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We describe here a 70 kDa transcription factor AIF-B, which preferentially binds to an element encompassmg a CCAAT motif on the rat aldolase 
B promoter. Comparison of binding specificities, relative molecular masses, and subunit compositions with those of other known CCAAT-binding 

factors indicated that AIF-B 1s a novel member of CCAAT-binding factors. 

Aldolase B gene: Transcription, CCAAT-binding factor; NF-Y; AlF-B 

1. INTRODUCTION 

Many eukaryotic gene promoters have a transcrip- 
tion regulatory element containing a CCAAT sequence 
[l]. Several mammalian factors that recognize a 
CCAAT motif have been identified, e.g. NFl/CTF [2,3], 
C/EBP [4], NF-Y/CBF/CP-l/ACF [5], CP-2 [6], YB-1 [7] 
and its related proteins dbpB [8] and EFIA [9], and CDP 
[lo]. Although CCAAT elements in various promoters 
have a gross similarity in sequence, a subset of such 
CCAAT elements seems to be recognized by a particu- 
lar factor [6]. Here we report a novel CCAAT factor 
with high affinity to the aldolase B (aldB) gene pro- 
moter as compared with the albumin and the adeno- 
virus major late promoters. This factor migrates as a 70 
kDa protein on SDS-polyacrylamide gel. 

2. MATERIALS AND METHODS 

Crude nuclear extracts were prepared from rat livers and partially 
purified through phosphocellulose column as described previously 
[I I]. Factors that recognize site B in the aldB promoter were further 
purified by a DNA-affinity column chromatography [12]. Gel retarda- 
non assays were carried out as previously described [l 11. Methylation 
interference assays were performed as in [13]. Separation of proteins 
on a SDS-polyacrylamtde gel, extraction from the gel. and renatura- 
tion of proteins were carried out as described in [14]. 

Oligonucleotides used are as follows. aldB site B (B-oligo): 
GCTGTTCACGCGCCAATCAGAGTTAG [ll]; aldB site A (A- 
oligo): AATCAGAGTTATTGAATAAACACCTC [ll], NF-Y box 
in the adenovtrus major late promoter (adY-oligo); ACCTA- 
TAAACCAATCACCTTCCTTGATGCC [6], C box in the rat albu- 
min promoter (albC-oligo). GGGGTAGGAACCAATGAAAT- 
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GAAAGGTTA [15] (only the sequences of the coding strands are 
shown, and CCAAT sequences are underlined). 

3. RESULTS AND DISCUSSION 

In a previous paper, we showed three important cis- 
elements (sites A, B and C) in the rat aldolase B pro- 
moter [ll]. Site B is an element containing a CCAAT 
motif which is indispensable for efficient liver-specific 
transcription in vitro [l 11. To detect factors which bind 
to site B, we carried out a gel retardation assay using 
crude nuclear extracts (crude NE) from livers. As shown 
in Fig. lA, 32P-labeled B-oligo binds to proteins in the 
crude liver NE. Formation of this complex was reduced 
in the presence of unlabeled competitor B-oligo but not 
of A-oligo, showing the specificity of the complex for- 
mation. Since site B contains a CCAAT motif, the pro- 
tein that bound to site B was expected to be one of the 
known CCAAT-binding factors. One such candidate is 
NF-Y, because nucleotide sequence around the 
CCAAT in the aldB promoter is closely related to bind- 
ing sites for NF-Y in the class II genes of the major 
histocompatibility complex [7,16]. To see if NF-Y binds 
to site B, we performed competition experiments with 
two typical NF-Y binding sequences. One is a CCAAT 
box in the adenovirus major late promoter (adY-oligo) 
[6] and the other a CCAAT box in the rat albumin 
promoter (albC) [15]. The results in Fig. 1A show that 
the presence of either oligo reduced the formation of the 
B-oligo complex. However, these oligos did not com- 
pete effectively as compared to B-oligo (lanes 4-7). Con- 
versely, complex formation of 3’P-labeled adY-oligo 
with NF-Y in the crude liver NE was strongly interfered 
with an excess amount of either competitor adY- or 
alb-C oligo, but not with B-oligo (Fig. 1 B, lanes 11-17). 
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Fig. 1. Detection of site B-binding activities in the liver NE. “P-labelled B- (panel A) or adY-oligo (panel B) was incubated with the crude liver 
NE in the presence of either competitor adY-oligo (CCAAT box in the adenovirus major late promoter), albC-oligo (CCAAT box in the rat albumm 
promoter), or A-oligo (site A in the aldolase B promoter) Panel C shoas a gel retardanon assay usmg affimty-purtfied AIF-B and “P-labeled B-oligo 

m the presence of competrtors Indicated on top of the autoradiogram Competrtors used were IO- and JO-fold excess amounts of the probes 

These results implied that B-oligo preferentially binds 
a factor(s) distinct from NF-Y. To confirm this, we 
purified the site B-binding factor. Crude liver NE was 
passed through a phosphocellulose column equilibrated 
with a buffer containing 0.1 M KCI. Site B binding 
activity was recovered in flow-through fraction. while 
NF-Y was adsorbed to the column [1 11. The flow- 
through fraction was then subjected to a binding site 
affinity column chromatography on a B-oligo-bound 
Sepharose 4B [12]. Using the purified factor (termed 

AlF-B), we carried out similar competition experiments 
as in Fig. 1A. In this case, formation of AlF-B complex 
was inhibited in the presence of B-oligo. but not in the 
presence of either competitor adY-, albC- or A-oligo 
(Fig. 1C). Thus. AlF-B has a very low affinity to the 
NF-Y sites. 

We next wished to determine the relative molecular 
mass of AlF-B. After AlF-B preparation (phosphocellu- 
lose fraction) was run on a SDS-polyacrylamide gel. 
proteins were extracted from the gel slices, renatured 

Slice no. 
4 5 6 7 8 9 10 11 12 13 14 15 lf3 17 18 19 20 21 

* 

Fig. 2. Estimation of relative molecular weight of AIF-B. AIF-B preparation (phosphocellulose fractton. [l I]) was run on an SDS-polyacrylamide 
gel. After electrophoresis. the gel was cut mto 3 mm slices from the top, and proteins were extracted, renatured and assayed for B-ohgo-bindmg 

acttvity as in Ftg. I Upper panel shows CBB-staining of the gel 
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Fig. 3. Methylation interference analysis. ‘*P-end-labelled B-oligo was partially methylated with dimethylsulfate, and added to the bmding reaction 
containing AlF-B (phosphocellulose fraction). Free (F) and bound DNAs (B) were isolated by native polyacrylamide gel as in Fig. 1. DNAs were 
purified, cleaved with piperidme, and run on a polyacrylamide-urea sequencing gel. C. coding strand; NC, noncoding strand. Arrows Indicate 

guanine residues whose methylation inhibited bindmg, and brackets Indicate a region protected from DNase I footprintmg [1 11. 

and assayed for site B-binding activity. The activity was 
recovered mostly from a single gel slice corresponding 
to about 70 kDa (Fig. 2, slice no. 14). Similar result was 
obtained from the experiments using affinity-purified 
AlF-B (data not shown). This observation, together 
with chromatographic behaviour described as above, 
would discriminate AlF-B from other factors that need 
assembly of heterologous subunits for their activities. 
For example, human CP2 is composed of two different 
subunits that can be separated through phosphocellu- 
lose chromatography [6]. Furthermore, the size of AlF- 
B, 70 kDa, differed from those of known factors such 
as C/EBP family (2542 kDa) [16,17], CTF/NF-1 (52- 
66 kDa) [2,3], NF-Y/CBF/CPl/ACF (37 kDa and 4043 
kDa subunits) [5], YB-1 and the related factors (about 
35 kDa) [9], and CDP (180 kDa and 190 kDa) [lo]. 

Fig. 3 shows the results of dimethylsulfate-methyla- 
tion interference assays for the identification of contact 
sites of AlF-B. Methylation of guanine residues at - 130 
and - 128 sites on the coding strand, and at - 122, - 126, 
and -127 sites on the noncoding strand of site B 
strongly inhibited the binding of AlF-B. Distribution of 
these contact sites is somewhat different from those of 
other characterized factors (e.g. CTF/NF-1 [3] and CP2 

[61). 
Given the binding specificity and relative molecular 

mass, we think that AlF-B is a novel member of 
CCAAT-binding factors. This factor binds more 
strongly to site B in the aldB promoter than to the NF-Y 
binding sites in the albumin and the adenovirus major 
late promoters. AlF-B is expressed in various cell types, 
although its concentration varies considerably (data not 
shown). 

Previously, we [ll] and Raymondjean et al. [18] ob- 
served a marked inhibition of transcription from the 

aldB promoter using titration with B-oligo in an in vitro 
transcription assay with liver NE. However, little inhi- 
bition of transcription from the adenovirus major late 
promoter was observed in such a titration assay with 
B-oligo. These observations strongly support our data 
presented here. 
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