
Topology and its Applications 95 (1999) 1–30

Explorations in Nielsen periodic point theory for
the double torus

Evelyn L. Harta,∗, Edward C. Keppelmannb

a Department of Mathematics, Colgate University, Hamilton, NY 13346-1398, USA
b Department of Mathematics, University of Nevada Reno, Reno, NV 89557, USA

Received 20 August 1996; received in revised form 17 May 1997, 4 November 1997

Abstract

Forf :X→X, withX a compact manifold, Nielsen periodic point theory involves the calculation
of f -homotopy invariant lower bounds for|fix(f n)| and for the number of periodic points of minimal
periodn. In this paper we combine the covering space approach to Nielsen periodic point theory with
an algebraic method of Fadell and Husseini to study the behavior of the Nielsen periodic classes of
maps onT 2#T 2, the surface of genus two. Nil and solvmanifolds have basic properties for Nielsen
periodic classes that make the calculation of these lower bounds possible. In this paper we accomplish
two objectives. We show firstly that virtually all of these basic properties for the periodic classes fail
in general onT 2#T 2 as well as on a collection of manifolds of arbitrarily high dimension. Secondly,
despite these difficulties, we develop and apply techniques involving linear algebra, combinatorial
group theory, number theory, and geometric facts from the theory of surface homeomorphisms, to
make some calculations of the Nielsen periodic numbers. In our final example the combinatorial
structure of the essential Nielsen periodic classes is fully displayed in a manner which relies on some
of the classic identities involving the Fibonacci and Lucas numbers. 1999 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

Suppose thatf is a self map on a compact manifoldX. If X is a nilmanifold or
solvmanifold, then the computation of the sequence{N(f n)}∞n=1 and the relationship of
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this sequence to the Nielsen periodic numbers off is well understood. However, for many
other spaces, such as the double torus or handcuff spaceT 2#T 2, the relationship between
the Nielsen periodic numbers and the ordinary Nielsen numbers for various iterates is
much more complicated, making these numbers difficult to compute. We explore these
complications in a variety of examples of self maps onT 2#T 2 as well as analogues of
these self maps on higher dimensional spaces. These examples illustrate the differences
between the periodic structure on nil and solvmanifolds and on the manifolds studied here.

Givenf :X→X on a finite polyhedron or a compact manifoldX, basic Nielsen theory
involves finding a lower bound, the Nielsen numberN(f ), for the number of fixed points
of any mapg homotopic tof (see [2,14,18]). We partition the fixed points off into
equivalence classes. ThenN(f ) is the number of fixed point classes which persist in
some sense of equivalence under any homotopy off . Such classes are called essential.
Alternatively,N(f ) can be obtained by partitioningπ1(X) into algebraic classes and
assigning an index to each class.N(f ) is then the number of essential classes (those with
nonzero index). The Nielsen periodic numbersNΦn(f ) (see [11]) andNPn(f ) (see [10])
are homotopy invariant lower bounds for the number of periodic points off with period
dividingn and for the number of periodic points with minimal periodn, respectively. These
periodic numbers are invariant with respect to homotopies off (i.e., not off n). Both
NΦn(f ) andNPn(f ) are computed by analyzing the ordinary Nielsen classes of eachf n

and the relationship of these classes to one another as induced by the natural inclusions of
fix(f m) into fix(f n) whenm|n.

The Reidemeister trace off [6,13], which has also been called the generalized Lefschetz
number off , is an algebraic object from which the essential Nielsen classes and their
indices, and thus the Nielsen number, can be determined. The Reidemeister trace is a
formal sum overZ of algebraic classes. Provided this trace is in reduced form, the
number of nonzero terms is equal toN(f ). To calculate the Reidemeister trace for the
mapf on a closed surface, one can use the method of Fadell and Husseini [5], which
involves the Fox calculus [3]. There are two fundamental reasons why such computations
become so problematic for the Nielsen periodic numbers. The first is that in order to draw
conclusions from the Reidemeister trace it must be in a reduced form, i.e., each algebraic
class must appear in the sum at most once. Because there is no known procedure that can
always be used to determine whether two classes inπ1(T

2#T 2) expressed with different
representatives are equal, we must use a variety of algebraic and geometric techniques to
reduce the Reidemeister trace. The second reason for complications in the calculation of the
periodic numbers onT 2#T 2 arises from the process of iteration. The equivalence relation
that produces the algebraic classes is different for each iterate off . While the algebraic
classes for various iterates are related by certain boosting functions (see Section 2), it
can be difficult to know when an algebraic class for somef n reduces to a class for a
lower iterate. The software package Magma [1] can often find reductions of classes and
demonstrate equivalence between two classes in a way that can always be checked by
hand, whereas proofs of irreducibility and the distinctness of certain algebraic classes are
much harder to come by.
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A nilmanifold is a generalization of a torus,Rn/Zn, whereRn has the structure of a
nilpotent Lie group andZn is a subgroup. A solvmanifold is also a coset space of the
formRn/Γ , whereRn need only be solvable andΓ need not be discrete. In [8] a number
of basic properties for the essential Nielsen periodic classes on nil and solvmanifolds are
established. These include essential reducibility (i.e., essential classes which reduce do
so to essential classes), length= depth (i.e., a class is irreducible at leveln iff its orbit
containsn distinct classes), the injectivity of the inclusions (fix(f m) ⊆ fix(f n)) when
applied to essential classes, and the uniqueness of roots of essential classes.1 In addition
to having these properties, most maps on nil and solvmanifolds are weakly Jiang (i.e.,
either all Reidemeister classes are essential or none are). When this is the case, the other
properties always make it possible to express theNPn(f ) andNΦn(f ) in terms of the
numbers{N(f m): m|n}. One of the main objectives of this paper, in addition to describing
techniques for computation onT 2#T 2, is to show that onT 2#T 2 as well as other manifolds
of arbitrarily high dimension, all of these properties fail to hold in general. Despite these
observations, our last example will demonstrate what is possible when many of them do
hold. This suggests that in future work, as well as trying to make sense of this strange
behavior, one might search for general conditions on a map to assure that the techniques
for computingNPn(f ) andNΦn(f ) implied by these properties can be used on the double
torus. However, since general algorithms for the computation ofN(f n) itself are not
known for the double torus, such formulae which expressNPn(f ) andNΦn(f ) in terms
of Nielsen numbers are only part of the story.

The paper is organized as follows. Section 2 contains the required prerequisites
of Nielsen periodic theory, covering spaces, and the Reidemeister trace. We describe
and motivate the basic properties that hold for essential periodic classes on nil and
solvmanifolds (see [8]). This provides a starting point for comparison with the double
torus and certain higher dimensional analogues.

In Section 3 we present our four examples for mapsf on the double torus. In this
section we also develop new techniques for the use of abelianized Reidemeister classes in
determining the length and depth of essential classes. While the abelianization methods of
[5] are useful in all our examples, the new techniques described here are used in Example 3
to show a case where length6= depth for essential classes.

Example 1 shows the failure of essential reducibility, and of the weakly Jiang property,
and provides a case in whichNΦn(f ) 6=∑m|nNPm(f ). Example 2 shows the failure of
injectivity of the boosting functions on essential classes and the failure of uniqueness of
essential roots. This provides a situation in whichNΦn(f ) 6= N(f n) 6= 0.2 These first
two examples provide a short and surprising introduction to what can, in some sense, go

1 Heath and Keppelmann [8] also discuss the property of essential reducibility to the GCD. As is done in our
Example 4, this property is usually used to prove the uniqueness of roots of essential classes. Since we show that
such uniqueness fails to hold in general, we have not attempted to find a counterexample for essential reducibility
to the GCD.
2 The papers [10,11] also contain examples for which these two basic formulas fail to hold. However, as these
are in situations where the fundamental group is finite, they are of a significantly different nature than what is
presented here.
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wrong in the calculation of Nielsen periodic point numbers for self-maps on the double
torus.

After Example 3 we observe that for any self-mapf of T 2#T 2 and anyk > 1 the self-
mapf ×g on(T 2#T 2)×Sk , whereg is a map of degree 2, will have an algebraic periodic
point structure that is isomorphic to that off . Thus our counterexamples and examples can
be reproduced in any dimension greater than 3.

In Example 4 we demonstrate a situation in which, although not all of the basic
properties can be verified, it is still possible to obtain the formula

NΦn(f )=N(f n)=
∑
m|n

NPm(f ) for all n.

This is done with the application of a Nielsen and Lefschetz number inequality for
surface homeomorphisms by Jiang and Guo from [15]. It is here that there is a surprising
combinatorial structure involving Fibonacci numbers for the essential classes. We prove
thatN(f 2n+1)=L2n+1, where{Li}∞i=1 is the sequence of Lucas numbers, the companion
sequence to the Fibonacci numbers (see [12]). ThusL1 = 1, L2 = 3, andLn = Ln−1 +
Ln−2. The techniques presented here allow us to complete the calculation in Example 4
of [4]. We also take this opportunity to correct a typographical error in Example 3 of [4].

In Section 4 we conclude with a conjecture and several ideas for new techniques
that could be developed in this subject, especially if Thurston’s classification of surface
diffeomorphisms is considered. We hope that the discussions and examples presented here
will promote further study in what we have found to be a very interesting subject. We
will call this study, which involves combinatorial group theory, number theory, and linear
algebra, combinatorial Nielsen theory.

2. Preliminaries

There are two equivalent approaches to Nielsen fixed point theory. These two approaches
define the Nielsen classes differently. Since both approaches are used in our primary
references, we feel that it is important to give a complete description of the equivalence
between the two. One approach involves comparing loops inX and the second involves
comparing lifts off :X→ X to the universal coverp : X̃→ X. (For more details the
reader is encouraged to consult [14,18].) In addition to these two approaches, there is also
a great variety of notation in the literature for the Reidemeister action.3 While most of the
following is standard, we hope this sketch provides some insight for the reader; especially
in allowing for an appreciation of the compatibility of the covering space approach with
what has been done previously for periodic points. We feel the covering space approach
provides a much cleaner relationship between the fixed points of different iterates in that
we can now view the inclusions fix(f m)⊆ fix(f n) on the algebraic level as arising from
similar inclusions of fixed points for the iterates of lifts off (see [14]).

3 For example, one can choose the Reidemeister action to be given byα · γ = αγφ(α−1). This is done in [8–
11] whereι̂m,n(α)= αf#,m(w)(α) · · ·f#,(n−m)(w)(α). One can also have[α] indicatep(fix(f̃ α)). Our choice is
compatible with [5].
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2.1. Nielsen theory

Here we present material from [14,18]. Suppose thatf :X→ X is a map on a finite
polyhedron or compact manifold. In what follows fixN(f ) will denote the collection
of geometric Nielsen fixed point classes off . The equivalence relation that determines
these classes can be described in two ways. First, forx,y ∈ fix(f ), x ∼f y iff there is
a pathδ from x to y so that (rel endpoints)δ ∼ f (δ). Equivalently,x ∼f y iff there is
a lift f̃ ′ of f such thatx,y ∈ p(fix(f̃ ′)). As we will see, this equivalence corresponds
to an action ofπ1(X) on itself. For a homomorphismψ :G→ G on any groupG, the
orbit, or Reidemeister class, of the Reidemeister action that containsg ∈G is denoted by
[g] = {ψ(h)gh−1: h ∈G}. The symbolR(ψ)will denote the set of Reidemeister classes.4

We begin by considering the path approach. Fix coordinates by choosing anx0 ∈X and a
pathω fromx0 tof (x0). Thenf induces the homomorphismf#,ω :π1(X,x0)→ π1(X,x0)

by the rule thatf#,ω(α) is the loop class containingωf (α)ω−1. We define a function
ρ : fixN(f )→R(f#,ω) as follows. For anyx ∈ fix(f ) we associate the Nielsen class of
x with the element inR(f#,ω) containingωf (C)C−1 whereC is any path fromx0 to x.
It can be checked that if̂C is another path fromx0 to x thenωf (Ĉ)Ĉ−1 will belong to
the same Reidemeister class inR(f#,ω). It should also be verified that this correspondence
respects the Nielsen equivalence relation on fix(f ) defined above. Thus the Reidemeister
classes off#,ω can be thought of as the fixed point classes off as long as we recognize
that some Reidemeister classes will correspond to empty fixed point classes.

For the covering space approach we will letD denote the collection of covering
transformations of the universal covering spaceX̃ of X, with covering projectionp : X̃→
X. These are homeomorphisms̃X→ X̃ which project to the identity onX. We recall that
D is isomorphic toπ1(X,x0), the homotopy classes of loops based atx0. The isomorphism
Θ :π1(X,x0)→ D is defined as follows. Eachβ ∈ π1(X,x0) gives rise to a permutation
of p−1(x0) and hence a covering transformationΘ(β) : X̃→ X̃ determined by letting, for
eachy ∈ p−1(x0),Θ(β)(y) be the endpoint of the lift ofβ that begins aty.

In the covering space approach we will again need to fix coordinates. To do this we fix a
lift f̃ of f and a base point̃x0 ∈ p−1(x0). Then every lift off can be written uniquely in
the formαf̃ for some covering transformationα. The homomorphismφ :D→D, induced
by f , is then specified by requiring that for each covering transformationα we letφ(α)
be the unique covering transformation which satisfiesφ(α)f̃ = f̃ α. In order to guarantee
compatibility between the coordinate choices for the covering space and path approaches
we will require thatf̃ (x̃0) be the endpoint of the lift̃ω of ω which begins atx̃0. The
following diagram will commute

π1(X,x0)
f#,ω

Θ

π1(X,x0)

Θ

D φ D

.

4 This notation is standard, as is the use of the similar symbolR(f ) to denote the number of orbits.
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This means that in essence we may useΘ to identifyf#,ω with φ, R(f#,ω) with R(φ), and
D with π1(X,x0). When nonempty,p(fix(β−1f̃ )) = p(fix(β̂−1f̃ )) iff β̂ ∈ [β] ∈ R(φ).
In analogy with what we did for paths,̂ρ : fixN(f )→ R(φ) in this context is given
by specifying thatρ̂([x]) corresponds to the unique Reidemeister class[α] ∈ R(φ) for
which x ∈ p(fix(α−1f̃ )). Note that hereα corresponds toΘ of the loop class containing
ωf (C)C−1 from the path approach. This yields compatibility between the two approaches
since as functions from fixN(f ) to R(φ) we have thatΘρ = ρ̂. Henceforth we will not
mentionΘ, and we will not distinguish betweenρ andρ̂.

2.2. Nielsen periodic point theory

For ψ :G→ G and g ∈ G we will use [g]k to denote the class ofR(ψk) which
containsg. Similarly, the element of fixN(f k) containingx will be denoted by[x]k. We
let ρk : fixN(f k)→ R(f k#,k(ω)) be the functionρ defined above forf k . When iterating
the mapf , whether the covering space or path approach is used, it is important to pick
coordinates for the iterates which are compatible. As in [10,11] for for the path approach
givenω :x0→ f (x0) we let, for each natural numbern, n(ω)= ωf (ω)f 2(ω) · · ·f n−1(ω)

be the path of choice betweenx0 andf n(x0). Now suppose thatx ∈ fix(f m) for some
m|n. Let C be a path fromx0 to x. Then the Reidemeister class forx with f m is given
(usingρm in place ofρ1 = ρ) by ρm([x]m) = [m(ω)fm(C)C−1]m. The relation between
β = ρm([x]m) andρn([x]n) is described by the change of level boosting function in the
following definition.

Definition 2.1. Suppose thatψ :G→ G is a homomorphism. Then for positive integers
m, n with m|n defineιm,n :G→G by

ιm,n(β)=ψn−m(β)ψn−2m(β) · · ·ψm(β)β.

It is not hard to check thatιm,n induces a function (with the same name) fromR(ψm)→
R(ψn). In our case,G= π1(X,x0) andψ = φ.

For the covering space approach we must find a choice of coordinates forf n that
is compatible with the choice ofx0 andn(ω) made above for the path approach. This
algebraic approach appears in [14], but we extend it here to nonabelian fundamental
groups. We note that since the lift ofω which begins at̃x0 will end at f̃ (x̃0), we have
that the lift ofn(ω) beginning at̃x0 will end atf̃ n(x̃0). Our choice of liftf̃ for f naturally
gives rise tof̃ n for f n and thus is compatible with the choice of coordinates for the path
approach.

The following lemma allows us to view the inclusion of Nielsen classes from one iterate
to another as equivalent to the inclusion of entire fixed point sets of one lift into those of
its iterate. Suppose thatm|n and thatx ∈ p(fix(α−1f̃ m)). Thenx ∈ p(fix((α−1f̃ m)n/m)).
Expanding this composition and moving all theα−1 past allf̃ m by the relationf̃ mα−1 =
φm(α−1)f̃ m yields the following.
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Lemma 2.2. Suppose thatf :X → X and m, n are natural numbers withm|n. The
following diagram commutes

fixN(f m)
ρm

i∗

R(φm)
ιm,n

fixN(f n)
ρn R(φn)

,

wherei∗ is induced by inclusion. Additionally, whenk|m|n, we haveιm,nιk,m = ιk,n.

Now, having given a complete correspondence between the path approach and the
covering space approach for partitioning each fix(f n), we will, for the remainder of this
paper, use solely the covering space approach. This is due to our heavy reliance on the
covering space approach of the Reidemeister trace (see [13,4–6]). From now on we will
useπ in place ofπ1(X,x0).

2.3. Nielsen periodic numbers

Classical Nielsen theory follows the partitioning of fix(f ) into Nielsen classes by the
use of an integer valued fixed point index for eachF ∈ fixN(f ). (For example, see [2,
14].) A class is essential iff its index is nonzero. We refer to the index of an algebraic
class as being zero if the class is empty. Otherwise, the index of an algebraic class is the
same as the index of the unique Nielsen class that corresponds to it underρ. The Nielsen
numberN(f ), a homotopy invariant, is then the number of essential classes in fixN(f ).
The classical lower bound property given by

N(f )6min
{|fix(g)|: g ∼ f }

follows from the fact that for anyg homotopic tof there is a one-to-one correspondence
between the essential geometric classes forf and those forg.

As stated above, the study of the Nielsen periodic numbers (see [10,11]) is a study of
what happens to Nielsen classes and their essentiality under iteration. More specifically,
for an algebraic class[α]m of f m, we must consider the depthd([α]m) and length
l([α]m) of [α]m. The depthof [α]m is the smallestk|m so that[α]m is in the image of
ιk,m :R(φk)→R(φm). We say that[α]m is irreduciblewhen its depth ism. In this case if
[α]m is also essential then we know that the points of fix(f m) that are inp(fix(α−1f̃ m))

are all of minimal periodm. If [β]m is an irreducible class and ifιm,n([β]m)= [α]n, then
[β]m is said to be aroot of [α]n.

The following is a useful fact that allows us to determine reducibility of a Reidemeister
class by studying a representative of the class. It justifies our abuse of notation in thinking
of theιm,n as functions on eitherπ orR(φ).

Lemma 2.3. The class[α]n reduces to levelm|n iff there is aγ ∈ π such that

ιm,n(γ )= φn−m(γ ) · · ·φ2m(γ )φm(γ )γ = α.
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Proof. Suppose[α]n reduces to levelm. Then there areδ,β ∈ π such thatιm,n(δ) =
φn(β)αβ−1. Thus ιm,n(φm(β−1)δβ) = α. The other direction follows from the fact that
ιm,n is well defined on Reidemeister classes.2

The basic principle that underlies all of Nielsen periodic point theory is that periodic
points of minimal periodm occur in orbits of lengthm. In other words, ifx has minimal
periodm, then so does each element of the orbit{x,f (x), . . . , f m−1(x)}. Algebraic length
is a notion that measures the extent to which this basic principle is reflected by the algebra.
We note thatφ induces a well defined action onR(φm). Thelengthl = l([α]m) of [α]m is
the number of distinct Reidemeister classes in the algebraic orbit

〈[α]m〉 = {[α]m, [φ(α)]m, [φ2(α)]m, . . . , [φm−1(α)]m} of [α]m.
Because[α]m = [φm(α)]m we know thatl([α]m)6m. The length of a class is obviously
well defined on orbits. The following shows that when the boosting functions are injective,
the length of an orbit is independent of the level at which a given class is considered.

Lemma 2.4. Suppose thatιm,n :R(φm)→R(φn) is injective. Givenα,β ∈ π , if [β]n =
ιm,n([α]m) thenl([β]n)= l([α]m).

Proof. Let l be minimal so that there is aγ ∈ π with φm(γ )φl(α)γ −1 = α. Since
[β]n= [ιm,n(φl(α))]n = [φl(β)]n, we know thatk = l([β]n)6 l. Also,

[β]n = φk([β]n)= [φk(ιm,n(α))]n = [ιm,n(φk(α))]n = ιm,n([φk(α)]m).
By hypothesisφk([α]m)= [α]m sok > l and thusk = l as claimed. 2

Since the index of[α]n and of[φ(α)]n are equal [10], the property of being essential is
also a property of orbits. Likewise, depth is well defined on orbits [10]. The algebra does
exactly reflect the geometry in the sense that if the orbit〈[α]m〉 is essential and irreducible
then we know that it must contribute a positive multiple ofm points of minimal periodm
to any map homotopic tof .

As discussed in [10,11] there are two Nielsen type periodic numbers:NPn(f ) and
NΦn(f ). The numberNPn(f ) is defined to ben times the number of essential irreducible
orbits of f n. As described above, this is anf -homotopy invariant lower bound for the
number of periodic points off that have minimal period exactlyn. The numberNΦn(f ),
which is significantly more complicated to define thanNPn(f ), is anf -homotopy invariant
lower bound for |fix(f n)| (as opposed toN(f n) which would be anf n-homotopy
invariant for|fix(f n)|). A set ofn-representatives forf is a collection of algebraic orbits
from various levelsm|n with the property that any essential orbit at any levelm|n will
reduce to an orbit in this set. The height of a set ofn-representatives is the sum of the
depths of all its members. The numberNΦn(f ) is then the minimal height over all sets
of n representatives forf . Of course,N(f n) is always a lower bound forNΦn(f ) since
NΦn(f ) restricts one to homotopies off n induced from homotopies off . The definition
of NΦn(f ) is designed to count periodic points of periodn by considering all algebraic
orbits at all levelsm|n. Those orbits which are essential at some levelm|n will contribute
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toNΦn(f ) even if their images under boosting at leveln are inessential. The choice of a
minimalset ofn-representatives seeks to avoid duplication and forces the counting of each
of these essential orbits at the level of their depth. (I.e., classes at different levels which
represent the same geometric points should only be counted once according to the minimal
period of those points.)

By “the computation ofNPn(f ) andNΦn(f )” one can mean several things. In previous
work such as that of [8,9] it is shown that for self-maps on compact solvmanifolds
there is a standard procedure by which the numbers{N(f m): m|n} can be used
to expressNPn(f ) and NΦn(f ). Thus the computation of the periodic numbers is
possible using the computation of the ordinary Nielsen numbers of the iterates off

(which for solvmanifolds are also very well understood and computable [17,21,22]).
Although strides forward are being made, in the case of surfaces the computation of
ordinary Nielsen numbers is far less well understood. In this sense then, calculating
the periodic numbers in terms of the ordinary Nielsen numbers of the iterates, although
far from what this paper can accomplish, would be somewhat less satisfying than for
solvmanifolds. Despite this, we will indicate a number of powerful techniques which, in
some cases, can determineNPn(f ), NΦn(f ) andN(f n) for self-maps on the surface
T 2#T 2.

As a point of reference, we begin with a basic understanding of how the Nielsen
classes of the various iterates off fit together on nil and solvmanifolds to compute the
periodic numbers. We list the relevant properties below. Although not quite described in
this way, these properties were proved for all maps on tori in [11] and were extended
by fibre techniques to nil and solvmanifolds (except for (P5) below) in [8]. All maps
on nilmanifolds are weakly Jiang and for any mapf on a solvmanifoldS there are
simple criteria, involving the Nielsen numbers on the fibers in a Mostow fibration forS,
that determine whetherf is weakly Jiang. However, even when the map is not weakly
Jiang, the Nielsen periodic numbers are still quite computable on nil and solvmanifolds as
shown in [9]. For us the properties below will represent, when they are valid, the simplest
way in which the periodic numbers can be formed. This puts us in an excellent position
to appreciate just how complicated the situation can be onT 2#T 2 or on certain other
manifolds of arbitrarily high dimension.

(P1) Essential reducibility. If ιm,n([β]m)= [α]n with [α]n essential, then[β]m is also
essential. This is important in allowing one to relate theNPn(f ) andNΦn(f ) by
the formula

NΦn(f )=
∑
m|n

NPm(f ).

Möbius inversion (see [11]) then also allows one to writeNPn(f ) in terms of
{NΦm(f ): m|n}.

(P2) Injectivity of ιm,n on essential classes. If ιm,n([γ ]m)= [α]n = ιm,n([β]m) where
[α]n, [β]m, and[γ ]m are all essential, then[β]m = [γ ]n. Such a condition allows
us to track with combinatorial arguments the Nielsen classes at various levels (see
(P5) below).
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(P3) Length = depth on essential classes. If [α]n is essential and irreducible then
its length isn. This indicates that the basic geometric principle that points of
minimal periodn come in orbits ofn points is exactly reflected by the algebra.
In this case,NPn(f ) is the number of essential irreducible classes at leveln, and
NPn(f )6N(f n).

(P4) Uniqueness of roots for essential classes. If [α]n is essential, then there is a
unique irreducible class[β]m for somem|n for which ιm,n([β]m) = [α]n. This
means thatNΦn(f ) can be computed by simply adding the depths of the roots of
all orbits which are essential at any levelm|n. As is shown in [8] this is actually
a consequence of (P1), (P2) and a property called essentially reducible to the
GCD. An essential class[α]n is essentially reducible to the GCD if whenever[α]n
reduces to essential classes at levelss andk, then[α]n also reduces to an essential
class at the levelgcd(s, k).

(P5) Weakly Jiang. The mapf n is weakly Jiang provided that eitherN(f n) = 0 or
else every element ofR(f n) is essential.This means that whenN(f n) 6= 0 the
image of anyιm,n consists only of essential classes. In conjunction with all of the
properties above, this then implies that

NΦn(f )=N(f n) whenN(f n) 6= 0.

This, along with the formula from (P1) is the desired connection between the
Nielsen numbers and the periodic numbers. LetM(f,n) be the set of maximal
divisorsm of n for whichN(f m) 6= 0. If N(f n) = 0 and if we know that for all
m ∈M(f,n) thatf m is weakly Jiang, then we get from all of the above properties
that

NΦn(f )=
∑

∅6=µ⊆M(f,n)
(−1)#µ−1N

(
f ξ(µ)

)
,

whereξ(µ) is the gcd of all numbers inµ. In conjunction with the formula in (P1)
we can then also compute theNPn(f ).

2.4. Calculating the Reidemeister trace onT 2#T 2

Let π = π1(T
2#T 2)= 〈a,b, c, d :R〉 , with R = aba−1b−1cdc−1d−1. BecauseT 2#T 2

is aK(π,1), every endomorphismφ :π→ π is induced by a self-mapf onT 2#T 2. Thus
we may consider endomorphisms rather than continuous maps.

The Reidemeister trace off n, R(f n, f̃ n) (for the chosen liftf̃ n), previously known
as L(f n, f̃ n), is an element of the freeZ-moduleZ(R(φn)). This trace incorporates
information about both the Nielsen classes and their indices into a single algebraic object.

Let X̃ be the universal cover ofT 2#T 2. To defineR(f n, f̃ n) (see [13,6]) we consider
theZ-homomorphisms̃f n∗ :C∗(X̃,Z)→C∗(X̃,Z) induced byf̃ n on the cellular chains of
X̃. Let τn :Z[π] → Z(R(φn)) be defined by extending linearly the function that for each
α ∈ π is given byτn(α)= [α]n. ThenR(f n, f̃ n) is defined to be

∑
q(−1)qτn(trace(f̃ nq )) ∈

Z(R(φn)). WhenR(f n, f̃ n) has been reduced so that each Reidemeister class appears
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at most once (no easy task, as the reader will see in Example 4), then the coefficient of
each Reidemeister class is its index. Thus, in this reduced Reidemeister trace, the essential
classes are exactly the classes with nonzero coefficient, andN(f n) is the number of such
terms.

Let F be the free group〈a,b, c, d〉 . The Fox calculus (see [3]), provides a partial
derivative function fromZ[F ] toZ[F ] for each generator ofπ . Once a partial derivative is
calculated, the result is immediately interpreted as an element ofZ[π]. Let x1= a, x2= b,
x3= c, andx4= d . The Fox derivatives are defined by

∂xi

∂xj
= δij , ∂1

∂xj
= 0, and

∂uv

∂xj
= ∂u

∂xj
+ u ∂v

∂xj
, for u,v ∈ F.

These definitions imply that for anyw ∈ F , ∂w−1/∂xj =−w−1∂w/∂xj . Let φF :F → F

be a homomorphism that for eachi = 1, . . . ,4 takesxi to a word inF from the coset
determined byφ(xi). Many different homomorphismsφF will induce a givenφ. Different
choices ofφF give different Reidemeister traces but the same Nielsen number. In this
paper, having chosenφF for φ we will always use the iterates(φF )n (or justφnF ) in our
study off n. Fadell and Husseini prove in [5] that, forf :T 2#T 2→ T 2#T 2,

R(f n, f̃ n)= τn
(

1− ∂φ
n
F (a)

∂a
− ∂φ

n
F (b)

∂b
− ∂φ

n
F (c)

∂c
− ∂φ

n
F (d)

∂d
+An

)
,

whereAn is the contribution toR(f n, f̃ n) due to the trace of̃f n2 . An algorithm developed
in [4] can be used to calculateAn. The algorithm involves writingφnF (R) in the form∏r
i=1yiR

λi yi
−1 wherer ∈ Z+, λi ∈ Z, andyi ∈ F for eachi. ThenAn =∑i λiyi ∈ Z[π].

Even though this expression forφnF (R) is not unique,An is uniquely determined [5].
Whenφ is an automorphism, the elementφF (R) must be a conjugate ofR orR−1 (see

p. 49 of [20]), which implies thatAn, for everyn, will be a monomial inZ[π]. Whenφ
is not an automorphism, there is always a choice forφF for whichφF (R) = 1 soA1= 0
(see [20]), and henceAn = 0 for everyn when we useφnF . The latter situation occurs in
our first three examples.

3. Techniques and examples

As we have mentioned, the key difficulty in using the Reidemeister trace for calculations
of ordinary Nielsen numbers is in the simplification of the sums inZ(R(φ)). That is, we
must know how to decide whether two Reidemeister classes (expressed in terms of different
representatives) are equal. As we will see from the examples in this paper, abelianization
can play a significant role in this process. Letsa, sbsc, sd :F → Z denote the exponent sum
homomorphisms fora, b, c andd , respectively. Since every such homomorphism sends
R to zero, these induce homomorphisms (with the same names) fromπ to Z. We define
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Ab :π → Z4 by Ab(α) = ᾱ = (sa(α), sb(α), sc(α), sd(α)). The idea of abelianization is
illustrated by the following commutative diagram:

〈a,b, c, d :R〉 φ

Ab

〈a,b, c, d :R〉
Ab

Z4 φ̄
Z4

.

The homomorphism̄φ is represented by the 4× 4 matrix formed from abelianizing
φ (e.g., φ̄2,3 = sb(φ(c))). With w ∈ π we will usew to denote Ab(w). Two elements
[w]1, [z]1 ∈R(φ) are then distinct if the cosetsw+ (φ̄ − I)(Z4) andz̄+ (φ̄ − I)(Z4) are
distinct. Unfortunately, abelianization can never be used to prove that two Reidemeister
classes are equal. If we are lucky and all the summands inR(f, f̃ ) project to distinct
cosets, then this is not a concern.

Our first three examples involve endomorphisms onπ of the formφ(a) = φ(d) and
φ(b) = φ(c). Then the natural choice forφF givesφnF (R) = 1 for all n so thatAn = 0
for all n as mentioned at the end of Section 2. This does not occur in Example 4 where a
discussion of theAn has been relegated to the proof of Proposition 3.6.

Example 1. We begin our survey of what can go wrong for the periodic numbers with an
example that, among other things, hasNΦn(f ) 6=∑m|nNPm(f ). Those readers who are
acquainted with other examples of this in the literature, such as maps on a wedge of spheres
(e.g., see Example 3.1 in [10]), may be surprised to find the same inequality in this more
natural setting of closed manifolds. This example also shows the failure of several other of
the properties listed in Section 2.3.

Suppose, onT 2#T 2 with π = 〈a,b, c, d : R〉, that φ :π → π is given by φ(a) =
φ(d)= ab−1c, φ(b)= φ(c)= b−2. LetφF be the homomorphism onF that has the same
definition as that just given forφ onπ .

We haveAn = 0 for all n as above, and

R(f, f̃ )= τ1
(
1− 1+ b−1+ b−2)= [b−1]1+ [b−2]1.

These two classes are distinct and are both distinct from[1]1 by abelianization, and thus
[1]1 is not essential. To aid the reader we will outline why this is true. Now

φ̄ − I =



0 0 0 1

−1 −3 −2 −1

1 0 −1 1

0 0 0−1


, b̄i =



0

i

0

0


and 1̄=



0

0

0

0


.

The statement amounts to observing that

{b̄−1− b̄−2, 1̄− b̄−1, 1̄− b̄−2} = {(0,1,0,0)T , (0,2,0,0)T }.
While the elements of this set do belong to(φ̄ − I)(R4), they are not contained in
(φ̄ − I)(Z4).
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At level 2 we haveφ2(a)= φ2(d)= ab−1c, φ2(b)= φ2(c)= b4. Thus

R(f 2, f̃ 2)= τ2
(
1− 1− 1− b− b2− b3)=−[1]2− [b]2− [b2]2− [b3]2.

Note that[b3]2= [φ2(b)b−1]2= [1]2. Using the same technique of abelianization we can
see that the reduced form of the Reidemeister trace at level 2 is

R(f 2, f̃ 2)=−2[1]2− [b]2− [b2]2.
We note that[ι1,2(1)]2 = [1]2 so that the essential class[1]2 reduces to the inessential

class[1]1. ThusT 2#T 2 does not have essential reducibility. SinceN(f ) = 2 6= 0 and
[1]1 is inessential,f is not weakly Jiang. We also note that[ι1,2(b−1)]2 = [b]2, and
[ι1,2(b−2)]2 = [b2]2. A minimal set of 2-representatives is{[1]1, [b−1]1, [b−2]1}, so
NΦ2(f ) = 3. The summation formula from (P1) in Section 2.3 fails sinceNΦ2(f ) =
3 6=NP1(f )+NP2(f )= 2+ 0. We do get thatNΦ2(f )= 3=N(f 2).

As we have seen in Example 1, it is important for several reasons to be able to distinguish
Reidemeister classes. This is required not only to reduce the Reidemeister trace but also
to determine the lengths of the orbits of the classes. In addition, we need to know whether
a class is reducible in order to determine its depth. Since essentiality, length, and depth
are properties of orbits (see [10]), it is instrumental in these calculations to recognize how
the terms in the reduced form ofR(f n, f̃ n) combine into orbits. We would like now to
indicate the role played by abelianization in this process. First, some new definitions are
required.

Definition 3.1. Suppose thatX is a finite polyhedron withπ1(X) having abelianization
π1(X) ∼= Zr . Let φ :π1(X)→ π1(X) be a homomorphism and[α]n ∈ R(φn). We say
that [α]n is abelian reducibleto levelm|n provided that there is aEv ∈ Zr such that for
ῑm,n = I + φ̄m + φ̄2m + · · · + φ̄n−m we have that̄ιm,n(Ev)= ᾱ. Theabelian depthof [α]n
is the smallestd|n such that[α]n abelian reduces to leveld . Theabelian lengthof [α]n is
the smallestl|n such that(φ̄l − I)ᾱ ∈ (φ̄n − I)(Zr ).

We note that, just as with ordinary length and depth, the notions of abelian length and
abelian depth are well defined on orbits. Linear algebra and two fundamental inequalities,
abelian length6 (ordinary) length and abelian depth6 (ordinary) depth, give the next
result. The ideas of the proof are the same as those for the theory ofn-toral maps in [10].

Theorem 3.2. Assume the notation and setup of Definition3.1. If n is such thatdet(φ̄n −
I) 6= 0, then the abelian length of any class[α]n is the same as its abelian depth. In
particular, if for all m|n with m < n we know that̄ι−1

m,n(ᾱ) /∈ Zr , then[α]n is (ordinary)
irreducible and has(ordinary) length equal to(ordinary) depth equal ton.

Proof. Since for eachm|n we have(ῑm,n)(φ̄m − I) = φ̄n − I , it follows that ῑm,n is
invertible overR. So the statement thatῑ−1

m,n(ᾱ) /∈ Zr is equivalent to saying that[α]n is
abelian irreducible (i.e., of abelian depthn). By the inequality mentioned above this means
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that the (ordinary) depth of[α]n must also ben. Of course, the length of any class at level
n is never more thann. Thus once we show that the abelian length of[α]n is alson we will
have by the other inequality that the (ordinary) length of[α]n is n.

So suppose then that there is anl < n and aEv ∈ Zr for which(φ̄l− I)(ᾱ)= (φ̄n− I)(Ev).
Applying ῑl,n to both sides of this equation, noting thatῑl,n(φ̄

n−I)= (φ̄n−I)ῑl,n, and then
cancelingφ̄n− I from both sides gives thatEv is an abelian reduction of[α]n to levell. This
contradicts the fact that the abelian depth of[α]n is n. 2

These abelianization techniques will be used in Examples 3 and 4. Theorem 3.2 gives
a large number of cases where ordinary length and depth will be equal. However, as
Example 3 shows, this is not true in general for essential classes.

Example 2. In this example the boosting functions are not injective on essential classes
and, as a result, some essential classes do not have unique roots.

Suppose, onT 2#T 2 with π = 〈a,b, c, d :R〉, thatφ :π→ π is given byφ(a)= φ(d)=
a−1, φ(b)= φ(c)= b−1. As before, we letφF have the same definition.

We haveAn = 0 for all n as on p. 11, last paragraph of Section 2, and

R(f, f̃ )= [1]1+ [a−1]1+ [b−1]1.
These three classes are distinct by abelianization. (In this case, becauseφ̄ − I is invertible
overR, we can simply check that(φ̄ − I)−1 applied to the abelianized difference of any
two of the above classes does not produce a vector inZ4.)

At level 2 we haveφ2(a)= φ2(d)= a, andφ2(b)= φ2(c)= b. Thus

R(f 2, f̃ 2)= τ2 (1− 1− 1)=−[1]2.
Note that[ι1,2(1)]2= [ι1,2(a−1)]2= [ι1,2(b−1)]2= [1]2 so that[1]1, [a−1]1, and[b−1]1

all act as essential roots for[1]2. ThusT 2#T 2 does not have unique roots andι1,2 is
not injective on essential classes. As in Example 1, a minimal set of 2-representatives
consists of the three essential classes at level 1, and henceNΦ2(f )= 3. WhileNΦ2(f ) 6=
N(f 2)= 1, we do have thatNΦ2(f )= 0+ 3=NP2(f )+NP1(f ).

Example 3. For our last counter example onT 2#T 2 we present a situation in which length
does not equal depth for essential classes. This emphasizes the importance of counting
essential orbits rather than just essential classes when computingNPn(f ) andNΦn(f ).

Suppose, onT 2#T 2 with π = 〈a,b, c, d :R〉, thatφ :π→ π is given byφ(a)= φ(d)=
b−2 andφ(b)= φ(c)= b−1a−1, with φF defined as usual. Thenφ2(a)= φ2(d)= abab
andφ2(b)= φ2(c)= ab3. As before,An = 0 for alln. We see thatR(f, f̃ )= [1]1+[b−1]1
andR(f 2, f̃ 2) = −2[ab]2 − [a]2 − [ab2]2. Both at level 2 and at level 1, the classes
appearing in the Reidemeister trace have coefficients that are either all positive or all
negative. Thus in this case we do not need to distinguish classes to know that they
are all essential. The fact thatφ2(a)φ(b) = φ2(b)φ(a) = ab implies, by applyingφ,
thatφ(ab)= φ3(a)φ2(b)= φ3(a)φ2(b)φ(a)(φ(a))−1= φ3(a)ab(φ(a))−1. Thus[ab]2=
φ([ab]2). Hence the essential class[ab]2 has length one. We now use the abelianization
techniques developed in Theorem 3.2 to prove that[ab]2 has depth two.
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The abelianization ofφ is given by the matrix

φ̄ =



0 −1 −1 0

−2 −1 −1 −2

0 0 0 0

0 0 0 0


.

To determine whether[ab]2 is abelian reducible to level 1, we consider the image of the
matrix

ῑ1,2= φ̄ + I =



1 −1 −1 0

−2 0 −1 −2

0 0 1 0

0 0 0 1


.

We note that̄ι1,2 is invertible overR and in fact, since

ῑ1,2
−1(ab)= (−1/2,−3/2,0,0)T

is not in Z4, we know that[ab]2 is irreducible and thus has depth two even though its
length is one.

To calculateNΦ2(f ) we need to know more. Note that all of the classes appearing in
R(f, f̃ ) andR(f 2, f̃ 2 ) can be shown to be distinct by abelianizing. The class[a]2 reduces
to [b−1]1 becauseφ(b−1)b−1 = a. We must also determine whether[ab2]2 reduces to
level 1. Sincēι1,2−1(ab2) = (−1,−2,0,0)T belongs toZ4 we cannot use abelianization
to determine this. It was no problem for the computer algebra system Magma (see [1]) to
find a reduction and show us thatι1,2([b−1a−1b−1]1) = [ab2]2. Since[b−1a−1b−1]1 =
[φ(b)b−1]1 = [1]1 we know that in factι1,2([1]1) = [ab2]2. Thus{[1]1, [b−1]1, [ab]2} is
a minimal set of 2-representatives and henceNΦ2(f ) = 4. At level 2, the only essential
irreducible orbit is〈[ab]2〉 = {[ab]2} so thatNP2(f ) = 2. BecauseNP1(f ) = N(f ) = 2
we do have thatNΦ2(f )=NP1(f )+NP2(f ) althoughNΦ2(f ) 6=N(f 2)= 3.

The extension to manifolds of higher dimension.The properties given in Section 2 that
hold for periodic classes on nil and solvmanifolds do not hold for manifolds in general.
We have provided counterexamples in dimension 2 and will now extend these to every
dimension greater than 3. We thank Robert F. Brown for the discussions that led to these
extensions.

Let Xm+2 = (T 2#T 2)× Sm with m > 2. For each of the three counterexamples given
above, withf a self-map onT 2#T 2, we define a self-map onXm+2 given byh= f × g,
whereg :Sm→ Sm is a map of degree 2. The canonical isomorphism

η :π1(T
2#T 2)→ π1

(
(T 2#T 2)× Sm)∼= π1(T

2#T 2)× {0}
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makes the following diagram commute:

π1(T
2#T 2)

η

f#

π1(T
2#T 2)× π1(S

m)

h#

π1(T
2#T 2)

η
π1(T

2#T 2)× π1(S
m)

.

Now η induces a bijective correspondence between the Reidemeister classes off and
those ofh. BecauseSm is simply connected andL(gn) = 1+ (−1)m2n 6= 0 for every
n, we know that eachgn has exactly one essential Nielsen class. Thus by the product
theorem for the index (see [2, p. 60]) we see thatη respects Nielsen classes and their
essentiality. Furthermore, the diagram remains commutative iff# andh# are replaced by
their corresponding boosting functionsιm,n. Therefore the Nielsen periodic class structure
for {hn}∞n=1 will be identical to that of{f n}∞n=1, and any of the basic properties that do not
hold in Examples 1–3 above will not hold for these corresponding product maps.

Example 4. We now close the paper with a lengthy example which shows that, in some
cases at least, the techniques of [8] do remain valid and computations are possible.

The previous examples demonstrate situations where the useful formulas and reasoning
for calculatingNPn(f ) andNΦn(f ) which are valid for nil and solvmanifolds cannot
be applied. This makes the computation ofNPn(f ) andNΦn(f ) difficult in the general
case. Despite this, we would now like to present an example where the computation
of these numbers is possible for everyn. In fact, for this example we do get that
N(f n)=NΦn(f )=∑m|nNPm(f ) whereN(f n)=Ln − ((−1)n+ 1). (Here{Ln}∞n=1 is
the sequence of Lucas numbers whereL1= 1,L2= 3, and forr > 2,Lr =Lr−1+Lr−2.)
Möbius inversion then gives that

NPn(f )=
∑

τ⊂P(n)
(−1)|τ |N(f n:τ ),

whereP(n) is the collection of prime divisors ofn andn : τ is n/(
∏
p∈τ p). For the main

results of this example the reader is referred to Propositions 3.6 (which uses Definition 3.4)
and 3.7.

Suppose, onT 2#T 2 with π = 〈a,b, c, d :R〉, thatφ :π→ π is the automorphism given
by φ(a)= b−1a−1, φ(b)= ab2, φ(c)= d , φ(d)= c. It is known that any automorphism
on π is induced by a self-homeomorphism onT 2#T 2. In [15] it is proven that for any
self-homeomorphism of a closed surfaceN(f ) = min{|fix(g)|: g ∼ f }. Since not all
homotopies off n can necessarily be realized by homotopies off , this does not prove
thatNPn(f ) andNΦn(f ) are equal to their respective minimum numbers. However, since
these periodic numbers are based on the the counting of essential classes at various levels,
there is strong reason to believe that these lower bounds are sharp.

We list the results here and provide proofs at the end of this section. The following
properties of this automorphism allow us to determine the structure of the essential
algebraic periodic orbits.
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Claim 3.3 (Example 4).For anyn> 3,
(1) φn(a)= b−1φ(a)φ2(a)φ3(a) · · ·φn−2(a),
(2) φn(a)= φn−1(a)φn−2(a),
(3) φn(b)= φn+2(a−1), and

(4) τn
(
∂φn(b)
∂b

)
=−τn

(
∂φn+2(a)

∂b
b
)
.

Definition 3.4 (Example 4). Forn> 1, let Sn,Tn,Un ⊂ π be given by the following.

Tn =
{
φvs (a)φvs−1(a) · · ·φv2(a)φv1(a) ∈ π : for all i, 26 vi 6 n+ 1,

vi − vi−1> 2, and v1 6= 2 whenevervs = n+ 1
}
.

Forn even,

Un =
{
φvs (a) · · ·φv1(a): s = n

2
, vi = vi−1+ 2, for i > 1, v1 ∈ {2,3}

}
.

Note thatT1= ∅, T2 = U2= {φ2(a),φ3(a)}, and in generalUn ⊂ Tn whenn is even. Let
Sn be given by

Sn =
{
Tn −Un for n even,
Tn for n odd.

This implies thatS1= S2= ∅.

We will represent the productφvs (a)φvs−1(a) · · ·φv2(a)φv1(a) ∈ π by the vector
(vs, vs−1, . . . , v2, v1). For example, forn= 6 we have

T6=
{
(2), (3), (4), (5), (6), (7), (4,2), (5,2), (6,2), (5,3),

(6,3), (7,3), (6,4), (7,4), (7,5), (6,4,2), (7,5,3)
}

andU6= {(6,4,2), (7,5,3)}. Forn even,Un will always have exactly two elements.
Since the only relation forπ is R, which involves bothc and d , the subgroup ofπ

generated by{a,b} is free.5 Furthermore, sinceφn(〈a,b〉) belongs to〈a,b〉, we need only
consider a 2×2 matrix when determining the abelianizations ofφn(a) andφn(b). We note
that the abelianization of

(
φ|〈a,b〉

)n
, which we denote byφn, is the matrix

φn =
−Fn−2 Fn

−Fn Fn+2

 ,
whereFn is thenth Fibonacci number. (That is,F−1= 1,F0= 0,F1= 1, andFn+Fn+1=
Fn+2. Thus 2Fn − Fn−2= Fn + Fn−1+ Fn−2− Fn−2= Fn+1.)

We claim that two vector representations of elements inTn give distinct elements ofπ
if and only if the two vectors are not equal. To see this we note that the abelianization of
φvs (a) · · ·φv1(a) ∈ Tn is āαb̄β whereα =−∑s

i=1Fvi−2 andβ =−∑s
i=1Fvi . The claim

follows from the theory of Zeckendorf decompositions (see p. 281 of [7] for an English

5 This is the Freiheitssatz, see [20, p. 104].
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summary and [19] and [23] for the original papers), which states that each natural number
is uniquely represented by a Fibonacci sum of the form

∑s
i=1Fvi with Ev = (vs, . . . , v1)

such thatv1> 2 andvi+1− vi > 2 for 16 i < s.

Proposition 3.5 (Example 4).For all n, |Sn| + 1 = Ln − (1 + (−1)n), whereLn =
Fn+2−Fn−2 is thenth Lucas number.

Proposition 3.6 (Example 4).For any mapf that inducesφ and for anyn> 1,
(1) The Reidemeister trace can be written as

R(f n; f̃ n)=
{−3[1]n−∑s∈Sn[s]n for n even,

−[1]n−∑s∈Sn[s]n for n odd.

(2) The Lefschetz number isL(f n)=−Ln.
(3) The expression forR(f n, f̃ n) given in(1) above is reduced.
(4) The Nielsen number isN(f n)=Ln− ((−1)n+1)= qn+qn− ((−1)n+1), where

q is the golden ratio(1+√5)/2 andq is (1−√5)/2.

Proposition 3.7 (Example 4).For any mapf that inducesφ, length equals depth for all
essential classes at any level. The boostιm,n maps essential classes injectively to essential
classes for alln andm|n. Each essential class[x]n has exactly one essential root.(It may
also have inessential roots.) If m, k|n and [α]m and [β]k are essential andιm,n([α]m) =
ιk,n([β]k), then both[α]m and[β]k reduce to a common essential class at level gcd(m,k).
While f n is never weakly Jiang, it is true thatN(f n) = NΦn(f ) =∑m|nNPn(f ) for
all n.

We note that, for this example, Proposition 3.7 provides a proof of Properties (P2) and
(P3) from Section 2 as well as the property of being essentially reducible to the GCD. (See
Property (P4) in Section 2.) Since we will not be able to gather much information about
the reductions that might exist between essential and inessential periodic classes, it will
not be possible to prove essential reducibility in general or that every class has a unique
root. Despite this, we are still able, with this weaker set of properties, to deduce the usual
formulas relating the periodic numbers.

We now provide proofs of the above statements.

Proof of Claim 3.3. Fromφ3(a)= φ(b−1)= b−2a−1 = b−1φ(a), statement (1) follows
by induction. Statement (2) follows from statement (1) by multiplying the formulation
for n− 1 in statement (1) byφn−2(a) on the right. To prove statement (3), we note that
φ2(a)= b−1, soφn(b)= φn(φ2(a−1))= φn+2(a−1).

Statement (4) is proven as follows: For anyn> 3,

∂φn(b)

∂b
= ∂φ

n(φ2(a)−1)

∂b
=−φn(φ2(a)−1

)∂φn+2(a)

∂b
.
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This follows from statement (3) and the fact that, for anyw ∈ 〈a,b〉, ∂w−1/∂b =
−w−1∂w/∂b (see Section 2.4). We also have, by the Reidemeister action at leveln of
φ2(a) on the above,

τn

(
−φn+2(a−1)

∂φn+2(a)

∂b

)
=−τn

(
∂φn+2(a)

∂b
φ2(a−1)

)
=−τn

(
∂φn+2(a)

∂b
b

)
.

This completes the proof of Claim 3.3.2
Proofs of our results are possible because essential algebraic classes have representatives

in Sn for which it is easy to see the orbit structure as described in the following
two paragraphs. We will now use the elements ofSn and their vector representations
interchangeably.

In order to study the structure of orbits of periodic point classes, we interpret the action
of φ on the Reidemeister classes of elements inSn by an actionγ kn onSn given by

γ kn (vs, . . . , v1)=
{
(vs + 1, . . . , vi + 1, . . . , v1+ 1) if vs 6 n,
(vs−1+ 1, . . . , vi−1+ 1, . . . , v1+ 1, 2) if vs = n+ 1.

This is equivalent to first adding one to each coordinate, then reducing modn any
value larger thann+ 1 and rewriting the resulting numbers in decreasing order. To justify
this interpretation we next show that for allx ∈ Sn, [γ kn (x)]n = [φ(x)]n. If vs 6 n, this
is becauseγ kn (x) = φ(x). For vs = n + 1 this follows from the fact that[φ(x)]n =
[φn+2(a)φvs−1+1(a) · · ·φv1+1(a)]n which, whenφ2(a)−1 acts onφ(x) according to the
Reidemeister action at leveln, gives[φ(x)]n = [φvs−1+1(a) · · ·φv1+1(a)φ2(a)]n.

In terms of the vector representations, ifEv = (vs, . . . , v1) at levelm representsx ∈ π ,
thenιm,n([x]m) is represented by(Ev + (n−m)) ◦ (Ev + (n− 2m)) ◦ · · · ◦ (Ev + 2m) ◦ (Ev +
m) ◦ (Ev). HereEv+ k = (vs + k, . . . , vi + k, . . . , v1+ k) and◦ denotes the concatenation of
vectors. We observe thatιm,n will carry elements ofSm directly to elements ofSn.

Let x ∈ Sn. We say that the class[x]n hasvisible lengthk for somek 6 n if k is the
smallest positive integer withγ kn (x) = x. We will shortly prove that visible length and
actual length are the same for elements ofSn. Becauseγ nn (x)= x, the division algorithm
implies thatk|n.

Claim 3.8. Given x ∈ Sn and 1< k with k|n, γ kn (x) = x if and only if x is in the set
ιk,n(Sk).

Proof. Let us first establish some notation and a useful correspondence. For eachr and
Ew ∈ Sr there corresponds a unique subsetSrEw of {0,1, . . . , r − 1} obtained by reducing
each coordinate ofEw modulo r. Via this injective function,γ ir acts onSrEw by adding
i to all elements ofSrEw and reducing modulor. For r|s, ιr,s acts onSrEw to produce
Ss
ι( Ew) ⊂ {0, . . . , s − 1} by producing a union ofs/r copies ofSrEw with each copy having a

different multiple ofr (between 0 ands/r − 1) added to it and then reducing all elements
modulos.
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For example, forEw = (5,3) ∈ S5 we have thatS5
Ew = {0,3}. Also, ι5,20(S5

Ew) = S20
ι( Ew) =

{0,3,5,8,10,13,15,18}. This corresponds to the fact thatγ 5
20ι5,20( Ew) = (20,18,15,13,

10,8,5,3) ∈ S20. Then γ 5
20(S20

ι( Ew)) is the subset{0,3,5,8,10,13,15,18}. Note that

γ 5
20(ι5,20( Ew))= ι5,20( Ew).
Now we prove the forward implication. Suppose thatEv ∈ Sn. The fact thatγ kn (Ev) = Ev

means thatSnEv + k ≡ SnEv modulon. Let β be the smallest element ofSnEv . Let µ ∈ SnEv
be the unique element equivalent toβ + k modulo n. There is a uniqueEw ∈ Sk for
which SkEw consists of all elements fromSnEv that are less thanµ. Thus Ew is such that
ιk,n( Ew)= Ev.

In our example,γ 5
20({0,3,5,8,10,13,15,18})= {0,3,5,8,10,13,15,18}. In this case

β = 0,µ= 5,S5
Ew = {0,3}, and thusEw = (5,3) as stated above.

For the reverse direction of the proof we first note thatιk,nγk = γnιk,n. If y ∈ Sk then
γ kk (y)= y. Thusιk,n(y)= ιk,n(γ kk (y))= γ kn (ιk,n(y)). 2
Proof of Proposition 3.5. BecauseS1 = S2 = ∅ andL1 = 1, L2 = 3, the result follows
for n= 1,2.

For n > 3, we first define more useful sets. LetRn = {φvs (a) · · ·φv1(a) ∈ π : v1 = 2,
vs = n+ 1, andvi − vi−1 > 2,∀i}, and letQn = Rn ∪ Tn. Note thatRn ∩ Tn = ∅. We
remind the reader that with these sets we will switch freely between elements inSn ⊆ π
and their representations in vector notation.

Next we prove that|Qn| + 1= Fn+2. (Recall thatF0 = 0, F1 = 1 andFn = Fn−1 +
Fn−2.) For n = 3, Q3 = {(2), (3), (4), (4,2)}, so |Q3| + 1 = 5 = F5. With n = 4 we
getQ4 = Q3 ∪ {(5), (5,2), (5,3)} andQ2 = T2 = {(2), (3)}. Let ◦ be used to denote
the concatenation of vectors that occur by themselves or in sets. This givesQ4 =Q3 ∪
[(5) ◦ Q2] ∪ {(5)}, so |Q4| + 1 = |Q3| + 4 = 8 = F6. By induction, for all n > 5,
Qn = Qn−1 ∪ [(n + 1) ◦ Qn−2] ∪ {(n + 1)}. Thus, |Qn| = |Qn−1| + |Qn−2| + 1 =
Fn+1− 1+ Fn − 1+ 1= Fn+2− 1. Because

Rn =
[
(n+ 1) ◦ (Qn−4+ 2) ◦ (2)]∪ {(n+ 1,2)

}
,

we note that|Rn| = |Qn−4| + 1= Fn−2. Thus|Tn| = |Qn| − |Rn| = Fn+2 − 1− Fn−2 =
Ln−1. Forn even we have that|Sn| = |Tn|− |Un| = |Tn|−2 so that|Sn|+1= |Tn|−1=
Ln − 2. Forn odd, we have|Sn| + 1= |Tn| + 1=Ln. 2
Proof of Proposition 3.6. We first consider the calculation ofAn for all n. We
observe thatφ(aba−1b−1)= bab−1a−1 andφ(bab−1a−1)= aba−1b−1 and similarly that
φ(cdc−1d−1)= dcd−1c−1 andφ(dcd−1c−1)= cdc−1d−1. Thus we can calculateφnF (R)
for all n. For oddn we note that, as elements of the free groupF,

φnF (R)= bab−1a−1dcd−1c−1= bab−1a−1R−1(bab−1a−1)−1,

andAn =−bab−1a−1 from [4]. Using the relatorR we have

[bab−1a−1]n = [φn(c−1d−1)bab−1a−1(c−1d−1)−1
]n = [(c−1d−1)R−1(dc)

]= [1]n.
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Thus[An]n =−[1]n whenn is odd. Whenn is even, to findAn we note thatφnF (R)= R,
so[An]n = [1]n. Thus for alln we have[An]n = (−1)n[1]n.

Next we prove the entire proposition forn = 1 andn = 2. Becauseφ(a) = b−1a−1,
φ(b)= ab2, φ(c)= d , andφ(d)= c, we see thatφ2(a)= b−1, φ2(b)= bab2, φ2(c)= c,
andφ2(d)= d . So

R(f, f̃ )= τ1(b−1a−1− a− ab) and R(f 2, f̃ 2 )= τ2(−1− ba− bab).
We note that[a]1 = [φ(a)]1 = [b−1a−1]1, and that[ab]1 = [φ(b)b−1]1 = [1]1. Thus
R(f, f̃ )=−[1]1 which means thatL(f )=−1=−L1 andN(f )= 1. Clearly the length
and depth of[1]1 are 1, so this proves Proposition 3.6 forn = 1. Forn = 2 we observe
that [1]2 = [φ2(b)b−1]2 = [bab]2, and [ba]2 = [φ2(a)baa−1]2 = [1]2. We are left with
R(f 2, f̃ 2 )=−3[1]2. HenceL(f 2)=−3=−L2 andN(f 2)= 1. Because the length and
depth of[1]2 are both one, all of the statements in Proposition 3.6 are true forn= 2.

We continue with the proof of Proposition 3.6 forn> 3.
(1) We prove thatR(f n, f̃ n) can be expressed in the given form.
Step1. We show that

R(f n; f̃ n)= τn
(
− ∂φ

n(a)

∂a
+ ∂φ

n+2(a)

∂b
b

)
.

Using the method of [5] and [4] for oddn, by applying (4) of Claim 3.3 we have that

∂φn(c)

∂c
= ∂φ

n(d)

∂d
= 0.

Thus, for oddn,

R(f n; f̃ n)= τn
(

1− ∂φ
n(a)

∂a
− ∂φ

n(b)

∂b
− ∂φ

n(c)

∂c
− ∂φ

n(d)

∂d
+An

)
= τn

(
−∂φ

n(a)

∂a
+ ∂φ

n+2(a)

∂b
b

)
.

This completes Step 1 forn odd. For evenn, we have that

∂φn(c)

∂c
= ∂φ

n(d)

∂d
= 1,

so (again from (4) of Claim 3.3)

R(f n; f̃ n)= τn
(

1− ∂φ
n(a)

∂a
− ∂φ

n(b)

∂b
− 2+An

)
= τn

(
−1− ∂φ

n(a)

∂a
+ ∂φ

n+2(a)

∂b
b+An

)
= τn

(
− ∂φ

n(a)

∂a
+ ∂φ

n+2(a)

∂b
b

)
.

Thus for all values ofn Step 1 is complete.
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Step2. LetQn be defined as in the proof of Proposition 3.5. Note thatQn is then all
vectors(vs, . . . , v1) with vs 6 n+ 1,v1> 2, and the difference between successive entries
at least 2. We next prove that

∂φn+2(a)

∂b
b=−1− σn, whereσn =

∑
q∈Qn

q.

For n = 1, becauseφ3(a) = b−2a−1, we have∂φ3(a)/∂b = −b−1 − b−2. Thus
(∂φ3(a)/∂b) · b=−1− b−1=−1− φ2(a).

Forn= 2, we have

∂φ4(a)

∂b
b= ∂b

−2a−1b−1

∂b
b= (−b−1− b−2− b−2a−1b−1)b

=−1− b−1− b−2a−1=−1− φ2(a)− φ3(a)=−1− σ2.

By induction onn, with base stepsn = 1 andn = 2, we use (2) of Claim 3.3 and the
product rule to deduce that

∂φn+2(a)

∂b
b= ∂φ

n+1(a)φn(a)

∂b
b= ∂φ

n+1(a)

∂b
b+ φn+1(a)

∂φn(a)

∂b
b

=−1− σn−1+ φn+1(a)(−1− σn−2).

As in the proof of Proposition 3.5, we haveQn =Qn−1 ∪ [(n+ 1) ◦Qn−2] ∪ {(n+ 1)}.
Thusσn = σn−1+φn+1(a)σn−2+φn+1(a). Finally, we see that−1−σn =−1− (σn−1+
φn+1(a)σn−2+ φn+1(a)), which we have proven is equal to(∂φn+2(a)/∂b) · b. Step 2 is
complete.

Step3. Recall that, as in the proof of Proposition 3.5,

Rn =
{
φvs (a) · · ·φv1(a) ∈ π : v1= 2, vs = n+ 1 andvi − vi−1> 2, ∀i}.

We next prove that forn> 3

τn

(
− ∂φn(a)

∂a

)
= τn

(∑
r∈Rn

r

)
.

It is helpful to define two more sets. Let

Vn =
{
φvs (a)φvs−1(a) · · ·φv2(a)φv1(a) ∈Qn: v1 is odd,vs 6 n− 1

}
.

For oddn we defineWn = Vn ∪ {φn(a)}. For evenn letWn = Vn.
We will first prove that

− ∂φ
n(a)

∂a
=
∑
w∈Wn

w.

Forn= 3,

W3=
{
φ3(a)

}
, and − ∂φ3(a)

∂a
= φ3(a)=

∑
w∈W3

w.
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Similarly, forn= 4,

W4=
{
φ3(a)

}
and − ∂φ4(a)

∂a
= φ3(a)=

∑
w∈W4

w.

By induction onn, using (2) of Claim 3.3, we have

−∂φ
n(a)

∂a
=−∂φ

n−1(a)φn−2(a)

∂a
=−∂φ

n−1(a)

∂a
− φn−1(a)

∂φn−2(a)

∂a

=
∑

w∈Wn−1

w+
∑

w∈Wn−2

φn−1(a)w=
∑
w∈Wn

w,

where the fact thatφn−1(a)φn−2(a)= φn(a) ∈Wn proves the last equality whenn is odd.
To complete Step 3 we will prove that

τn

( ∑
w∈Wn

w

)
= τn

(∑
r∈Rn

r

)
.

We will do this by defining a bijectionψ :Rn→Wn with [ψ(r)]n = [r]n. For anyr ∈Rn,
let ψ(r) = φn(φ(a)−1)rφ(a). Supposer = (n + 1, rs−1, . . . , r2,2). Thenψ(r) can be
represented by the vector(rs−1, . . . , r2,2,1). Using (2) of Claim 3.3 repeatedly, the vector
collapses on the right until all remaining coordinates differ by at least 2. Note that, after the
collapsing, the right-most coordinate will be odd. Also, the left-most coordinate will be at
mostn whenn is odd and will be at mostn− 1 whenn is even. It follows thatψ(r) ∈Wn.
To see thatψ is a bijection we note thatψ−1(w) = φn(φ(a))wφ(a)−1 for all w ∈ Wn.
Step 3 is complete.

To complete the proof of Proposition 3.6(1), we note thatTn ∪Rn =Qn, andTn ∩Rn =
∅. Thus∑

t∈Tn
t =

∑
q∈Qn

q −
∑
r∈Rn

r ∈ Z[π].

Combining the results from Steps 2 and 3 we have

τn

(∑
t∈Tn

t

)
= τn

(
− 1− ∂φ

n+2(a)

∂b
b

)
+ τn

(
∂φn(a)

∂a

)
.

Thus, using the result of Step 1,

R(f n; f̃ n)= τn
(
− ∂φ

n(a)

∂a
+ ∂φ

n+2(a)

∂b
b

)
= τn

(
− 1−

∑
t∈Tn

t

)
.

For n odd,Sn = Tn, and the proof of Proposition 3.6(1) is completed. Forn even, we
must observe that the two elements ofUn are both Reidemeister equivalent at leveln to the
identity of π . The two elements ofUn arex andφ(x), wherex = (n,n − 2, . . . ,4,2).
Then, as above at the end of Step 3, by repeated applications of (2) from Claim 3.3,
we havexφ(a) = φn+1(a). Thus [x]n = [φn(φ(a)−1)xφ(a)]n = [1]n, and [φ(x)]n =
[φ(1)]n = [1]n. Forn even we haveτn

(−1−∑t∈Tn t
)= τn (−3−∑s∈Sn s

)
, and the proof

of Proposition 3.6(1) is complete.
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(2) The Lefschetz numberL(f n) is the sum of the coefficients ofR(f n, f̃ n), so we have

L(f n)=
{−|Sn| − 3 for n even,
−|Sn| − 1 for n odd,

which in either case is−(|Sn| + 1) − (1+ (−1)n). By Proposition 3.5, this means that
L(f n)=−Ln.

(3) We prove that the terms in the given expression forR(f n, f̃ n) are distinct.
Forn= 1,2, we are already done since the only essential class is that of 1.
For x ∈ Sn let ν = ν(x) denote the visible length ofx (as defined on p. 19, just before

Claim 3.8) and letτ = τ(x) be the true length ofx. Our goal is to prove thatν = τ for all
elements ofSn.

The setSn is partitioned by the action ofγn into what we will call visible orbits. The
visible orbit of x contains exactlyν elements. These elements correspond toν terms in
R(f n, f̃ n) as expressed in Proposition 3.6(1). The (true) orbit of[x]n contains exactlyτ
elements. Thus the reduced form ofR(f n, f̃ n) containsν−τ fewer terms than the original.

Jiang and Guo in [15] prove that for any self-homeomorphismg of a compact surfaceX
with negative Euler characteristicχ(X) and with Lefschetz numberL(g), the inequality
|L(g) − χ(X)| 6 N(g) − χ(X) holds. Applying this tog = f n we have|L(f n)+ 2| 6
N(f n)+ 2. Thus forn> 3 we haveLn − 46N(f n)6 |Sn| + 1, where the upper bound
is the number of terms in the (possibly) unreduced version ofR(f n, f̃ n). So forn even we
haveLn − 46N(f n)6 Ln − 2, and forn odd we haveLn − 46N(f n)6 Ln. Thus for
n even, whenR(f n, f̃ n) is written in reduced form, at most two classes disappear when
they are combined with others. Similarly forn odd, whenR(f n, f̃ n) is written in reduced
form at most four classes disappear. We will use these bounds and the fact that reducibility
is a property of orbits to prove that in fact no classes disappear.

Because[x]n= [φν(x)]n = [φτ (x)]n = [φn(x)]n, and becauseτ is minimal, the division
algorithm implies thatτ |ν andν|n.

Assumeτ < ν, thenτ 6 ν/2. If n is even then the number of classes that disappear is
ν − τ 6 2. Thusν 6 4. (Otherwise,ν = τ .) Similarly, forn odd, if τ < ν thenν 6 8.

For n odd we have shown that forν > 9 we must haveν = τ . Also ν cannot be even
becauseν|n. Similarly, forn even, we conclude that forν > 5 we haveν = τ .

The remaining values ofν which must be checked are 2, 3, 4 forn even and 3, 5, 7 for
n odd. For eachν we must check all divisorsα of ν and prove thatτ 6= α. We consider
only pairs(ν,α) for which the appropriate upper bound forν − α (2 for n even and 4
for n odd) is not violated. This eliminates the pairsν = 7, α = 1 andν = 4, α = 1. The
remaining pairs(ν,α) to be checked are, forn even,ne = {(2,1), (3,1), (4,2)} and, forn
odd,no = {(3,1), (5,1)}.

We must prove that for these remaining pairs(ν,α) an essential class[x]n with visible
lengthν does not have lengthα. This means we must prove that[x]n is not Reidemeister
equivalent to[φα(x)]n. We accomplish this by abelianizing. Letξ,β ∈ Z, with x = a ξb β .
As in the discussion before Example 2, it is sufficient to prove that when(

i

j

)
= (φ̄n − I)−1(φ̄α − I)

(
ξ

β

)
,
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then eitheri /∈ Z or j /∈ Z. (It is sufficient to distinguish Reidemeister classes only for
elements from〈a,b〉. Thus, for this example, we can view̄φ, ῑm,n andI as 2×2 rather than
4× 4 matrices. This is because all of these matrices are block diagonal so that exponents
for c̄, d̄ ∈ π do not contribute to the exponents forā, b̄ ∈ π . We observe also here that since
the eigenvalues of̄φ are(1±√5)/2 which do not have modulus 1, we know thatφ̄n − I
will be invertible for everyn.)

The abelianization ofιν,n is the matrix given by

ῑν,n = I +
n/ν−1∑
i=1

φ̄iν = (φ̄n − I)(φ̄ν − I)−1.

By Claim 3.8 we know that there is somey ∈ Sν with ιν,n(y)= x. Let y = a δb γ .
Then, from the previous formulation forῑν,n, we have that there existi, j ∈ Z such that(

i

j

)
= (φ̄n− I)−1(φ̄α − I)(φ̄n − I)(φ̄ν − I)−1

(
δ

γ

)
= (φ̄α − I)(φ̄ν − I)−1

(
δ

γ

)
.

Becauseα|ν, we have

(φ̄ν − I)=
(
I +

ν/α−1∑
i=1

φ̄iα

)
(φ̄α − I).

Thus(
i

j

)
=
(
I +

ν/α−1∑
i=1

φ̄iα

)−1(
δ

γ

)
.

Note that the last line above is independent ofn. For the pairs(ν,α) = (2,1), (3,1),
(4,2), and(5,1),we check each elementy of Sν (see the discussion before Proposition 3.5
for the representation ofy as a column vector) to be sure that eitheri or j is not an integer.
BecauseS2= ∅, there is nothing to check for the pair(2,1). The number of elements to be
checked is so small that calculatingi andj for each case is easy. For each of the 17 cases
(one for each element ofS3, S4, andS5) we obtained at least one ofi andj not inZ.

Therefore the above analysis shows that the actual length of an essential class at leveln

is equal to its visible length. This implies that within a visible orbit at any leveln, all terms
represent elements ofπ which are in distinct classes ofR(φn). The only thing needed
then to complete the proof of Proposition 3.6(3) is to show that two elements ofSn from
differentvisible orbits are in distinct Reidemeister classes. However, if elements from two
different essential visible orbits belong to the same Reidemeister class at leveln, then
the two orbits are of the same length and every element from one orbit is Reidemeister
equivalent to exactly one element from the other orbit. Thus the number of classes that
disappear when we reduceR(f n, f̃ n) is greater than or equal to the length of those orbits.
Using our analysis of the Jiang–Guo inequality made above and the fact that visible length
equals ordinary length for the elements ofSn, we thus have that the only orbits for which
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this can occur have length 1, 2, 3, or 4. From Claim 3.8 such orbits must occur as boosts
from levels 1, 2, 3 or 4, respectively, to leveln. The only essential irreducible orbits of
lengths 1, 3, or 4 are〈[1]1〉 (length 1),〈[φ2(a)]3〉 = S3 (length 3), and〈[φ2(a)]4〉 = S4

(length 4), respectively. SinceS2 = ∅ there are no orbits of length 2. Thus since there is
only one orbit of each of these types, no two such orbits can combine. The images ofιk,n

for k = 1,2,3,4 each contain at most one orbit. Thus all elements ofSn are in distinct
Reidemeister classes for eachn, and none of these classes are Reidemeister equivalent to
1. Hence the Reidemeister traces are reduced as stated in the proposition.

(4) We prove thatN(f n)=Ln − ((−1)n+ 1).
We know that the given expression ofR(f n, f̃ n)is reduced. SoN(f n) is the number of

terms, which is|Sn| + 1. From Proposition 3.5 we have that this equalsLn− ((−1)n+ 1).
The fact thatLn = qn+ q̄ n is well known in number theory and also follows from the facts
thatq andq̄ are the eigenvalues of̄φ andLn = trace(φ̄n) (from the discussion just before
Proposition 3.5).

This completes the proof of Proposition 3.6.2
Proof of Proposition 3.7. Recall thatτn takesx ∈ π to [x]n. Along with the class of 1,
which always goes to itself under boosting, our vector representation of the other essential
classes at any levelm|n shows us thatιm,n is always injective on essential classes. In
other words, since (from Proposition 3.6 parts (1) and (3))ιm,n : τm(Sm) ∪ {[1]m} →
τn(Sn) ∪ {[1]n} is injective and all classes inτn(Sn) ∪ {[1]n} are essential and distinct,
we have thatιm,n is injective on essential classes and always sends essential classes to
essential classes.

We prove next that length equals depth for all essential classes at every leveln. Because
no two elements ofSn are Reidemeister equivalent, the length of[x]n for anyx ∈ Sn equals
the visible length of[x]n. Combining this with Claim 3.8 and Lemma 2.4, we see that[x]n
has length̀ with 16 ` 6 n iff [x]n reduces essentially to level` and does not reduce
essentially to any levelk < `. The fact that[x]n then cannot reduce to any class (essential
or not) below level̀ follows since length is always less than or equal to depth. For the only
case not covered in Claim 3.8 we note that[1]n has length 1 and reduces to level 1.

From the fact that length equals depth on essential classes and from the proof of
Proposition 3.6(3), the visible length of any[x]n for x ∈ Sn equals the depthd of [x]n.
From Claim 3.8 this implies thatx ∈ ιd,n(Sd) as is needed to imply that[x]n reduces
essentially to leveld . Since[x]n cannot reduce to any level below its depth, the existence
of a unique essential root is proven as follows. There are no other essential roots at any
level because such roots would have depth and length equal to the length of[x]n and thus
would have to reduce essentially to leveld . There is exactly one essential root at leveld

sinceιd,n is injective on essential classes.
Suppose that[y]n is essential and reduces to both[α]m and [β]k, with [α]m and [β]k

both essential classes. Let[δ]d be the unique essential root of[y]n. Then the length of[y]n
is d . The injectivity of the boosting functions on essential classes tells us by Lemma 2.4
that length is preserved under boosting of essential classes and thus[δ]d , [β]k, [α]m, and
[y]n all have lengthd . Thus d divides each ofm, k and n. Henced will also divide
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`= gcd(m,k). The facts thatιk,nιd,k = ιd,n andιm,nιd,m = ιd,n imply that [β]k and[α]m
also have[δ]d as their unique essential root. Let[γ ]` = ιd,`([δ]d). Since[δ]d is essential
so is [γ ]`. As above the facts thatι`,mιd,` = ιd,m and ι`,kιd,` = ιd,k imply that [γ ]` is a
common reduction of both[β]k and[α]m as desired.

To see that nof n is weakly Jiang we note first thatN(f n) is never zero. Also, every
essential class contains anx ∈ 〈a,b〉. For any suchx abelianization quickly shows us that
[x]n 6= [c]n. Thus[c]n is an inessential class and everyR(φn) contains both essential and
inessential classes.

As in [8], the ability to reduce all essential classes to their essential roots and
the fact that length equals depth for essential classes implies that the orbits of all
essential irreducible classes at any levelm|n provides a minimal set ofn-representatives
with NΦn(f ) =∑m|nNPm(f ). ThatNΦn(f ) = N(f n) follows from the property that
essential classes boost to essential classes, which can be called essential boostability.
In [8] this was a consequence of the fact that wheneverf n is weakly Jiang and
N(f n) 6= 0 and we have essential reducibility, then all classes at leveln are essential and
hence so is anything that boosts to leveln. Here we do not prove essential reducibility
but are able to prove essential boostability by different means. The variousι give
a natural bijection between the unique roots of essential classes at leveln and the
essential classes at leveln themselves so thatN(f n) = NΦn(f ) as needed. (End of
Example 4.) 2
Corrections to [4]. We take this opportunity to note that, in Example 4 of [4], we can
now determine the Nielsen number of the given homeomorphisms that induceφ(a) =
c−n+1d−1, φ(b) = dcn, φ(c) = a, φ(d) = b, wheren > 2. Heren does not indicate a
number of iterations. The Reidemeister trace at level 1 is[1] + [bab−1a−1], so we knew
thatN(f ) = 1 or 2. Now we can use the inequality from [15] as above (|L(f ) + 2| 6
N(f ) + 2) to see that there cannot be exactly one essential class if that class has index
two. Thus the Reidemeister trace is reduced as stated andN(f )= 2. Jiang and Guo also
prove in [15] that for self-homeomorphisms on surfaces of negative Euler characteristic
there are no essential classes with index greater than 1. See Kelly’s work in [16] for
related results. In Example 3 of [4], the Reidemeister trace is printed incorrectly. It should
be

ρ

(
−1− ∂a

−n+1

∂a

)
= ρ

(
−1+

n−1∑
i=1

a−i
)
.

4. Conclusion

We have exhibited a homeomorphism (Example 4), in which not all of the properties
listed in Section 2.3 can be proven. Despite this, the basic equalitiesNΦn(f )=N(f n)=∑
m|nNPm(f ) were shown to hold. The analysis used to prove this capitalized on a rich

combinatorial structure of essential algebraic orbits that may be present in a similar form
for other self mappings. While we have shown that the equalities above will not be true
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for maps in general on the double torus, there exists the possibility that the following
conjecture is true.

Conjecture 4.1. If f :M → M is a homeomorphism on a surfaceM of nonpositive
Euler characteristic, thenNΦn(f )=∑n|mNPn(f ) and whenN(f n) 6= 0 thenNΦn(f )=
N(f n). Furthermore, each essential class[x]n has exactly one essential rootr([x]n) (and
perhaps also inessential roots). For a fixedn, the set{r([x]n): [x]nis essential} is a minimal
set ofn-representatives for computingNΦn(f ).

If the conjecture is not true in general, then one can ask for conditions onM andf
that do make it valid. For example, the case of a pseudo-Anosov homeomorphism on a
surface, discussed in [15], is an easy example where the conjecture holds.6 This is the
case because for a pseudo-Anosov homeomorphismf one has thatN(f n)= |fix(f n)| for
all n. Thus every fixed point off n is essential and every geometric Nielsen class off n is
a singleton. Each periodic point with minimal periodk is anessentialfixed point forfmk

for all m ∈ N. It is immediate thatf has essential reducibility, injective boost functions,
length= depth, and that every essential class has a unique essential root. Furthermore,
for such homeomorphisms,NΦn(f ) andNPn(f ) are equal to their respective minimum
numbers rather than being merely lower bounds. Using Thurston’s classification of surface
homeomorphisms and the Jiang–Guo [15] representatives in each isotopy class, it may be
possible to do this in general on surfaces. However, given an essential periodic class[α]n,
knowing that the length of[α]n equals the depth of[α]n does not allow us to complete the
computation until we know what these values are. Thus the computation of the ordinary
Nielsen numbersN(f n) will always remain important in the computation ofNΦn(f ) and
NPn(f ). For this reason, while the theory of train tracks for surface homeomorphisms
should certainly be a part of such calculations, we feel that our algebraic approach also
warrants consideration, not only for homeomorphisms but also when the map may not
induce an automorphism. As we have seen, therein lie some very interesting combinatorics
which we hope, someday, can be more completely understood.

There are many opportunities for new tools to be applied to the calculation of the
Nielsen periodic numbers. Geometric facts, like the Jiang–Guo inequalities (in Example 4)
(see [15]) or various results that provide bounds for the total index of a Nielsen class
(see [16]), are extremely useful. We have shown that the techniques of abelianization are
very powerful. Additionally, subgroups other than the commutator should be considered
in this regard. For fundamental groups whose abelianizations have torsion, results could
also be developed. For a givenf , the graph whose nodes are the Nielsen classes and
whose edges are determined by the boosting functions is an important object of study.
Understanding the structure of this graph, including the action off on the graph, is crucial
when the properties and formulae of Section 2 do not hold.

6 We note that the map in Example 4, since it is reducible, is not of this type.
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