C[x, y]-module of the derivations of the com-
mutative algebra C[x, y].

We have, for f,g,h ∈ C[x, y],

d0
π (h) = x2

(
−dh

dy

d

dx
+ dh

dx

d

dy

)
,

d1
π

(
f

d

dx
+ g

d

dy

)
=

(
x2

(
df

dx
+ dg

dy

)
− 2xf

)
d

dx
∧ d

dy
.

So that

H 0
π

(
C[x, y]) �

{
h ∈ C[x, y]

∣∣∣ dh

dy
= dh

dx
= 0

}
� C,

H 1
π

(
C[x, y]) � {(f, g) ∈ C[x, y]2 | x2(

df
dx

+ dg
dy

) − 2xf = 0}
{x2(− dh

dy
, dh

dx
) | h ∈ C[x, y]} .

It is clear that the coboundary operator dk
π is an homogeneous operator, for example, if f and

g are homogeneous polynomial of same degree d ∈ N, then d1
π (f d

dx
+ g d

dy
) is given by an

homogeneous polynomial of degree d + 1, in factor of d
dx

∧ d
dy

. This implies that we can work
“degree by degree” and consider only homogeneous polynomials. We recall the (commutative)
Euler formula, for an homogeneous polynomial q ∈ C[x, y]:

x
dq

dx
+ y

dq

dy
= deg(q)q. (15)

Let us consider (f, g) ∈ C[x, y]2, two homogeneous polynomials of same degree d ∈ N, sat-
isfying the 1-cocycle condition x2(

df
dx

+ dg
dy

) = 2xf , equivalent to x(
df
dx

+ dg
dy

) = 2f . We divide

f and g by x2 and obtain:

f = x2f1 + xf2 + f3, g = x2g1 + xg2 + g3,
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with f1, g1 ∈ C[x, y] and f2, f3, g2, g3 ∈ C[y], homogeneous polynomials. Then the 1-cocycle
condition becomes:

x

(
x2 df1

dx
+ f2 + x2 dg1

dy
+ x

dg2

dy
+ dg3

dy

)
= 2xf2 + 2f3,

that leads to f3 = 0 (because f3 ∈ C[y]) and

x2 df1

dx
+ f2 + x2 dg1

dy
+ x

dg2

dy
+ dg3

dy
= 2f2.

We then have also f2 = dg3
dy

and x
df1
dx

+ x
dg1
dy

+ dg2
dy

= 0. This equation then implies that dg2
dy

= 0,

i.e., g2 ∈ C and also df1
dx

= − dg1
dy

. Suppose now that d � 2 and let us consider the polynomial
h := yf1 − xg1. We have, using the Euler formula (15) and the last equation above,

dh

dx
= y

df1

dx
− g1 − x

dg1

dx
= −y

dg1

dy
− g1 − x

dg1

dx
= −(d − 1)g1,

dh

dy
= f1 + y

df1

dy
− x

dg1

dy
= f1 + y

df1

dy
+ x

df1

dx
= (d − 1)f1.

We have obtained that, if d � 2, then x2(f1
d
dx

+ g1
d
dy

) = d0
π (−h). Moreover, g3 is an homoge-

neous polynomial of degree d , in C[y], so that g3 = c3y
d , with c3 ∈ C. We have also seen that

f3 = 0, f2 = dg3
dy

= c3dyd−1 and g2 = c2 ∈ C.
It remains to consider the cases where d = 1 and d = 0. First, if d = 0, i.e., f,g ∈ C, then the

1-cocycle condition is equivalent to f = 0, second, if d = 1, we have (f, g) = (ax+by, cx+dy),
with a, b, c, d ∈ C and the 1-cocycle condition says that a = d and b = 0. We finally have obtain
the following

Proposition 21. The first Poisson cohomology space associated to the Poisson algebra
(C[x, y],π = x2 d

dx
∧ d

dy
) is given by:

H 1
π

(
C[x, y]) �

⊕
k∈N

C
(
kyk−1x, yk

) ⊕ C(0, x).

The image of the double Poisson cohomology under the canonical trace map in the classical
cohomology now becomes

Corollary 22. For the double Poisson tensor P = x d
dx

x d
dy

we have

H 1
tr(P )

(
C[x, y]) =

⊕
k�3

C
(
kyk−1x, yk

) ⊕ tr
(
H 1

P

(
C〈x, y〉)),

that is

tr
(
H 1

P

(
C〈x, y〉)) = C

(
2yx, y2) ⊕ C(x, y) ⊕ C(0, x) ⊕ C(0,1).
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