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Abstract 

      Research on improving efficiency of the amine-based post combustion carbon dioxide (CO2) capture process has 
been ongoing during the past decade. A good understanding of the intricate relationships among parameters 
involved in the CO2 capture process is important for process optimization. The objective of this study is to uncover 
relationships among the significant parameters impacting CO2 production by modeling the historical real-time 
process data. The data were collected from the amine-based post combustion CO2 capture process at the 
International Test Centre of CO2 Capture (ITC) located in Regina, Saskatchewan of Canada.   
      Relevant literature review and opinions from the experienced engineers of the ITC  
CO2 capture plant suggested that the four parameters of reboiler heat duty, lean loading, CO2 absorption efficiency 
and CO2 production rate are the key parameters for assessing efficiency of the process. The eight process parameters 
that influence these four consequent or output parameters were identified as the conditional or input parameters. In 
this study, two artificial intelligence techniques were applied for modeling the relationships among the conditional 
and consequent parameters: (1) artificial neural network combined with sensitivity analysis and (2) neuro-fuzzy 
modeling. The results from the two modeling processes were compared, and it was observed that the neuro-fuzzy 
modeling technique was able to achieve on average higher accuracies than the combined approach of neural network 
modeling and sensitivity analysis. 
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1. Introduction  

     Combustion of fossil fuels in power generation and in various industrial processes have produced large amount 
of carbon dioxide, which is responsible for global warming and adverse environmental impacts such as rising sea 
levels, flooding of coastal cities, and severe drought conditions in inland regions.  One of the mitigation strategies of 
the post combustion CO2 capture technology is commonly adopted for reducing industrial CO2 emissions. The 
primary objective of the research conducted on the CO2 capture process system is to improve its efficiency. This 
requires a good understanding of the intricate relationships among parameters involved in the CO2 capture process. 
The objective of this research is to study the nature of relationships among the key parameters using the approaches 
of data modeling and analysis. The data used in our modeling study is the operational data collected in 2003-2006 
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from the amine-based post combustion CO2 capture process system at the International Test Centre for CO2 Capture 
(ITC) located in Regina, Saskatchewan of Canada. 
     The past research findings [1][2][3] indicate that the most significant parameters used to evaluate efficiency of 
the CO2 capture process system include heat duty, CO2 production rate, CO2 lean loading, and CO2 absorption 
efficiency. Therefore, they are defined as the consequent or output parameters in our study. Based on the opinions of 
the experienced operators of the CO2 capture process system, eight other process parameters which have direct 
influence on the four consequent parameters were defined as the conditional or input parameters. Two different 
techniques were applied to model the relationships among the consequent and conditional parameters: (1) neural 
network modeling combined with sensitivity analysis and (2) neuro-fuzzy modeling. In the first approach, four 
neural network models that included the eight conditional parameters and the four consequent parameters were 
developed. Since some of the conditional parameters do not have significant influence on the consequent 
parameters, they were removed to simplify the models.  Then, sensitivity analysis was applied on the developed 
models to explicate the conditional parameters’ precise influences on the consequent parameters. The experts of the 
CO2 capture domain validated the sensitivity analysis results. A second round of neural network modeling was 
conducted with the refined parameter sets, and the accuracies of the developed models were compared to those of 
the original models. In the second approach, the method of adaptive-network-based fuzzy inference system (ANFIS) 
was adopted to develop fuzzy inference systems that can represent the relationships between the conditional 
parameters and each consequent parameter. The neural networks within the ANFIS method learned from the given 
data to generate the appropriate membership functions and rules for the fuzzy inference system.    
     The prediction accuracies of the models from the two approaches were compared, and the neuro-fuzzy models 
showed on average higher prediction accuracies. Also, the developed fuzzy inference systems serve as a knowledge 
repository, which helps to illustrate the nature of the relationships among the process parameters.  This paper 
describes the modeling and analysis procedures, and discusses the results from the two different approaches.  
 
2. Literature Review 

2.1 Amine-based CO2 capture domain 

     The amine-based CO2 capture process at the ITC primarily involves two stages: firstly, the amine solvent absorbs 
CO2 from the flue gas under high temperature; secondly, the CO2 is separated from the amine solvent. The 
regenerated solvent is returned to the process for further CO2 capture, and the pure CO2 stream will be used for other 
industrial purposes or vented into the atmosphere. The details of the process can be found in Zhou et al [4]. Based 
on a literature review of the CO2 capture process, the following four parameters are used for evaluating the process 
efficiency and plant performance: (1) CO2 production rate, which reflects the amount of wet CO2 extracted from the 
flue gas and the amine solvent, (2) heat duty, which shows the amount of heat required for amine solvent 
regeneration, (3) CO2 absorption efficiency, which reflects the amount of the CO2 extracted from the flue gas in the 
absorption phase, and (4) lean loading, which reflects the amount of CO2 contained in the regenerated amine 
solvent. They are defined as consequent parameters in our modeling study.  

2.2 Artificial Neural Network (ANN) and Sensitivity Analysis (SA) 

    As a data processing system, an artificial neural network (ANN) accepts the known parameters as inputs and 
exports outputs, which represent the target parameters. During the process of neural network training or learning, a 
set of data including inputs and desired outputs are provided to the network model. Based on different learning 
algorithms, the neural network is constructed by fitting itself to the training data to “learn” to predict the unknown 
outputs.  
     Sensitivity analysis (SA) is the study of how the variation or uncertainty in the output of a mathematical model 
can be apportioned, qualitatively or quantitatively, to different sources of variation in the input of a model [5]. The 
sensitivity analysis (SA) method helps to reveal the uncertainties associated with the model parameters so that the 
input parameters can be more optimally selected. This is especially applicable when the studied process is not well 
understood, in which case combining sensitivity analysis with the ANN approach can extract useful information 
about the relationships among the model inputs and outputs [6]. 
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2.3 Neuro-Fuzzy Technology and ANFIS 

     The neuro-fuzzy technology combines ANN and fuzzy logic. It effectively integrates the learning capability of 
neural networks into the development process of a fuzzy inference system. That is, it helps to determine the 
membership functions and fuzzy rules through learning from the data using the neural network. In this way, the 
accuracy of modeling by the fuzzy system can be greatly enhanced. Due to the different connections between ANN 
and the fuzzy system, a number of neuro-fuzzy models can be found in the relevant literature [7][8][9][10][11]. The 
adaptive-network-based fuzzy inference system (ANFIS) discussed by Jang [12][13] was a Sugeno type fuzzy 
inference system implemented in the framework of an adaptive neural network with supervised learning capability. 
It has been widely adopted in many real world applications and all achieved high accuracies [14][15][16][17]; this 
system has been adopted in our study [18]. 
 
3.  Neural Network Modeling combined with Sensitivity Analysis       

The first stage of the data analysis process that involved the combined approach includes the following four 
steps: (1) construct the ANN models using the original parameter sets, (2) perform sensitivity analysis on the 
modeling results from step 1 and tentatively remove insignificant conditional variables, (3) validate the refined 
models with the experts, and (4) apply the refined ANN models to the data again.  
 
3.1 Construction of the ANN models 

      The four consequent variables are defined as output layer units in the ANN and the eight conditional variables 
that influence the consequent variables are defined as input layer units. The feed-forward back-propagation neural 
network was adopted for its simplicity and maturity. The model includes only one hidden layer, since this is deemed 
to be sufficient for modeling the problem.  

3.2 ANN Modeling with Original Parameter Sets 

 
      The ANN models were constructed using Weka version 3.4.12 (trademark of Weka), which is a data mining 
software in Java. Four different prediction models that relate the eight conditional variables with each of the 
predicted or consequent variables were developed. The models for predicting CO2 production rate, heat duty, 
absorption efficiency, and lean loading respectively have accuracies of 99.9%, 92.9%, 94.7%, and 88.4%.  

3.3 Sensitivity Analysis 

 
       We hypothesized that not all the conditional parameters contribute significant influences on the target 
consequent outputs. However, the experienced engineers of the CO2 capture process system who initially selected 
the conditional parameters could not specify each parameter’s precise and measurable influence on the consequent 
parameters. Therefore, sensitivity analysis was performed to unravel the precise relationships among the conditional 
parameters and the consequent outputs to reveal the relative significances among the input parameter(s) in 
predicting the output values. The equation and variable perturbation methods of sensitivity analysis were 
implemented in Weka version 3.4.12 (trademark of Weka). Table 1 shows the SA results on the CO2 production rate 
model. It can be observed that the parameters of (1) absorber in gas actual flow, (2) input absorber fluid CO2 gas, (3) 
absorber TK440 off gas flow, (4) lean amine to absorber flow rate and (5) reboiler pressure have very low 
sensitivities compared to the other independent or input parameters according to both methods.  Therefore, these 
parameters can potentially be removed to simplify the model. Similar analysis was conducted on the other three 
prediction models for heat duty, lean loading and absorption efficiency.  
 

Table 1    Sensitivity Analysis Results on Production Rate (FI-700) Model 
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3.4 Expert Validation and Model Reformulation  

      The ITC experts validated the results generated from the SA during an interview. By combining the SA results 
and experts’ opinion, the reformulated model for CO2 production rate was developed and the refined conditional 
parameters are shown in the last column of Table 2. The prediction accuracies of the original and refined ANN 
models are listed in the last row of Table 2. It can be seen that the accuracy of the refined model (0.999) is the same 
as that of the original model (0.999). Hence, the refined model is able to predict CO2 production as well as the 
original model even after two conditional parameters were eliminated. Similar analysis was conducted on the other 
three prediction models for heat duty, lean loading and absorption efficiency. Since the predictive accuracies of the 
new models were high, the refined sets of parameters were considered complete and reliable. Hence, the refined sets 
were adopted in the neuro-fuzzy modeling.  

Table 2    Production rate model before and after model refinement  

 
ANN model with All 
parameters 

Refined ANN model based on 
expertise and SA results 

Absorber in gas actual flow factored for 
concentration X X 

Flow rate of flue gas into absorber X  
CO2 concentration of flue gas into 
absorber X  

Amine solvent circulation rate X X 

Pressure of reboiler X X 

Pressure of inlet steam of reboiler X X 

Flow rate of outlet steam of reboiler X X 

Amine concentration X X 

Heat Duty X X 

Correlation coefficient (R) 0.999 0.999 
 
4. Neuro-Fuzzy modeling 

      A weakness of the ANN approach is that it does not explicate the nature of relationships among the parameters 
of the process, and the neuro-fuzzy modeling approach was applied to address this weakness. The ANFIS model is 
used to develop fuzzy inference systems which interpret the interrelationships among the parameters by learning 
from the dataset of historical operating data from ITC.  
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4.1 Architecture and Learning Algorithm of ANFIS 

     An ANFIS consists of nodes connected through the directional links, and each node performs a particular 
function on the incoming signal. Some of the nodes are adaptive and contain a set of parameters. The output of the 
adaptive nodes depends on these parameters, whose values can be changed during the learning process based on the 
given training data so as to minimize a prescribed error measure [12][13][14]. The hybrid learning algorithm, 
combining the back-propagation gradient descent method and the least squares estimate (LSE), is used as learning 
rules of the adaptive networks.  
 
4.2 Data Division 

      After filtering the data as discussed in Section 3, there are altogether 10422 tuples of data that remained. The set 
of parameter data was then divided into three subsets for neuro-fuzzy modeling: (1) a training dataset for training the 
ANFIS to learn information about the input-output mappings, (2) a checking dataset used together with the training 
dataset in the learning process to prevent model overfitting, and (3) a testing dataset used for model validation to 
check the generalization capability of the developed fuzzy inference system. There is no overlap or duplicate data 
sample among these three datasets, i.e., no data sample can exist in more than one dataset.  
 
4.3 ANFIS Modeling 

      The training process was independently conducted for each consequent parameter and four fuzzy inference 
systems were developed. Each fuzzy inference system consists of one output and the set of input conditional 
variables previously refined by the process of SA and expert validation.  The procedures and results of ANFIS 
modeling is discussed as follows.  
 
4.3.1 Initialization of Membership Functions of Variables 

     The first step in developing the fuzzy inference system involves determining the types and number of 
membership functions for the input and output variables for ANFIS so as to initialize the fuzzy inference system. 
Take for example the parameter of CO2 concentration in flue gas into absorber (AIT-203), its operating range can be 
divided into three regions, which can be linguistically described as “high”, “medium”, “low”, according to the 
experienced operators. Therefore, the initialized membership function of AIT-203 includes three subsets, which are 
respectively defined by the three linguistic variables.  
       The details of membership functions of all six input variables for modeling heat duty are listed in Table 3. The 
Gaussian function was selected to be the form of the membership function, and the center and width of each 
membership function were initialized by ANFIS. These parameters associated with the membership functions will 
be adjusted during the training process.   
 

Table 3    Input Membership Functions for heat duty 

                                  Input Parameters Number of 
MF 

Linguistic Variables 

CO2 concentration of flue gas into absorber (AIT-203) 3 
High, Medium, Low 

Amine solvent circulation rate (FT-600) 3 
Fast, Medium, Slow 

Pressure of inlet steam of reboiler (PT-103A) 3 
High, Medium, Low 

Flow rate of outlet steam of reboiler (FT-103C) 3 
Fast, Medium, Slow 

Amine concentration 3 
High, Medium, Low 

Absorption efficiency 3 
High, Medium, Low 
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4.3.2 Generation of Fuzzy Inference System 

Grid partitioning was used for initializing the fuzzy inference system. The entire input space is partitioned into 
fuzzy subspaces based on the dimension of input variables and the number of membership functions associated with 
each input variable. Each rule is activated only in a particular subspace [12]. Hence, the number of rules is equal to 
the number of the fuzzy subspaces. Take for example the parameter of heat duty, since the numbers of membership 
functions associated with the six input variables are all three, our 6-dimensional input space can be partitioned into 
36 =729 subspaces, which determines that the fuzzy inference system for heat duty will contain 729 rules. For CO2 
production rate, lean loading, and absorption efficiency, the rule bases of the fuzzy inference system contain 648, 
729, and 576 rules respectively, based on the algorithm of grid partitioning. 
 
4.3.3 Result: Fuzzy Inference System 

     In our study, a fuzzy inference system was developed after the training process was completed, i.e., the 
membership functions of the input variables were adjusted and the rules were generated. The structure of a sample 
inference system for heat duty is shown in Figure 1.  
 

 

Figure 1    Structure of inference system for heat duty 

     The six input variables all contain three Gaussian membership functions, as shown in the yellow brackets. 
Although the membership functions of the input variables were initialized by the ANFIS, the training process 
changed the parameters of the initial membership functions to optimize their representation of the input and output 
mappings. 
     The rule base consists of 729 Sugeno-type rules. The premise part of each rule is a conjunction of linguistic 
labels of the input variables connected by “AND”; the consequent part is a linear function between the output 
variable and all the input variables. Assume the six coefficients for the six inputs are �i, �i, �i, �i, �i, �i and the 
constant is �i,  then the ith rule is in the form of: 

   If CO2 concentration in flue gas (AIT-203) is Al, and amine circulation rate (FT-600) is Bl, and pressure  of inlet 
steam of reboiler (PT-103A) is Cl, and steam flow rate (FT-103C) is Dl, and amine concentration is El, and 
absorption efficiency is Fl, then Oi = �i × (AIT-203) + �i × (FT-600) + �i × (PT-103A) + �i × (FT-103C) + �i × 
(amine concentration) + �i × (absorption efficiency) + �i    (i = 1, 2....144)    

    Where Al, Bl, Cl, Dl, El, Fl are the linguistic labels of membership functions for each input variable, and Oi is the 
output in the ith rule.   

            Since there are 729 rules in the fuzzy inference system for heat duty, there will be 729 output values which are 
calculated using the 729 linear functions. The final output value is then calculated based on the output value and 
firing strength of each rule. 
      The accuracies of the models developed by ANN combined with SA and ANFIS are summarized in Table 4. The 
accuracies of the fuzzy inference systems for CO2 production rate, reboiler heat duty, and CO2 absorption efficiency 
are all over or close to 95%. Besides CO2 production rate, the ANFIS models for heat duty, lean loading and 
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absorption efficiency all have higher accuracies then the ANN models. Therefore, we conclude that the fuzzy 
inference systems for modeling the relationships among the process parameters give highly satisfactory 
performance.  

 
Table 4    Comparison of accuracies between ANN with SA and ANFIS modeling 

Fuzzy Inference Systems Accuracy from ANN with SA Accuracy from ANFIS 

Heat Duty 90.2% 95.0% 

CO2 Production Rate 99.9% 96.0% 

Lean Loading 85.1% 92.3% 

Absorption Efficiency 92.0% 95.8% 
 
6. Conclusion and Discussions  

     In this study, two artificial intelligence techniques were applied for modeling the relationships among the 
conditional and consequent parameters of the CO2 capture process: (1) ANN combined with SA and (2) ANFIS 
modeling. The first approach allowed us to identify and refine the significant conditional parameter sets, thereby 
simplifying the input parameter set and the modeling process.  To address the weakness of the ANN model being a 
“black-box”, the neuro-fuzzy modeling approach was adopted. The neuro-fuzzy approach combines interpretability 
of the fuzzy inference system and the learning ability of the ANN approach. Therefore, the fuzzy inference systems 
developed could serve as a knowledge repository, which helps to illustrate the nature of the relationships among the 
process parameters. Also, the neuro-fuzzy modeling technique achieved on average higher prediction accuracies 
than the approach of combined ANN modeling and SA.  
      In the future, other relationships among the process parameters will be studied and the method of ANFIS will be 
applied to an expanded parameter set in an effort towards a more comprehensive explication of relationships among 
a larger set of the process parameters of the CO2 capture process. The membership functions and rules developed 
using the ANFIS method can also serve as a knowledge base that will become the basis for optimization studies of 
the CO2 capture process system.   
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