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Abstract

For f: X — X, with X a compact manifold, Nielsen periodic point theory involves the calculation
of f-homotopy invariant lower bounds fifix (/)| and for the number of periodic points of minimal
periodn. In this paper we combine the covering space approach to Nielsen periodic point theory with
an algebraic method of Fadell and Husseini to study the behavior of the Nielsen periodic classes of
maps onT2#T 2, the surface of genus two. Nil and solvmanifolds have basic properties for Nielsen
periodic classes that make the calculation of these lower bounds possible. In this paper we accomplish
two objectives. We show firstly that virtually all of these basic properties for the periodic classes fail
in general o' 2#T2 as well as on a collection of manifolds of arbitrarily high dimension. Secondly,
despite these difficulties, we develop and apply techniques involving linear algebra, combinatorial
group theory, number theory, and geometric facts from the theory of surface homeomorphisms, to
make some calculations of the Nielsen periodic numbers. In our final example the combinatorial
structure of the essential Nielsen periodic classes is fully displayed in a manner which relies on some
of the classic identities involving the Fibonacci and Lucas numhed999 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

Suppose thatf is a self map on a compact manifold. If X is a nilmanifold or
solvmanifold, then the computation of the sequefWef")} >, and the relationship of
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this sequence to the Nielsen periodic numberg & well understood. However, for many

other spaces, such as the double torus or handcuff $&t#?, the relationship between

the Nielsen periodic numbers and the ordinary Nielsen numbers for various iterates is
much more complicated, making these numbers difficult to compute. We explore these
complications in a variety of examples of self maps™##7? as well as analogues of

these self maps on higher dimensional spaces. These examples illustrate the differences
between the periodic structure on nil and solvmanifolds and on the manifolds studied here.

Given f : X — X on a finite polyhedron or a compact manifdid basic Nielsen theory
involves finding a lower bound, the Nielsen numbBé&if), for the number of fixed points
of any mapg homotopic tof (see [2,14,18]). We patrtition the fixed points gfinto
equivalence classes. Thewi(f) is the number of fixed point classes which persist in
some sense of equivalence under any homotopy.dduch classes are called essential.
Alternatively, N(f) can be obtained by partitioningi(X) into algebraic classes and
assigning an index to each clagg(f) is then the number of essential classes (those with
nonzero index). The Nielsen periodic numbare, ( f) (see [11]) andNP,(f) (see [10])
are homotopy invariant lower bounds for the number of periodic points with period
dividingn and for the number of periodic points with minimal peripdespectively. These
periodic numbers are invariant with respect to homotopieg d@f.e., not of ). Both
N, (f) andNP,(f) are computed by analyzing the ordinary Nielsen classes of gach
and the relationship of these classes to one another as induced by the natural inclusions of
fix(f™) into fix(f") whenm|n.

The Reidemeister trace ¢f[6,13], which has also been called the generalized Lefschetz
number of f, is an algebraic object from which the essential Nielsen classes and their
indices, and thus the Nielsen number, can be determined. The Reidemeister trace is a
formal sum overZ of algebraic classes. Provided this trace is in reduced form, the
number of nonzero terms is equal M f). To calculate the Reidemeister trace for the
map f on a closed surface, one can use the method of Fadell and Husseini [5], which
involves the Fox calculus [3]. There are two fundamental reasons why such computations
become so problematic for the Nielsen periodic numbers. The first is that in order to draw
conclusions from the Reidemeister trace it must be in a reduced form, i.e., each algebraic
class must appear in the sum at most once. Because there is no known procedure that can
always be used to determine whether two classes {fT?#7?) expressed with different
representatives are equal, we must use a variety of algebraic and geometric techniques to
reduce the Reidemeister trace. The second reason for complications in the calculation of the
periodic numbers off 2#T?2 arises from the process of iteration. The equivalence relation
that produces the algebraic classes is different for each itergfe \éfhile the algebraic
classes for various iterates are related by certain boosting functions (see Section 2), it
can be difficult to know when an algebraic class for sofifereduces to a class for a
lower iterate. The software package Magma [1] can often find reductions of classes and
demonstrate equivalence between two classes in a way that can always be checked by
hand, whereas proofs of irreducibility and the distinctness of certain algebraic classes are
much harder to come by.
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A nilmanifold is a generalization of a toruR"/Z", whereRR" has the structure of a
nilpotent Lie group andZ” is a subgroup. A solvmanifold is also a coset space of the
formR"/I", whereR"” need only be solvable and need not be discrete. In [8] a number
of basic properties for the essential Nielsen periodic classes on nil and solvmanifolds are
established. These include essential reducibility (i.e., essential classes which reduce do
so to essential classes), lengthdepth (i.e., a class is irreducible at levelff its orbit
containsn distinct classes), the injectivity of the inclusions (fiX*) C fix(f")) when
applied to essential classes, and the uniqueness of roots of essential tlassaRlition
to having these properties, most maps on nil and solvmanifolds are weakly Jiang (i.e.,
either all Reidemeister classes are essential or none are). When this is the case, the other
properties always make it possible to expressNiz () and N&, (f) in terms of the
numberg N (f™): m|n}. One of the main objectives of this paper, in addition to describing
techniques for computation aif#72, is to show that off 2#72 as well as other manifolds
of arbitrarily high dimension, all of these properties fail to hold in general. Despite these
observations, our last example will demonstrate what is possible when many of them do
hold. This suggests that in future work, as well as trying to make sense of this strange
behavior, one might search for general conditions on a map to assure that the techniques
for computingNP, (f) andN @, (f) implied by these properties can be used on the double
torus. However, since general algorithms for the computatiotv of”) itself are not
known for the double torus, such formulae which expféBs(f) and N®,(f) in terms
of Nielsen numbers are only part of the story.

The paper is organized as follows. Section 2 contains the required prerequisites
of Nielsen periodic theory, covering spaces, and the Reidemeister trace. We describe
and motivate the basic properties that hold for essential periodic classes on nil and
solvmanifolds (see [8]). This provides a starting point for comparison with the double
torus and certain higher dimensional analogues.

In Section 3 we present our four examples for mgpsn the double torus. In this
section we also develop new techniques for the use of abelianized Reidemeister classes in
determining the length and depth of essential classes. While the abelianization methods of
[5] are useful in all our examples, the new techniques described here are used in Example 3
to show a case where lengghdepth for essential classes.

Example 1 shows the failure of essential reducibility, and of the weakly Jiang property,
and provides a case in whidi®,, (1) # me NP, (f). Example 2 shows the failure of
injectivity of the boosting functions on essential classes and the failure of uniqueness of
essential roots. This provides a situation in whig¢kp, () # N(f") # 0.2 These first
two examples provide a short and surprising introduction to what can, in some sense, go

1Heath and Keppelmann [8] also discuss the property of essential reducibility to the GCD. As is done in our
Example 4, this property is usually used to prove the uniqueness of roots of essential classes. Since we show that
such uniqueness fails to hold in general, we have not attempted to find a counterexample for essential reducibility
to the GCD.

2The papers [10,11] also contain examples for which these two basic formulas fail to hold. However, as these
are in situations where the fundamental group is finite, they are of a significantly different nature than what is
presented here.
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wrong in the calculation of Nielsen periodic point numbers for self-maps on the double
torus.

After Example 3 we observe that for any self-mamf 72#72 and anyk > 1 the self-
map f x g on(T?#T?) x S, whereg is a map of degree 2, will have an algebraic periodic
point structure that is isomorphic to that 6f Thus our counterexamples and examples can
be reproduced in any dimension greater than 3.

In Example 4 we demonstrate a situation in which, although not all of the basic
properties can be verified, it is still possible to obtain the formula

N®,(f)=N(f" = Z NP,,(f) foralln.
mln

This is done with the application of a Nielsen and Lefschetz number inequality for
surface homeomorphisms by Jiang and Guo from [15]. It is here that there is a surprising
combinatorial structure involving Fibonacci numbers for the essential classes. We prove
thatN (21 = Lo, 41, where{L;}7°, is the sequence of Lucas numbers, the companion
sequence to the Fibonacci numbers (see [12]). Thws 1, L, =3, andL, = L,—1 +
L,_». The technigues presented here allow us to complete the calculation in Example 4
of [4]. We also take this opportunity to correct a typographical error in Example 3 of [4].

In Section 4 we conclude with a conjecture and several ideas for new techniques
that could be developed in this subject, especially if Thurston’s classification of surface
diffeomorphisms is considered. We hope that the discussions and examples presented here
will promote further study in what we have found to be a very interesting subject. We
will call this study, which involves combinatorial group theory, number theory, and linear
algebra, combinatorial Nielsen theory.

2. Preliminaries

There are two equivalent approaches to Nielsen fixed point theory. These two approaches
define the Nielsen classes differently. Since both approaches are used in our primary
references, we feel that it is important to give a complete description of the equivalence
between the two. One approach involves comparing loops and the second involves
comparing lifts of f: X — X to the universal covep:)? — X. (For more details the
reader is encouraged to consult [14,18].) In addition to these two approaches, there is also
a great variety of notation in the literature for the Reidemeister activvhile most of the
following is standard, we hope this sketch provides some insight for the reader; especially
in allowing for an appreciation of the compatibility of the covering space approach with
what has been done previously for periodic points. We feel the covering space approach
provides a much cleaner relationship between the fixed points of different iterates in that
we can now view the inclusions fix™) C fix(f") on the algebraic level as arising from
similar inclusions of fixed points for the iterates of lifts ff(see [14]).

3 For example, one can choose the Reidemeister action to be given py= ay ¢« 1). '[his is done in [8—
11] whereiy, n (@) = e fit p(w) (@) -+ fi (n—m)(w) (@). One can also havier] indicate p(fix (f«)). Our choice is
compatible with [5].
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2.1. Nielsen theory

Here we present material from [14,18]. Suppose thak — X is a map on a finite
polyhedron or compact manifold. In what follows fixf) will denote the collection
of geometric Nielsen fixed point classes pf The equivalence relation that determines
these classes can be described in two ways. Firsty fore fix(f), x ~¢ y iff there is
a paths from x to y so that (rel endpointsy ~ f(8). Equivalently,x ~ ¢ y iff there is
a lift f” of f such thatx, y € p(fix(f")). As we will see, this equivalence corresponds
to an action ofz1(X) on itself. For a homomorphismr : G — G on any groupG, the
orbit, or Reidemeister class, of the Reidemeister action that contans is denoted by
[g]={¥(h)gh~: h € G}. The symbolR (v) will denote the set of Reidemeister clasdes.

We begin by considering the path approach. Fix coordinates by choosingaxi and a
pathw from xo to f (xo). Thenf induces the homomorphisga ., : 71(X, x0) — 71(X, x0)
by the rule thatfy () is the loop class containingf (a«)w~!. We define a function
p fixy(f) = R(fro) as follows. For any € fix(f) we associate the Nielsen class of
x with the element ifR( fx.,) containingwf (C)C~1 whereC is any path fromyg to x.

It can be checked that & is another path fromyg to x thenwsf(C)C 1 will belong to

the same Reidemeister classRi f ). It should also be verified that this correspondence
respects the Nielsen equivalence relation onffixdefined above. Thus the Reidemeister
classes offx ., can be thought of as the fixed point classes ads long as we recognize
that some Reidemeister classes will correspond to empty fixed point classes.

For the covering space approach we will Bt denote the collection of coverlng
transformations of the universal covermg spa{cef X, with covering projectiorp : X —

X. These are homeomorphlsms—> X which project to the identity oX. We recall that

D is isomorphic tar1(X, xp), the homotopy classes of loops basedsiThe isomorphism

O :m1(X, x0) — D is defined as follows. Each € w1(X, xo) gives rise to a permutation
of p~1(x) and hence a covering transformatieng) : X — X determined by letting, for
eachy e p~1(xg), ©(B)(y) be the endpoint of the lift of that begins ap.

In the covering space approach we will again need to fix coordinates. To do this we fix a
lift £ of f and a base poirilg € p~1(x0). Then every lift of f can be written uniquely in
the forma f for some covering transformation The homomorphism : D — D, induced
by f, is then specified by requiring that for each covering transformatiore let ¢ («)
be the unique covering transformation which satisfiés) / = f«. In order to guarantee
compatibility between the coordinate choices for the covering space and path approaches
we will require that f(%o) be the endpoint of the lift> of @ which begins attg. The
following diagram will commute

71X, x0) —2% 71(X., x0)
] ]

D————D

4 This notation is standard, as is the use of the similar symqgl) to denote the number of orbits.
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This means that in essence we may @s® identify fx ., with ¢, R(fi.») With R(¢), and

D with 71(X, x0). When nonemptyp(fix(811)) = p(fix(B~1f)) iff B € [B] € R(¢).

In analogy with what we did for pathg;:fixy(f) — R(¢) in this context is given

by specifying thato([x]) corresponds to the unique Reidemeister clagss R(¢) for
which x € p(fix(e~1f)). Note that herex corresponds t@ of the loop class containing

wf (C)C~1 from the path approach. This yields compatibility between the two approaches
since as functions from fix(f) to R(¢) we have thap = p. Henceforth we will not
mention®, and we will not distinguish betweenandp.

2.2. Nielsen periodic point theory

Fory:G — G and g € G we will use [g]* to denote the class oR(y*) which
containsg. Similarly, the element of fix(f*) containingx will be denoted by[x]*. We
let pg : fixy (f*) = R(f§ ) b€ the functiono defined above forf*. When iterating
the map f, whether the covering space or path approach is used, it is important to pick
coordinates for the iterates which are compatible. As in [10,11] for for the path approach
givenw:xo — f(xo) we let, for each natural number n(w) = of (@) f2(@) - - - " w)
be the path of choice between and f"(xp). Now suppose that € fix(f™) for some
mn. Let C be a path fronxp to x. Then the Reidemeister class fowith ™ is given
(using p,, in place ofp1 = p) by p ([x]") = [m(w) f™(C)C~11™. The relation between
B = pm([x]™) and p,([x]") is described by the change of level boosting function in the
following definition.

Definition 2.1. Suppose thaty : G — G is a homomorphism. Then for positive integers
m, n with m|n definey,, , : G — G by

tnn(B)=Y" " (BT (B) Y (B)B-

Itis not hard to check thaj, ,, induces a function (with the same name) fr@a)™”) —
R(Y"). Inour caseG = m1(X, xo) andyr = ¢.

For the covering space approach we must find a choice of coordinateg’ ftnat
is compatible with the choice ofp andn(w) made above for the path approach. This
algebraic approach appears in [14], but we extend it here to nonabelian fundamental
groups. We note that since the lift af which begins atto will end at f (%), we have
that the lift ofn(w) beginning afto will end at f” (%o). Our choice of lift f for f naturally
gives rise tof” for f" and thus is compatible with the choice of coordinates for the path
approach.

The following lemma allows us to view the inclusion of Nielsen classes from one iterate
to another as equivalent to the inclusion of entire fixed point sets of one lift into those of
its iterate. Suppose that|n and thatx € p(fix(« =1 f™)). Thenx € p(fix (a1 f™)"/™m)).
Expanding this composition and moving all the! past all / by the relationf”« 1 =
#" (1) f yields the following.
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Lemma 2.2. Suppose thatf: X — X and m, n are natural numbers withn|n. The
following diagram commutes

fixy (f") 2"~ R($™)

i* tm,n ,

fixy (f") 2= R(@")

wherei* is induced by inclusion. Additionally, whétm|n, we have,, ,tkm = tk.n-

Now, having given a complete correspondence between the path approach and the
covering space approach for partitioning eachy fi%, we will, for the remainder of this
paper, use solely the covering space approach. This is due to our heavy reliance on the
covering space approach of the Reidemeister trace (see [13,4-6]). From now on we will
user in place ofr1(X, xo).

2.3. Nielsen periodic numbers

Classical Nielsen theory follows the partitioning of(fj% into Nielsen classes by the
use of an integer valued fixed point index for eaghe fixy (f). (For example, see [2,
14].) A class is essential iff its index is nonzero. We refer to the index of an algebraic
class as being zero if the class is empty. Otherwise, the index of an algebraic class is the
same as the index of the unique Nielsen class that corresponds to itaritee Nielsen
numberN(f), a homotopy invariant, is then the number of essential classesyiffix
The classical lower bound property given by

N(f) <min{|fix(g)l: g ~ f}

follows from the fact that for any homotopic tof there is a one-to-one correspondence
between the essential geometric classegfand those fog.

As stated above, the study of the Nielsen periodic numbers (see [10,11]) is a study of
what happens to Nielsen classes and their essentiality under iteration. More specifically,
for an algebraic clasgx]™ of f, we must consider the depi([«]™) and length
[([a]™) of [@]™. Thedepthof [«]™ is the smallesk|m so that[«]™ is in the image of
lkm - R(PF) — R(¢p™). We say thafa]” is irreduciblewhen its depth isz. In this case if
[a]™ is also essential then we know that the points of fiX) that are inp(fix(aflfm))
are all of minimal periodn. If [8]" is an irreducible class andf, , ([8]™) = [«]", then
[B]1™ is said to be @oot of [«]".

The following is a useful fact that allows us to determine reducibility of a Reidemeister
class by studying a representative of the class. It justifies our abuse of notation in thinking
of they, , as functions on either or R(¢).

Lemma 2.3. The clasg«]” reduces to leveh|n iff there is ay € = such that

() =" (y) -7 ()" ()Y = .
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Proof. Supposed«]” reduces to leveln. Then there aré, 8 € = such that,, ,(8) =
" (B)aB L. Thusi, (@™ (B~1)88) = a. The other direction follows from the fact that
tm.n 1S well defined on Reidemeister classes:

The basic principle that underlies all of Nielsen periodic point theory is that periodic
points of minimal periodnr occur in orbits of lengthw. In other words, ifx has minimal
periodm, then so does each element of the ofbitf (x), ..., f” 1(x)}. Algebraic length
is a notion that measures the extent to which this basic principle is reflected by the algebra.
We note thatp induces a well defined action da(¢™). Thelength/ =I([«]™) of [a]™ is
the number of distinct Reidemeister classes in the algebraic orbit

(lal™) = {[a]™, [$@]", [P2@)]", ..., [¢" H@]"} of [a]”.

Becausda]” = [¢™ («)]™ we know that/ ([«]") < m. The length of a class is obviously
well defined on orbits. The following shows that when the boosting functions are injective,
the length of an orbit is independent of the level at which a given class is considered.

Lemma 2.4. Suppose that, , : R(¢™) — R(¢") is injective. Givenw, 8 € &, if [8]" =
tmn([a]™) thenl([B]") = I([a]™).

Proof. Let [ be minimal so that there is @ € = with ¢"(y)¢!(@)y ! = «. Since
[B1" = [tm.n (' (@)]" = [¢'(B)]", we know thatk = [([]") <. Also,

[B1" = ¢* (1B1") = [¢" (tmn (@) ]" = [tmn (¢ @) ]" = tm.n ([ " (@)]™).
By hypothesip* ([o]™) = [«]" sok > [ and thusk =/ as claimed. O

Since the index of«]" and of[¢ («)]" are equal [10], the property of being essential is
also a property of orbits. Likewise, depth is well defined on orbits [10]. The algebra does
exactly reflect the geometry in the sense that if the dtbif”) is essential and irreducible
then we know that it must contribute a positive multiplesopoints of minimal periodn
to any map homotopic tg.

As discussed in [10,11] there are two Nielsen type periodic numib&Ps( f) and
N®,(f). The numbeNP, (f) is defined to be times the number of essential irreducible
orbits of f". As described above, this is gfthomotopy invariant lower bound for the
number of periodic points of that have minimal period exacthy The numbeN @, ( f),
which is significantly more complicated to define thdi, ( /), is an f-homotopy invariant
lower bound for|fix(f")| (as opposed tav(f™) which would be anjf”-homotopy
invariant for|fix(f")|). A set ofn-representatives fof is a collection of algebraic orbits
from various levelsn|n with the property that any essential orbit at any lewgt will
reduce to an orbit in this set. The height of a seheakpresentatives is the sum of the
depths of all its members. The numb¥€p, (1) is then the minimal height over all sets
of n representatives fof. Of course N (f") is always a lower bound faV &, ( ) since
N, (f) restricts one to homotopies ¢f' induced from homotopies of. The definition
of N&, (f) is designed to count periodic points of periody considering all algebraic
orbits at all levelsn|n. Those orbits which are essential at some levial will contribute
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to N@, (f) even if their images under boosting at leuedre inessential. The choice of a
minimalset ofn-representatives seeks to avoid duplication and forces the counting of each
of these essential orbits at the level of their depth. (l.e., classes at different levels which
represent the same geometric points should only be counted once according to the minimal
period of those points.)

By “the computation oNP, (f) andN @, ()" one can mean several things. In previous
work such as that of [8,9] it is shown that for self-maps on compact solvmanifolds
there is a standard procedure by which the numbersf/™). m|n} can be used
to expressNP,(f) and N&, (f). Thus the computation of the periodic humbers is
possible using the computation of the ordinary Nielsen numbers of the iteratgs of
(which for solvmanifolds are also very well understood and computable [17,21,22]).
Although strides forward are being made, in the case of surfaces the computation of
ordinary Nielsen numbers is far less well understood. In this sense then, calculating
the periodic numbers in terms of the ordinary Nielsen numbers of the iterates, although
far from what this paper can accomplish, would be somewhat less satisfying than for
solvmanifolds. Despite this, we will indicate a number of powerful techniques which, in
some cases, can determiN®,(f), N&,(f) and N(f") for self-maps on the surface
T2H#T?2,

As a point of reference, we begin with a basic understanding of how the Nielsen
classes of the various iterates fffit together on nil and solvmanifolds to compute the
periodic numbers. We list the relevant properties below. Although not quite described in
this way, these properties were proved for all maps on tori in [11] and were extended
by fibre techniques to nil and solvmanifolds (except for (P5) below) in [8]. All maps
on nilmanifolds are weakly Jiang and for any mg@pon a solvmanifoldS there are
simple criteria, involving the Nielsen numbers on the fibers in a Mostow fibratiof,for
that determine whethef is weakly Jiang. However, even when the map is not weakly
Jiang, the Nielsen periodic numbers are still quite computable on nil and solvmanifolds as
shown in [9]. For us the properties below will represent, when they are valid, the simplest
way in which the periodic numbers can be formed. This puts us in an excellent position
to appreciate just how complicated the situation can b& &#I'2 or on certain other
manifolds of arbitrarily high dimension.

(P1) Essential reducibility. If ¢, » ([8]™) = [«]" with [«]" essential, thefs]™ is also

essential This is important in allowing one to relate thl®, (f) andN®,(f) by
the formula

N®,(f) =Y NP, (f).

min

Maobius inversion (see [11]) then also allows one to witB, (f) in terms of
{N@y (f): min}.
(P2) Injectivity of ,, , on essential classesf v, ,([y]") = [a]" = tm.n ([B]") Where
[@]", [B]", and[y]™ are all essential, thefB]™ = [y]". Such a condition allows
us to track with combinatorial arguments the Nielsen classes at various levels (see
(P5) below).
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(P3) Length = depth on essential classedf [«]" is essential and irreducible then
its length isn. This indicates that the basic geometric principle that points of
minimal periodn come in orbits ofn points is exactly reflected by the algebra.
In this caseNP, (1) is the number of essential irreducible classes at leyahd
NP, (f) < N(f™).

(P4) Uniqueness of roots for essential classel [«]” is essential, then there is a
unique irreducible clas$g]™ for somem|n for which ¢, , ([8]™) = [«]". This
means thatv &, () can be computed by simply adding the depths of the roots of
all orbits which are essential at any leveln. As is shown in [8] this is actually
a consequence of (P1), (P2) and a property called essentially reducible to the
GCD. An essential clag&]" is essentially reducible to the GCD if wheneyef”
reduces to essential classes at leyasdk, then[«]" also reduces to an essential
class at the levefcd (s, k).

(P5) Weakly Jiang. The mapf™ is weakly Jiang provided that eithe¥(f") =0 or
else every element @& (") is essentialThis means that whev (") # 0 the
image of any,, , consists only of essential classes. In conjunction with all of the
properties above, this then implies that

N&,(f)=N(f") whenN(f")+0.

This, along with the formula from (P1) is the desired connection between the
Nielsen numbers and the periodic numbers. M&if, n) be the set of maximal
divisorsm of n for which N(f™) # 0. If N(f") = 0 and if we know that for all

m € M(f,n) that f is weakly Jiang, then we get from all of the above properties
that

Ne.(f)= Y, (=D IN(fEW),
PFEUSM (f,n)
wheret () is the ged of all numbers in. In conjunction with the formulain (P1)
we can then also compute thi&, ( f).

2.4. Calculating the Reidemeister trace BA#T 2

Letw = n(T?#T2) = (a,b,c,d : R), with R = aba " 1b"1cdc1d—1. Becausel'2#T2
is aK (, 1), every endomorphism: w — 7 is induced by a self-mayp on T2#72. Thus
we may consider endomorphisms rather than continuous maps.
The Reidemeister trace of”, R(f", /") (for the chosen liftf™), previously known
as L(f", f"), is an element of the freE-module Z(R(¢")). This trace incorporates
information about both the Nielsen classes and their indices into a single algebraic object.
Let X be the universal cover af2472. To defineR(f", /") (see [13,6]) we consider
theZ-homomorphismg” : C.(X, Z) — C.(X, Z) induced byf" on the cellular chains of
X. Lett,:Z[n] — Z(R(¢™)) be defined by extending linearly the function that for each
o € 7 is given byr, («) = [«]". ThenR(f", f) is defined to b, (—1)71, (trace f)) €
Z(R(¢™)). When R(f", f™) has been reduced so that each Reidemeister class appears
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at most once (no easy task, as the reader will see in Example 4), then the coefficient of
each Reidemeister class is its index. Thus, in this reduced Reidemeister trace, the essential
classes are exactly the classes with nonzero coefficientvayid) is the number of such

terms.

Let F be the free grougda, b, c,d). The Fox calculus (see [3]), provides a patrtial
derivative function fron¥[ F'] to Z[ F] for each generator of . Once a partial derivative is
calculated, the result is immediately interpreted as an eleméfitdf Letx1 = a, x2 = b,
x3=c, andx4 = d. The Fox derivatives are defined by

0Xx; 0l

i 25,'/', — =0, and

8)6]' ’ 8)6]'

ouv ou ov
—=—+4+u—1, foru,verF.
3)6]' 3)6]' 3)6]'

These definitions imply that for any € F, dw=1/dx; = —w1ow/dx;. Let¢r : F — F

be a homomorphism that for ea¢h=1, ..., 4 takesx; to a word in F from the coset
determined by (x;). Many different homomorphismgg will induce a givenyp. Different
choices of¢pr give different Reidemeister traces but the same Nielsen number. In this
paper, having chosep for ¢ we will always use the iterateg )" (or just¢’.) in our
study of . Fadell and Husseini prove in [5] that, fgr. T2#T2 — T2#T?2,

L IR@ k) a9 a9 An),
da ab ac ad

R(f", fM =1 (

whereA,, is the contribution taR( /", f*) due to the trace ofz”. An algorithm developed
in [4] can be used to calculat,. The algorithm involves writingp’. (R) in the form
[Ti_, yi R yi“Lwherer € Z*, A; € Z, andy, € F for eachi. ThenA, = Y hivi € ).
Even though this expression ff. (R) is not unique A, is uniquely determined [5].

Wheng is an automorphism, the elemefyt (R) must be a conjugate at or R~1 (see
p. 49 of [20]), which implies tha#,,, for everyn, will be a monomial inZ[x]. Wheng¢
is not an automorphism, there is always a choicepfprfor which ¢r(R) =1 so0A1 =0
(see [20]), and hencg, = 0 for everyn when we usep’.. The latter situation occurs in
our first three examples.

3. Techniqgues and examples

As we have mentioned, the key difficulty in using the Reidemeister trace for calculations
of ordinary Nielsen numbers is in the simplification of the sumZ{fR (¢)). That is, we
must know how to decide whether two Reidemeister classes (expressed in terms of different
representatives) are equal. As we will see from the examples in this paper, abelianization
can play a significant role in this process. kgtsys., s; : F — Z denote the exponent sum
homomorphisms fou, b, ¢ andd, respectively. Since every such homomorphism sends
R to zero, these induce homomorphisms (with the same names)fram¥. We define
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Ab:r — 7% by Ab() = @ = (sq (), sp (), sc (), s4(@)). The idea of abelianization is
illustrated by the following commutative diagram:

(a.b,c,d:R)—2~(a,b,c,d: R)

8 o

A A

The homomorphisng is represented by the % 4 matrix formed from abelianizing
é (e.9.,¢2.3 = sp(¢(c))). With w € w we will usew to denote Alpw). Two elements
[w]L, [zt € R(¢) are then distinct if the cose®+ (¢ — 1)(Z*) andz + (¢ — 1)(Z*) are
distinct. Unfortunately, abelianization can never be used to prove that two Reidemeister
classes are equal. If we are lucky and all the summandg(jfy /) project to distinct
cosets, then this is not a concern.

Our first three examples involve endomorphismsnonf the form¢ (a) = ¢(d) and
¢ (b) = ¢(c). Then the natural choice fafr gives¢’(R) =1 for all n so thatA, =0
for all n as mentioned at the end of Section 2. This does not occur in Example 4 where a
discussion of thel,, has been relegated to the proof of Proposition 3.6.

2

Example 1. We begin our survey of what can go wrong for the periodic numbers with an
example that, among other things, e, (1) # me NP, (f). Those readers who are
acquainted with other examples of this in the literature, such as maps on a wedge of spheres
(e.g., see Example 3.1 in [10]), may be surprised to find the same inequality in this more
natural setting of closed manifolds. This example also shows the failure of several other of
the properties listed in Section 2.3.

Suppose, oril'?#T? with 7 = (a,b,c,d : R), that¢:m — 7 is given by ¢(a) =
¢(d) =ab e, p(b) = ¢p(c) = b~2. Let¢r be the homomorphism oA that has the same
definition as that just given faf on .

We haveA,, = 0 for all » as above, and

R(L P =n(l=14b7 4072 = b7+ (72

These two classes are distinct and are both distinct by abelianization, and thus
[1] is not essential. To aid the reader we will outline why this is true. Now

0 0 01 0 0
- -1-3-2-1 - i - 0
p—1= , b= and 1=

1 0-1 1 0 0

0 0 0-1 0 0

The statement amounts to observing that
{5_1 - 6_29 i - E_ls i - 5_2} = {(0’ 19 Os O)Ts (Os 29 Os O)T}'

While the elements of this set do belong @ — D(RY), they are not contained in
(@ — )(ZY.
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At level 2 we havep?(a) = p2(d) = abLc, p2(b) = ¢p?(c) = b*. Thus
R(f% ) =w(l-1-1-b—b*—b%) = —[1° - [b]° — [b*1* — [~

Note that[3]2 = [¢2(b)b~11% = [1]2. Using the same technique of abelianization we can
see that the reduced form of the Reidemeister trace at level 2 is

R(f2, f?) = —2[11% — [b]* — [H?]%

We note thafi1 2(1)]% = [1]° so that the essential clagh reduces to the inessential
class[1]}. Thus T?#T2 does not have essential reducibility. Sin¥€f) = 2 £ 0 and
[1] is inessential,f is not weakly Jiang. We also note thai »(b=1)]? = [b]%, and
[t12(6~2)1% = [?]%. A minimal set of 2-representatives ig1]%, [b=11%, [6~2]}, so
N®,(f) = 3. The summation formula from (P1) in Section 2.3 fails sid¢@,(f) =
3 NPy(f) + NPo(f) = 2+ 0. We do get thalN &»( f) = 3= N(f2).

As we have seenin Example 1, itis important for several reasons to be able to distinguish
Reidemeister classes. This is required not only to reduce the Reidemeister trace but also
to determine the lengths of the orbits of the classes. In addition, we need to know whether
a class is reducible in order to determine its depth. Since essentiality, length, and depth
are properties of orbits (see [10]), it is instrumental in these calculations to recognize how
the terms in the reduced form &f( /", /) combine into orbits. We would like now to
indicate the role played by abelianization in this process. First, some new definitions are
required.

Definition 3.1. Suppose thaX is a finite polyhedron withr1(X) having abelianization
11(X) = 7. Let ¢:m1(X) — m1(X) be a homomorphism anid]” € R(¢"). We say
that [@]" is abelian reducibleto level m|n provided that there is & € Z" such that for
Imn =1+ @™ + %" + .-+ ¢"~™ we have thai,,_,(?) = @. Theabelian depttof [«]"
is the smallest/|n such thaf«]" abelian reduces to levél Theabelian lengthof [«]" is
the smallest|n such thatg! — Ia € (¢" — I)(Z").

We note that, just as with ordinary length and depth, the notions of abelian length and
abelian depth are well defined on orbits. Linear algebra and two fundamental inequalities,
abelian length< (ordinary) length and abelian depth (ordinary) depth, give the next
result. The ideas of the proof are the same as those for the thee+tocdl maps in [10].

Theorem 3.2. Assume the notation and setup of Definit®f If » is such thadet¢” —

I) # 0, then the abelian length of any clags]” is the same as its abelian depth. In
particular, if for all m|n with m < n we know thaf,;}” (@) ¢ 7", then[«]" is (ordinary)
irreducible and hagordinary) length equal tdordinary) depth equal ta:.

Proof. Since for eachn|n we have(t, ,)(@" — I) = ¢" — I, it follows thati, , is
invertible overR. So the statement thé;;}n(&) ¢ 7" is equivalent to saying thdtr]" is
abelianirreducible (i.e., of abelian depth By the inequality mentioned above this means
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that the (ordinary) depth @& ]" must also be. Of course, the length of any class at level
n is never more than. Thus once we show that the abelian lengtfedf is alson we will
have by the other inequality that the (ordinary) lengtledf is n.

So suppose then that there islann and av € Z" for which (¢! — I)(@) = (¢" — I) (D).
Applying1;., to both sides of this equation, noting thigt(¢" — I) = (¢" — I)i;.,, and then
cancelingp” — I from both sides gives thatis an abelian reduction ¢#&]" to levell. This
contradicts the fact that the abelian depthadf isn. O

These abelianization techniques will be used in Examples 3 and 4. Theorem 3.2 gives
a large number of cases where ordinary length and depth will be equal. However, as
Example 3 shows, this is not true in general for essential classes.

Example 2. In this example the boosting functions are not injective on essential classes
and, as a result, some essential classes do not have unique roots.

Suppose, o 2#T2 with = = (a, b, ¢, d : R), thatg : m — 7 is given byp (a) = ¢ (d) =
a~1, ¢(b)=¢(c) =b1. As before, we lep have the same definition.

We haveA, =0 for alln as on p. 11, last paragraph of Section 2, and

R(f, f)=[U0"+la N+ 71"
These three classes are distinct by abelianization. (In this case, bgcauses invertible
overR, we can simply check thatp — I)~* applied to the abelianized difference of any

two of the above classes does not produce a vectdf in
At level 2 we havep2(a) = ¢p2(d) = a, andg2(b) = ¢p2(c) = b. Thus

R(fA fH=nl-1-1)=—[1

Note thatfi1 2(1)1? = [11,2(a 1] = [11,2(b"H)]? = [1]? so that{1]*, [« 7], and[b 1]}
all act as essential roots f¢i]2. Thus T?#T? does not have unique roots ang is
not injective on essential classes. As in Example 1, a minimal set of 2-representatives
consists of the three essential classes at level 1, and hehgef) = 3. While N@,(f) #
N(f? =1, we do have thaV @, (f) = 0+ 3= NP2(f) + NP1(f).

Example 3. For our last counter example Gi##7'2 we present a situation in which length

does not equal depth for essential classes. This emphasizes the importance of counting

essential orbits rather than just essential classes when complRirtg) and N @, (f).
Suppose, o 2#T2 with 7w = (a, b, ¢, d : R), thatg : m — 7 is given by (a) = ¢ (d) =

b2 and¢(b) = ¢(c) = b~ 1a~1, with ¢ defined as usual. Thepf(a) = ¢p2(d) = abab

andg?(b) = ¢p(c) = ab®. As before A, = Oforalln. We see thar (f, f) = [111+[b~1]*

and R(f2, f2) = —2[ab]? — [a]? — [ab?]2. Both at level 2 and at level 1, the classes

appearing in the Reidemeister trace have coefficients that are either all positive or all

negative. Thus in this case we do not need to distinguish classes to know that they

are all essential. The fact thaf(a)¢(b) = ¢?(b)p(a) = ab implies, by applyings,

thate (ab) = ¢*(@)¢?(b) = $3(@P*(b)¢ (@) (P (@) = ¢p>(a)ab(¢(@))*. Thuslab]? =

#([ab]?). Hence the essential clagsb]? has length one. We now use the abelianization

techniques developed in Theorem 3.2 to prove thai? has depth two.
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The abelianization o is given by the matrix

0-1-10
- -2-1-1-2
o=

0 0 0 O

0 0 0 O

To determine whethdub]? is abelian reducible to level 1, we consider the image of the
matrix

1 -1-10
o 20 -1-2
n2=¢+1=

0O 01 0

0O 0 0 1

We note thaiy 2 is invertible overR and in fact, since
f1.27Hab) = (-1/2,-3/2,0,0)"

is not in Z*, we know that[ab)? is irreducible and thus has depth two even though its
length is one.

To calculateN @2(f) we need to know more. Note that all of the classes appearing in
R(f, f)andR(f?, f?) can be shown to be distinct by abelianizing. The cla3$reduces
to [b~11* becausep(b~1)b~1 = a. We must also determine whethierb?]? reduces to
level 1. Sincey 2 1(ab?) = (-1, —2,0,0)7 belongs toZ* we cannot use abelianization
to determine this. It was no problem for the computer algebra system Magma (see [1]) to
find a reduction and show us thatx([b~ta~16~11Y) = [ab?]?. Since[bta~1p~1]1 =
[¢(b)b~ 1t = [1]* we know that in facty »([1]%) = [ab?]?. Thus{[11%, [~ 111, [ab]?) is
a minimal set of 2-representatives and hencgx(f) = 4. At level 2, the only essential
irreducible orbit is([ab]?) = {[ab]?} so thatNP,(f) = 2. BecauséNPy(f) = N(f) =2
we do have thalv @,( f) = NP1(f) + NP(f) althoughN ®»(f) # N(f2) = 3.

The extension to manifolds of higher dimension.The properties given in Section 2 that
hold for periodic classes on nil and solvmanifolds do not hold for manifolds in general.
We have provided counterexamples in dimension 2 and will now extend these to every
dimension greater than 3. We thank Robert F. Brown for the discussions that led to these
extensions.

Let X" +2 = (T#T?) x §™ with m > 2. For each of the three counterexamples given
above, withf a self-map orf'2#72, we define a self-map ok™12 given byh = f x g,
whereg : $™ — S is a map of degree 2. The canonical isomorphism

n:wu(T?#T?) — 1 (TH#HT?) x S™) = (THT?) x {0}
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makes the following diagram commute:

TU(T2HT2) —> 70 (T?#T?) x 71(S™)

o e

TU(T2HT2) — > 70 (T?#T2) x 71(S™)

Now 7 induces a bijective correspondence between the Reidemeister claséesmdf
those ofk. BecauseS™ is simply connected and(g") = 1+ (—1)"2" £ 0 for every
n, we know that eacly” has exactly one essential Nielsen class. Thus by the product
theorem for the index (see [2, p. 60]) we see thatspects Nielsen classes and their
essentiality. Furthermore, the diagram remains commutatiyie #hd /4 are replaced by
their corresponding boosting functiofs, . Therefore the Nielsen periodic class structure
for {n"}°° ; will be identical to that of "} ;, and any of the basic properties that do not
hold in Examples 1-3 above will not hold for these corresponding product maps.

Example 4. We now close the paper with a lengthy example which shows that, in some
cases at least, the techniques of [8] do remain valid and computations are possible.

The previous examples demonstrate situations where the useful formulas and reasoning
for calculatingNP, (f) and N&,(f) which are valid for nil and solvmanifolds cannot
be applied. This makes the computationN®, (/) and N&, (1) difficult in the general
case. Despite this, we would now like to present an example where the computation
of these numbers is possible for every In fact, for this example we do get that
N(f™) = N®u(f) =Y ,u;s NPu(f) WhereN (f) = L, — (1" + 1). (Here{L,)32 , is
the sequence of Lucas numberswhefe=1, L, =3,andforr >2,L, =L,_1+ L,_2.)
Mobius inversion then gives that

NP.(f)= Y (=DFIN("D),

TCP(n)

where P (n) is the collection of prime divisors of andn: 7 is n/(]'[pef p). For the main
results of this example the reader is referred to Propositions 3.6 (which uses Definition 3.4)
and 3.7.

Suppose, off 2472 with = = (a, b, ¢, d : R), that$ : m — 7 is the automorphism given
by ¢(a) =bta=1, p(b) = ab?, ¢(c) =d, ¢(d) = c. It is known that any automorphism
on r is induced by a self-homeomorphism @8#72. In [15] it is proven that for any
self-hnomeomorphism of a closed surfadé f) = min{|fix(g)|: ¢ ~ f}. Since not all
homotopies off” can necessarily be realized by homotopiesfothis does not prove
thatNP, (f) andN @, (f) are equal to their respective minimum numbers. However, since
these periodic numbers are based on the the counting of essential classes at various levels,
there is strong reason to believe that these lower bounds are sharp.

We list the results here and provide proofs at the end of this section. The following
properties of this automorphism allow us to determine the structure of the essential
algebraic periodic orbits.
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Claim 3.3 (Example 4)For anyn > 3,
1) ¢"(a) =b"Lp(@)p?(@)$3() - - 9" *(a),
2) ¢"(a) =¢" Ha)p" 2(a),
(3) ¢"(b) =¢" %@ 1), and

n n+2
@) 5 (152) = —r, (2220,),

Definition 3.4 (Example 4). Fon > 1, let S,,, T,,, U, C & be given by the following.

T, ={o" @¢" () ¢*2(a)¢p" (a) e m: foralli, 2< v; <n+1,
vi —vi—1 > 2, and v1 # 2 whenevew, =n + 1}.

Forn even,

U, = {¢”‘(a)~-~¢”1(a): s=2 vi=vi_1+2 fori>1, v1€{2 3}}.

>
Note thatTy = @, T> = Uz = {¢%(a), $3(a)}, and in general/, C T, whenn is even. Let
Su be given by

g - T, — U, forneven,
"1, for n odd.

This implies thatS1 = So = .

We will represent the produch (a)pVs—1(a)---p'2(a)¢p" (a) € = by the vector
(vs, Vs—1, ..., V2, v1). For example, for = 6 we have

Te={(2.(3), @, (5. (6),(D,(42),(52),(62),(53),
(6,3),(7,3),(6,4),(7,.4),(7.5),(6,4,2), (7,5,3)}

andUs = {(6, 4, 2), (7,5, 3)}. Forn even,U, will always have exactly two elements.

Since the only relation forr is R, which involves bothc andd, the subgroup ofr
generated bya, b} is free.® Furthermore, sincg” ((a, b)) belongs toja, b), we need only
consider a % 2 matrix when determining the abelianizationg6fa) and¢” (b). We note
that the abelianization df|(.»))" . which we denote by", is the matrix

— —F2 Fy
—Fy Fut2

whereF,, is thenth Fibonaccinumber. (Thati$,_1 =1, Fp =0, F1 =1, andF, + F,, 11 =
Fuy2. Thus 2, — n72=Fn+Fn71+Fn72_Fn72:Fn+l-)
We claim that two vector representations of elementg,igive distinct elements ot
if and only if the two vectors are not equal. To see this we note that the abelianization of
¢V (a)--- " (a) € Ty is a*bP wherea = —31_; F,,_2 andp = —>_}_; F,,. The claim

follows from the theory of Zeckendorf decompositions (see p. 281 of [7] for an English

5This is the Freiheitssatz, see [20, p. 104].
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summary and [19] and [23] for the original papers), which states that each natural number
is uniquely represented by a Fibonacci sum of the fdrij1; Fy, with v = (vg, ..., v1)
such that; > 2 andv; 1 —v; > 2for 1<i <.

Proposition 3.5 (Example 4).For all n, |S,| +1=L, — 1+ (-1"), where L, =
F,1+2 — F,,_> is thenth Lucas number.

Proposition 3.6 (Example 4)For any mapf that induces and for anyn > 1,
(1) The Reidemeister trace can be written as

—3[1]" — ersn [s]* forn even,

R(f": fny —

A { —[1" = > s, [s1" forn odd.

(2) The Lefschetz numberis /") = —L,.

(3) The expression foR( /", ™) given in(1) above is reduced.

(4) The Nielsen number®(f")=L,—(-1)"+1) =4¢"+q" — ((-1)"+1), where
g is the golden ratiq1 + +/5)/2 andg is (1 — +/5)/2.

Proposition 3.7 (Example 4) For any mapy that inducesp, length equals depth for all
essential classes at any level. The bagst maps essential classes injectively to essential
classes for alh andm|n. Each essential clags]" has exactly one essential rodit may
also have inessential roojdf m, k|n and[«]” and[B]* are essential and,, , ([«]™) =
Lk,n([ﬂ]"), then botha]” and[A]* reduce to a common essential class at levekgcd).
While 7" is never weakly Jiang, it is true that (/") = N®,(f) = _,.,, NP, (f) for

all n.

mln

We note that, for this example, Proposition 3.7 provides a proof of Properties (P2) and
(P3) from Section 2 as well as the property of being essentially reducible to the GCD. (See
Property (P4) in Section 2.) Since we will not be able to gather much information about
the reductions that might exist between essential and inessential periodic classes, it will
not be possible to prove essential reducibility in general or that every class has a unique
root. Despite this, we are still able, with this weaker set of properties, to deduce the usual
formulas relating the periodic numbers.

We now provide proofs of the above statements.

Proof of Claim 3.3. From¢3(a) = ¢(b~1) =b2a~1 = b~1¢(a), statement (1) follows
by induction. Statement (2) follows from statement (1) by multiplying the formulation
for n — 1 in statement (1) by"2(a) on the right. To prove statement (3), we note that
¢*(@)=b"1, 509" (b) = ¢" (@%@~ 1) =" 2@ ).

Statement (4) is proven as follows: For ani 3,

9¢"(b) 39" (¢*(@)H) 99" %(a)
ab ab N ab

—¢"(¢%(@)7Y)
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This follows from statement (3) and the fact that, for amye (a,b), dw=1/0b =
—w~ow/db (see Section 2.4). We also have, by the Reidemeister action atrdesfel
#%(a) on the above,

( "+ (a 1>8¢n+2(“)) —rn(ad’m(“)qs (a 1)) (LW;;(“)/;).

This completes the proof of Claim 3.30

Proofs of our results are possible because essential algebraic classes have representatives
in S, for which it is easy to see the orbit structure as described in the following
two paragraphs. We will now use the elementsSpfand their vector representations
interchangeably.

In order to study the structure of orbits of periodic point classes, we interpret the action
of ¢ on the Reidemeister classes of elements,iby an actiony* on s, given by

(vs+1,...,v,+1,...,v1+1) if vy <n,

k —
y”(v‘v""’vl)_{(vs1+l,...,vil+l,...,l}1+1, 2) ifvy=n+1

This is equivalent to first adding one to each coordinate, then reducingnmaoty
value larger tham + 1 and rewriting the resulting numbers in decreasing order. To justify
this interpretation we next show that for alle S,;, [y 1" = [p(x)]". If vy < n, this
is becauseyn (x) = ¢(x). For vy, = n + 1 this follows from the fact thaf¢ (x)]" =
[¢0"T2(a)p?111(a) - - - p¥1T1(a)]* which, wheng?(a)~1 acts ong(x) according to the
Reidemeister action at leve| gives[¢ (x)]" = [¢-1T1(a) - - - ¢"21 T (a)p2(a)]".

In terms of the vector representationsyif (v, ..., v1) at levelm represents ¢ r,
then, ,([x]™) is represented by + (n —m)) o (V+ (n — 2m)) o --- 0 (V+2m) o (v +
m)o (v). Herev +k = (vg +k,...,v; +k, ..., v1+ k) ando denotes the concatenation of
vectors. We observe that ,, will carry elements of5,,, directly to elements of,,.

Let x € S,. We say that the clagx]" hasvisible lengthk for somek < n if k is the
smallest positive integer witlpr,’f(x) = x. We will shortly prove that visible length and
actual length are the same for elementspfBecausey,’ (x) = x, the division algorithm
implies thatk|n.

Claim 3.8. Givenx € S, and 1 < k with k|n, y,’f(x) = x if and only if x is in the set
lk,n(Sk)~

Proof. Let us first establish some notation and a useful correspondence. For aadh
w € S, there corresponds a unique subSgtof {0,1,...,r — 1} obtained by reducing
each coordinate ofb modulor. Via this injective function,y/ acts onS’ by adding

i to all elements ofS> and reducing module. For r|s, ¢, ; acts onS> to produce
S; @ C {0, ..., s — 1} by producing a union of /» copies ofS with each copy having a
different multiple ofr (between 0 and/r — 1) added to it and then reducing all elements
modulos.
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For example, foris = (5, 3) € S5 we have thatS? = {0, 3). Also, t520(S3) = S35, =
{0,3,5,8, 10,13 15,18}. This corresponds to the fact thp§015,20(17)) = (20,18, 15,13,
10,8,5,3) € S»0. Then ygo(sf(%)) is the subset{0,3,5,8,10,13 15,18}. Note that
¥30(t5.20(0)) = t5,20().

Now we prove the forward implication. Suppose thiat S,,. The fact thaty,f(ﬁ) =7
means thatS; + k = S; modulon. Let 8 be the smallest element & . Let u € S
be the unique element equivalent o+ k modulo n. There is a uniquep € S; for
which 3{% consists of all elements fror§? that are less thap. Thusw is such that
(W) = .

In our example;/go({o, 3,5,8,10,13,15,18}) = {0, 3,5, 8, 10,13, 15, 18}. In this case
B=0,u=5,852={0,3} and thusb = (5, 3) as stated above.

For the reverse direction of the proof we first note thatyx = yutk.n. If y € Sk then
YEO) = y. Thusun (0) = eV O)) = v (e 0)). O

Proof of Proposition 3.5. BecauseS; = S =@ and L = 1, L, = 3, the result follows
forn=1,2.

Forn > 3, we first define more useful sets. LBt = {¢p%(a) ---¢p'2(a) e T: v1 = 2,
vy =n+1, andv; —v;_1 > 2,Vi}, and letQ, = R, U T,.. Note thatR, N T,, = . We
remind the reader that with these sets we will switch freely between elemesjtsdine
and their representations in vector notation.

Next we prove thatQ,| + 1= F,2. (Recall thatFp =0, F1 =1 andF, = F,_1 +
F,_2.) Forn =3, 03=1{(2),(3),(4),(4,2)}, so|Q3] +1=5= Fs. With n =4 we
get Q4 = Q3 U {(5),(5,2),(5,3)} and Q2 = T» = {(2), (3)}. Let o be used to denote
the concatenation of vectors that occur by themselves or in sets. This@ivesQ3 U
[(5) o Q2] U {(5)}, s0 |Q4] + 1= |Q3| + 4 =8 = Fs. By induction, for alln > 5,
On =0n-1Ul(n+ 1o Qun2lU{(m+ 1} Thus, |Qn| = |0n-1| + [Qn-2| + 1=
Foy1—14+F,—1+41=F, > — 1 Because

Ri=[(n+1)0o(Qn-a+20@]U{n+12)},

we note thatR,| = [Qy—al + 1= F,—2. Thus|T,| = |Qn| — |Rx| = Foi2—1—F2=
L, —1. Forn evenwe have thas, | = |T,| — |U,| = |T,| —2 so thalS,|+1=|T,| — 1=
L, —2.Forn odd, we haveS,|+1=|T,|+1=L,. O

Proof of Proposition 3.6. We first consider the calculation of,, for all n. We
observe thap (aba=1b~1) = bab~1a~1 andp (bab—ta=1) = aba=1b~1 and similarly that
¢(cdc™rd™Y) =ded~1c=t andg (ded~1c™1) = cdc=1d~1. Thus we can calculaig’: (R)
for all n. For oddn we note that, as elements of the free graup

¢ (R) =bab~ta"tdedtc7t = bab~ta "R L (bab~ta" )7L,
andA, = —bab~1a~1 from [4]. Using the relatoR we have

[bab~la= 1" = [¢" (c"tdYHbab~ta (e a"H " = [(c " HRLdo) ] = [11".
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Thus[A4,]" = —[1]" whenn is odd. Whem is even, to findA,, we note thai} (R) =
So[A,]" =[1]". Thus for alln we have[A, 1" = (—1)"[1]".

Next we prove the entire proposition far= 1 andn = 2. Becausep(a) = b~ 1a 1,
d(b) = ab?, p(c) =d, andg(d) = ¢, we see thap?(a) = b1, p2(b) = bab?, $%(c) = c,
and¢?(d) =d. So

R(f, fy=u®lat—a—ab) and R(f? f?)=12(—1—ba — bab).

We note thatla]! = [¢(a)]t = [b~1a1], and that[ab]! = [¢(b)b~111 = [1]1. Thus
R(f, f)= —[1]l which means thaL(f) =—-1=—LiandN(f)=1. Clearly the length
and depth of1]* are 1, so this proves Proposition 3.6 foe= 1. Forn = 2 we observe
that [1)2 = [¢2(b)b~112 = [bab)?, and[ba]? = [¢p%(a)baa11% = [1]2. We are left with
R(f2, f2) = —3[1)% HenceL(f?) = —3= —Ly andN(f?) = 1. Because the length and
depth of[1]2 are both one, all of the statements in Proposition 3.6 are true£o2.

We continue with the proof of Proposition 3.6 for> 3.

(1) We prove thaR(f™, f) can be expressed in the given form.

Stepl. We show that

n. v 99" (@) | 99" %(a)
R(f,f)—tn(— ) b).

Using the method of [5] and [4] for odd, by applying (4) of Claim 3.3 we have that
99" (c)  9¢"(d)
dc  ad
Thus, for oddq,

=0.

~ agp" 29" (b 0" ¢ (d
RUT D= (1_ ¢a¢§a)_ d)alf - ¢ac(0) d)aa(l) A")
_ dp"(a) A" T2(a)
= (_ T b)'

This completes Step 1 farodd. For evem, we have that
99" (c) _ 3¢"(d)

dc  dd
so (again from (4) of Claim 3.3)

e e _0¢"(a)  099"(b)
R(f" f") =1 (l 9 o 2+An)

B 3¢"(@) | 39" %(a)
_T”<_l_ oa T ab b+A">

n n+2
. (_ 99" @) , 99 (“)b).

=1,

da ab

Thus for all values of: Step 1 is complete.
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Step2. Let Q,, be defined as in the proof of Proposition 3.5. Note t@atis then all

vectors(vy, ..., v1) With vy <n + 1, v1 > 2, and the difference between successive entries
at least 2. We next prove that

8¢”+2(a)

Tb =-1-o0,, wWheres,= Z q.

q€0n

For n = 1, becausep3(a) = b—2a~1, we havedp3(a)/ob = —b~1 — b=2. Thus
0¢3(a)/ob) - b=—1—b"1=—1—¢%a).
Forn =2, we have

9 4 -2 -1;-1

¢ (a)bzab a b b
ab ab

=—1-b1-b 2 1=—1-¢%0a)—¢%@)=—-1—o0>.

=(=b1—p2—p 2Ly

By induction onn, with base steps = 1 andn = 2, we use (2) of Claim 3.3 and the
product rule to deduce that

n+2 n+1 n n+1 n
09" 2@, _ @M@, 3@, | 987@,
b b b b
=—-1-0y_1+¢"Ha)(~1—0,_2).

As in the proof of Proposition 3.5, we hav®, = 0,1 U[(n + 1) o Q2] U {(n + 1)}.
Thuso, = o,_1+ ¢"t(a)o,_2+ ¢"T1(a). Finally, we see that1 — o, = —1 — (0,_1 +
¢ (@)on_2 + ¢"1(a)), which we have proven is equal t6¢"+2(a)/db) - b. Step 2 is
complete.

Step3. Recall that, as in the proof of Proposition 3.5,

Ri={¢"(@)--¢"(a)em: v1=2, vy=n+1andy; —vi_1>2, Vi}.
We next prove that for > 3

o(-*52)-(Z)

reRr,

It is helpful to define two more sets. Let
Va={o" (@¢"(a)- 9" (a)p" (a) € Qn: v1is 0odd,vs <n —1}.

For oddn we defineW,, =V, U {¢" (a)}. For evem let W, = V,,.
We will first prove that

99" (a)
" da - Z v

weW,

Forn =3,

3¢3(a)
Ws={¢*@}, and — ” =¢3(a)=2w.

weWs
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Similarly, forn =4,

9¢*(a)
Wa={¢%@)} and — T=¢3(a)= > w.

weWy

By induction onn, using (2) of Claim 3.3, we have

0" (@) 3" Ha)g" 2@ ¢" @) 1 09" )
" 9a =- —¢" Ha)———
a4 da da da

=Y wt+ Y ¢"Haow= ) w

weW, _1 weW, _» weW,

where the fact thap”1(a)¢" 2(a) = ¢" (a) € W, proves the last equality whenis odd.
To complete Step 3 we will prove that

( ) w> :rn( Zr).
weW, reR,

We will do this by defining a bijectiony : R, — W,, with [y (r)]* = [r]". For anyr € R,,,
let ¥ (r) = ¢" (¢p(a) Hyré(a). Supposer = (n + 1,r5_1,...,r2,2). Theny (r) can be
represented by the vectof,_1, ..., r2, 2, 1). Using (2) of Claim 3.3 repeatedly, the vector
collapses on the right until all remaining coordinates differ by at least 2. Note that, after the
collapsing, the right-most coordinate will be odd. Also, the left-most coordinate will be at
mostn whenn is odd and will be at most — 1 whenr is even. It follows thaty (r) € W,,.
To see thaty is a bijection we note thay ~1(w) = ¢" (¢ (a))we(a)~* for all w € W,.
Step 3 is complete.

To complete the proof of Proposition 3.6(1), we note that R, = Q,, andT, N R, =
#. Thus

Zz: Z q— ZreZ[n].
teTy, qe0n reRy
Combining the results from Steps 2 and 3 we have
9 n+2 a 30" (a
Tn(Z[) :'L'n<—1— 7(15 ab( )b> +'L'n< ¢8a( ))
teTy,
Thus, using the result of Step 1,

n. Fnn 9¢"(a) | 0¢""%(a) \
R(f,f)_r,,(— T b)_rn(—l—t;z).

Forn odd, S, = T,,, and the proof of Proposition 3.6(1) is completed. kaven, we
must observe that the two elementdffare both Reidemeister equivalent at leved the
identity of =. The two elements of/,, arex and¢(x), wherex = (n,n — 2,...,4,2).
Then, as above at the end of Step 3, by repeated applications of (2) from Claim 3.3,
we havex¢(a) = ¢""(a). Thus [x]" = [¢"(¢(a) Dxd(a)]" = [1]", and [¢(x)]" =
[¢(1]" =[1)". Forn evenwe have, (—1—)",. 1) = 7u (-3 — Y s, ), and the proof
of Proposition 3.6(1) is complete.
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(2) The Lefschetz number( f) is the sum of the coefficients &( /", "), so we have

ny | —ISul =3 forn even,
L(f)_{—|Sn|—1 for n odd,

which in either case is-(|S,| + 1) — (1 + (—1)"). By Proposition 3.5, this means that
L(f")=—Ln. ~

(3) We prove that the terms in the given expression&or”, /) are distinct.

Forn =1, 2, we are already done since the only essential class is that of 1.

Forx € S, letv =v(x) denote the visible length of (as defined on p. 19, just before
Claim 3.8) and let = 7 (x) be the true length of. Our goal is to prove that = t for all
elements of,,.

The setS, is partitioned by the action of, into what we will call visible orbits. The
visible orbit of x contains exactly elements. These elements correspond terms in
R(f™, f™) as expressed in Proposition 3.6(1). The (true) orbitxdf contains exactly
elements. Thus the reduced formRiff”, ") containsy — t fewer terms than the original.

Jiang and Guo in [15] prove that for any self-homeomorphjssha compact surfac¥
with negative Euler characteristjc(X) and with Lefschetz numbet(g), the inequality
IL(g) — x(X)| < N(g) — x(X) holds. Applying this tog = f" we have|L(f") + 2| <
N(f™) 4+ 2. Thus forn > 3 we haveL, — 4 < N(f") < |S,| + 1, where the upper bound
is the number of terms in the (possibly) unreduced versiak(g?, /). So forn even we
haveL, —4 < N(f") < L, — 2, and forn odd we havd.,, — 4 < N(f") < L,. Thus for
n even, whenR(f”, f) is written in reduced form, at most two classes disappear when
they are combined with others. Similarly ferodd, whenr(f", ") is written in reduced
form at most four classes disappear. We will use these bounds and the fact that reducibility
is a property of orbits to prove that in fact no classes disappear.

Becauséx]’ =[¢" (x)]" = [¢T (x)]" = [¢" (x)]", and becauseis minimal, the division
algorithm implies that |v andv|n.

Assumer < v, thent < v/2. If n is even then the number of classes that disappear is
v —t < 2. Thusv < 4. (Otherwisep = t.) Similarly, forn odd, if r < v thenv < 8.

Forn odd we have shown that far > 9 we must have = 7. Also v cannot be even
because|n. Similarly, forn even, we conclude that for> 5 we haver = 7.

The remaining values aof which must be checked are 2, 3, 4 foeven and 3, 5, 7 for
n odd. For eachy we must check all divisors of v and prove that # «. We consider
only pairs (v, «) for which the appropriate upper bound for- « (2 for n even and 4
for n odd) is not violated. This eliminates the pairs=7,« =1 andv =4, o = 1. The
remaining pairgv, «) to be checked are, foreven,n, = {(2, 1), (3,1), (4, 2)} and, forn
odd,n, = {(3,1), (5,1)}.

We must prove that for these remaining pdirse) an essential clags]” with visible
lengthv does not have lengtl. This means we must prove that]” is not Reidemeister
equivalent t¢® (x)]". We accomplish this by abelianizing. Litg € Z, with x =a b 2.
As in the discussion before Example 2, it is sufficient to prove that when

i (Ll §
<j>—(¢ = ”(ﬂ)’
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then eitheri ¢ Z or j ¢ Z. (It is sufficient to distinguish Reidemeister classes only for
elements froma, b). Thus, for this example, we can vierva,n and/ as 2x 2 rather than
4 x 4 matrices. This is because all of these matrices are block diagonal so that exponents
for ¢, d € = do not contribute to the exponents far € . We observe also here that since
the eigenvalues ap are (1 + +/5)/2 which do not have modulus 1, we know tlgt — 1
will be invertible for everyn.)

The abelianization o, , is the matrix given by

n/v—1
a=I1+ Y ¢"'=@"-D@" —DHL
i=1
By Claim 3.8 we know that there is sompee S, with ¢, ,(y) =x. Lety =a%b?.
Then, from the previous formulation fay ,,, we have that there exist; € Z such that

(i.) — @ - DG - D@ - D@ — D ( 5)
J Y

— @ D@ - D! <5>
V4

Becausex|v, we have
v/a—1
@' —D= (1+ > ¢>’“>(¢>°’—l>.
i=1
Thus

()-(=S ) ()

Note that the last line above is independenkof-or the pairs(v,«) = (2,1), (3,1),
(4,2),and(5, 1), we check each elementof S, (see the discussion before Proposition 3.5
for the representation of as a column vector) to be sure that either j is not an integer.
Becauses, = ¢, there is nothing to check for the pa&R, 1). The number of elements to be
checked is so small that calculatihgnd j for each case is easy. For each of the 17 cases
(one for each element ¢, S4, andSs) we obtained at least one baind; notin Z.

Therefore the above analysis shows that the actual length of an essential classiat level
is equal to its visible length. This implies that within a visible orbit at any lavell terms
represent elements af which are in distinct classes ®(¢"). The only thing needed
then to complete the proof of Proposition 3.6(3) is to show that two elemerss fobm
differentvisible orbits are in distinct Reidemeister classes. However, if elements from two
different essential visible orbits belong to the same Reidemeister class ak)ethen
the two orbits are of the same length and every element from one orbit is Reidemeister
equivalent to exactly one element from the other orbit. Thus the number of classes that
disappear when we redud /", /") is greater than or equal to the length of those orbits.
Using our analysis of the Jiang—Guo inequality made above and the fact that visible length
equals ordinary length for the elementsSpf we thus have that the only orbits for which
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this can occur have length 1, 2, 3, or 4. From Claim 3.8 such orbits must occur as boosts
from levels 1, 2, 3 or 4, respectively, to level The only essential irreducible orbits of
lengths 1, 3, or 4 arg{1]Y) (length 1),([¢%(a)]3) = S3 (length 3), and[¢%(a)]*) = S4
(length 4), respectively. Sinc& = ¢ there are no orbits of length 2. Thus since there is
only one orbit of each of these types, no two such orbits can combine. The imaggs of
for k =1, 2, 3,4 each contain at most one orbit. Thus all elements,oére in distinct
Reidemeister classes for eachand none of these classes are Reidemeister equivalent to
1. Hence the Reidemeister traces are reduced as stated in the proposition.

(4) We prove thalv(f") =L, — ((-D" + 1).

We know that the given expression Bt /", f™)is reduced. SV (") is the number of
terms, which igS,| 4+ 1. From Proposition 3.5 we have that this equils— ((—1)" + 1).
The factthatL,, = ¢" + ¢ is well known in number theory and also follows from the facts
thatg andg are the eigenvalues gf and L, = tracg¢”) (from the discussion just before
Proposition 3.5).

This completes the proof of Proposition 3.62

Proof of Proposition 3.7. Recall thatr, takesx € 7 to [x]". Along with the class of 1,
which always goes to itself under boosting, our vector representation of the other essential
classes at any levek|n shows us that,, , is always injective on essential classes. In
other words, since (from Proposition 3.6 parts (1) and (3)): t(S») U {[1]"} —
7,(Sy) U {[1]"} is injective and all classes in,(S,) U {[1]"} are essential and distinct,
we have that,, , is injective on essential classes and always sends essential classes to
essential classes.

We prove next that length equals depth for all essential classes at every.|Besdause
no two elements af,, are Reidemeister equivalent, the lengttfudf’ for anyx € S, equals
the visible length ofx]". Combining this with Claim 3.8 and Lemma 2.4, we see {h#t
has length¢ with 1 < ¢ < n iff [x]" reduces essentially to levéland does not reduce
essentially to any levdl < ¢. The fact thafx]" then cannot reduce to any class (essential
or not) below level follows since length is always less than or equal to depth. For the only
case not covered in Claim 3.8 we note tfgt' has length 1 and reduces to level 1.

From the fact that length equals depth on essential classes and from the proof of
Proposition 3.6(3), the visible length of afy]” for x € S, equals the deptd of [x]".
From Claim 3.8 this implies that € (s ,(Sz) as is needed to imply thak]" reduces
essentially to levedl. Since[x]" cannot reduce to any level below its depth, the existence
of a unigque essential root is proven as follows. There are no other essential roots at any
level because such roots would have depth and length equal to the lengihk ahd thus
would have to reduce essentially to levelThere is exactly one essential root at ledel
sincet, , is injective on essential classes.

Suppose thaty]” is essential and reduces to bgth” and[8]*, with [«]™ and[B]
both essential classes. L[é1 be the unique essential root[of]”. Then the length ofy]”
is d. The injectivity of the boosting functions on essential classes tells us by Lemma 2.4
that length is preserved under boosting of essential classes and Fhug1*, [«]”, and
[¥]" all have lengthd. Thusd divides each ofn, k andn. Henced will also divide



E.L. Hart, E.C. Keppelmann / Topology and its Applications 95 (1999) 1-30 27

£ =gcdm, k). The facts thaty gk = tg.n @aNdiy nta.m = ta., imply that[81¥ and[a]™
also haves]? as their unique essential root. Lgt]’ = s ¢([8]%). Since[5]? is essential
so is[y]¢. As above the facts that ,tg.¢ = tg.m andig it = tar iMply that[y]¢ is a
common reduction of botfB]* and[«]" as desired.

To see that ngf” is weakly Jiang we note first thaf (/") is never zero. Also, every
essential class contains are (a, b). For any suche abelianization quickly shows us that
[x]" # [c]". Thus[c]" is an inessential class and evéRy¢™) contains both essential and
inessential classes.

As in [8], the ability to reduce all essential classes to their essential roots and
the fact that length equals depth for essential classes implies that the orbits of all
essential irreducible classes at any leugt provides a minimal set of-representatives
with N&,, (f) = 3_,,;, NPu(f). That N®,(f) = N(f") follows from the property that
essential classes boost to essential classes, which can be called essential boostability.
In [8] this was a consequence of the fact that wheneféris weakly Jiang and
N(f™) # 0 and we have essential reducibility, then all classes at ieeet essential and
hence so is anything that boosts to lexelHere we do not prove essential reducibility
but are able to prove essential boostability by different means. The varigige
a natural bijection between the unique roots of essential classes atnleaetl the
essential classes at levelthemselves so thaW (f") = N&,(f) as needed. (End of
Example 4.) O

Corrections to [4]. We take this opportunity to note that, in Example 4 of [4], we can
now determine the Nielsen number of the given homeomorphisms that igduge=

e g=1 ¢ b) =dc, ¢(c) = a, ¢(d) = b, wheren > 2. Heren does not indicate a
number of iterations. The Reidemeister trace at level[L]is- [bab~1a~1], so we knew

that N(f) = 1 or 2. Now we can use the inequality from [15] as aboNea () + 2| <

N(f) + 2) to see that there cannot be exactly one essential class if that class has index
two. Thus the Reidemeister trace is reduced as statedvayigl= 2. Jiang and Guo also
prove in [15] that for self-homeomorphisms on surfaces of negative Euler characteristic
there are no essential classes with index greater than 1. See Kelly's work in [16] for
related results. In Example 3 of [4], the Reidemeister trace is printed incorrectly. It should

be
< gq "1 ( ”Z_% )
ol —1— ):,0 -1+ ) a').
da =

4. Conclusion

We have exhibited a homeomorphism (Example 4), in which not all of the properties
listed in Section 2.3 can be proven. Despite this, the basic equalities /) = N(f") =
me NP, (f) were shown to hold. The analysis used to prove this capitalized on a rich
combinatorial structure of essential algebraic orbits that may be present in a similar form
for other self mappings. While we have shown that the equalities above will not be true
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for maps in general on the double torus, there exists the possibility that the following
conjecture is true.

Conjecture 4.1. If f:M — M is a homeomorphism on a surfad¢ of nonpositive
Euler characteristic, theN @, (f) = me NP, (f) and whernW (/") #0thenN®, (f) =
N(f™). Furthermore, each essential clas§' has exactly one essential rogfx]") (and
perhaps also inessential roots). For a fixgthe sefr([x]"): [x]"is essentidlis a minimal
set ofn-representatives for computing®,, (f).

If the conjecture is not true in general, then one can ask for conditiond @md f
that do make it valid. For example, the case of a pseudo-Anosov homeomorphism on a
surface, discussed in [15], is an easy example where the conjecture®hdlais. is the
case because for a pseudo-Anosov homeomorpfiisme has thatv (/") = | fix(f")| for
all n. Thus every fixed point of " is essential and every geometric Nielsen clasg’bis
a singleton. Each periodic point with minimal peribds anessentiafixed point for £
for all m € N. It is immediate thatf has essential reducibility, injective boost functions,
length = depth, and that every essential class has a unique essential root. Furthermore,
for such homeomorphisma/®, (f) andNP, (f) are equal to their respective minimum
numbers rather than being merely lower bounds. Using Thurston’s classification of surface
homeomorphisms and the Jiang—Guo [15] representatives in each isotopy class, it may be
possible to do this in general on surfaces. However, given an essential periodiegtass
knowing that the length dix]" equals the depth gfv]” does not allow us to complete the
computation until we know what these values are. Thus the computation of the ordinary
Nielsen number#/( /") will always remain important in the computation 8%, ( f) and
NP, (f). For this reason, while the theory of train tracks for surface homeomorphisms
should certainly be a part of such calculations, we feel that our algebraic approach also
warrants consideration, not only for homeomorphisms but also when the map may not
induce an automorphism. As we have seen, therein lie some very interesting combinatorics
which we hope, someday, can be more completely understood.

There are many opportunities for new tools to be applied to the calculation of the
Nielsen periodic numbers. Geometric facts, like the Jiang—Guo inequalities (in Example 4)
(see [15]) or various results that provide bounds for the total index of a Nielsen class
(see [16]), are extremely useful. We have shown that the techniques of abelianization are
very powerful. Additionally, subgroups other than the commutator should be considered
in this regard. For fundamental groups whose abelianizations have torsion, results could
also be developed. For a givefy the graph whose nodes are the Nielsen classes and
whose edges are determined by the boosting functions is an important object of study.
Understanding the structure of this graph, including the actioh@f the graph, is crucial
when the properties and formulae of Section 2 do not hold.

6 We note that the map in Example 4, since it is reducible, is not of this type.
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