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Effective Hilbert Irreducibility* 
ERICH KALTOFEN t 

University of Toronto, Department of Computer Science, 
Toronto, Ontario MSS1A4, Canada 

In this paper we prove by entirely elementary means a very effective version of 
the Hilbert irreducibility theorem. We then apply our theorem to construct a 
probabilistic irreducibility test for sparse multivariate polynomials over arbitrary 
perfect fields. For the usual coefficient fields the test runs in polynomial time in the 
input size. © 1985 Academic Press, Inc. 

1. INTRODUCTION 

The question whether a polynomial with coefficients in a unique fac- 
torization domain is irreducible poses an old problem. Recently, several 
new algorithms for univariate and multivariate factorization over various 
coefficient domains have been proposed within the framework of 
polynomial time complexity, see, e.g., Berlekamp [1], Lenstra, Lenstra, 
and LovSsz [13], Kaltofen [9], Chistov and Grigoryev [2], Landau [12]. 
All algorithms in the references just given are polynomial in l(n+ 1) ~, 
where l is the number of bits needed to represent the coefficients on the 
polynomial to be factored, n is its total degree, and v is the number of its 
variables. The algorithms for finite fields are probabilistic (Las Vegas 
always correct and probably fast.) If v is not fixed, l(n+ 1) ~ may not 
represent the input size since the input polynomial may only consist of a 
few monomials. In this sparse case, yon zur Gathen [5] has developed a 
probabilistic irreducibility test and factorization algorithm, the former of 
the Monte Carlo kind and polynomial in the degree and the number of 
non-zero monomials of the polynomial to be tested for irreducibility. His 
algorithm is based on the Hilbert irreducibility theorem, as was our older 
multivariate to bivariate reduction (cf. Kaltofen [9, Sect. 7]), and a 
generalized version of the sparse Hensel lifting scheme of Zippel [16]. 

In Section we shall prove a new very effective Hilbert irreducibility 

* This research was partially supported by the National Science and Engineering Council 
of Canada under grant 3-643-126-90. 

t Author's current address: Department of Computer Science, Rensselaer Polytechnic 
Institute, Troy, N. Y. 12181. 

123 
0019-9958/85 $3.00 

Copyright © 1985 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82236652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


124 ERICH KALTOFEN 

theorem, which, applied to the rational coefficient case, states roughly the 
following: If a polynomial f ( x l  ..... x~) is irreducible then the probability 
that f ( x l  + wl, c2xl + w2,..., c~ lXl + w~_ 1, x2) becomes reducible for ran- 
domly chosen integers c2 ..... c~_ 1, Wl,..., w~ 1 of O ( d e g f +  log (I/e)) digits 
is less than ~. In von zur Gathen [5], Lemma 4.3, the integers have 
O(deg2f+ log(l/e)) digits and the substitutions are somewhat more com- 
plicated (cixl + uix2 + wi for xi.) We also use elementary methods to prove 
our result whereas von zur Gathen follows the algebraic geometric 
approach of Heintz and Sieveking [8] which is based on Bertini's theorem. 

In Section 4 we then use our effective Hilbert irreducibility theorem to 
establish Monte Carlo irreducibility tests for sparse multivariate 
polynomials. The tests are similar to probablistic primality testing except 
that they definitely establish irreducibility but compositeness only with a 
small failure probability. For rational coefficients the test runs in time 
polynomial in the number of non-zero monomials of the input polynomial, 
its total degree, and its coefficient length. Our theorem also applies to coef- 
ficients from a field of positive characteristic p provided the pth root of any 
element can be taken within this field. Therefore our theorem includes the 
important case in which the coefficients lie in a finite field. We propose a 
different irreducibility test in this case, that, unlike the algorithms by 
Chistov and Grigoryev [-2] and yon zur Gathen [5], does not require one 
to work in an algebraic extension of the coefficient domain. All 
irreducibility tests rely on polynomial-time irreducibility tests for 
polynomials in two or three variables. 

Notation. By Z we denote the integers, by Q the rationals and by C the 
complex numbers. Zp denotes the field of residues modulo the prime p. D 
shall denote an integral domain, QF(D) its field of quotients, char(D) its 
characteristic. D[xl  ..... x~] denotes the polynomials in xl ..... x~ over D, 
D(xl,. . . ,xv) the corresponding field of quotients; degx~(f) denotes the 
highest degree of xl in f ~  D[x 1 ..... xv], degx~,x2(f) the highest total degree 
o f f  in the variables x~ and x2, and d e g ( f ) =  degxl ....... ( f )  the total degree 
of f The coefficient of the highest power of x~ in f is referred to as the 
leading coefficient of f in x~ and will be denoted by ldcQ(f ) .  We call f 
monic in x~ if ldcf~( f )  is a unit of D. As is well-known, D[xl  ..... x~] is a 
unique fatorization domain (UFD) provided that D is a UFD. In this case 
the content of feD[-xl , . . . ,  x~] in x~, con t~( f ) ,  is the greatest common 
divisor (GCD) of all coefficients of f(x~) as elements in D[xl,..., x~ 1]. 
The primitive part of f in x~ is defined as 

1 
PPxo(f) = cOntx~(f ) f 

and we call f primitive in x~ if f = p p ~ ( f ) .  We also note that the total 
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degree of a factor of f with respect to any variable set is less than or equal 
to the total degree of f in that variable set. The infinity norm of 
f e  Q[Xl,..., x~], the maximum of the absolute values of the rational coef- 
ficients of f,  will be denoted by I f I. The squareroot of the sum of squares 
of the coefficients of f,  the square norm of f,  will denoted by ] f ] 2 .  

Let f ( x~)  - 1 l -  ~ m - - a l x ~ + a t _ l x ~  + ""  + a  0 and g ( x ~ ) = b m x  ~ + . . .  + b  o with 
ai, bj E D [ x  I ..... x~_  i] ,  at bm =/= O. By resin(f, g) we denote the resultant of f 
and g with respect to x~. As is well known, r e s ~ ( f , g ) ¢ 0  if and only if 
GC D( f ,  g) over D(x l  ..... X~_l)[Xv] is a constant. 

The probability of an event E will be denoted by P(E),  the cardinality of 
a set S by card(S). The vertical stroke ] stands for the divisibility relation. 

2. PRELIMINARY RESULTS 

First we prove a lemma stating that the set of zeros of a multivariate 
polynomial over an integral domain D is of small measure. (Measure 0 if 
card(D) = oo. ) 

LEMMA 1 (cf. Schwartz [14]). Assume that t ( y l , . . . , y ~ ) e D [ y l  ..... Yv] is 
a non-zero polynomial o f  total degree d and let S ~_ D. Then the probability 

P(t(cl,..., cv )=0  I cie  S, 1 <~ i <~ v) <~ d/card(S). 

Proo f  Induction on v. For v = 1, t(yl)  has at most d roots in D, hence 
the probability 

P(t (e l )  = 0 I Cl e S)  <<, d/card(S). 

Assume, the statement is true for v - 1 .  Let l (yl  ..... y~,_l)=ldcfv,,(t), 
n = degy~(t). Then deg(l)~< d - n  and by induction hypothesis 

P(l(Cl ..... c~ l ) = 0 l c i ~ S , l < ~ i < ~ v - 1 ) < ~ ( d - n ) / c a r d ( S ) .  

In case l (c l , . . . , cv_~)¢O there are at most n roots for t(cl, . . . ,C~_l,y,,).  

Therefore, 

P(t(C 1 ,..., Cv) ---~ O) = P ( t  = 0 I l = O) e ( I  = O) ~- P ( t  ~- 0 I l ~ O) P ( l  ~ O) 

<~ P(l(cl ,..., cv_ 1) = O) 

+ P ( t ( c l , . . . , c v ) = O I l ( c l  ..... c~ 1)~0)  

d - n  n d 

~< card(S~ + card(S------) - card(S)" | 

Second, we prove that squarefreeness of an irreducible multivariate 
polynomial is likely to be preserved by evaluation. 
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LEMMA 2. Let  f ( y l , . . . , y ~ , x ) e F [ y  1 ..... yv, x]  be irreducible in 
F (y  1 ..... yv)[x] ,  F a field, and assume further that ~f /Ox#O.  Let  
n = deg:,(f) ,  d =  degy~....,y,(f) and a~(y 1,..., y~) = ldcf:,(f). We now select 
w~ ..... w~ randomly f rom a subset S~_ F. Then the probability 

P(a~(w 1 ,..., w~) = 0 or f ( w l  ..... w~, x)  not squarefree) 

~< (2n + 1 ) d/card(S). 

Proo f  Since f is irreducible and Of/Ox#O, G C D ( f ,  Of/Ox)=I.  
Therefore the resultant 

A f ( Y l  , '", Yv)  = r e sx ( f  Of/Ox) ¢ O. 

Notice that deg(Ar ) ~< (2n - 1) d. Now let Of/Ox = ka~x ~ 1 + . . .  + al with 
k a k ¢ O ,  l<<,k<~n, where a i~F[y l , . . . , y v ]  are the coefficients of x i in f, 
deg(a~) ~< d, 1 ~< i ~< n. If we select w 1 , . . . ,  W v such that (anakAf)(w 1 ..... wv) ¢ O, 
then f ( x ) = f ( w l , . . . ,  w~ ,x )  is squarefree. For were it not, then 
GCD(f ,  df /dx )  # 1 implying that A f = r e s ( f  df /dx )  = 0. But 
A / =  At(w1,... , wv) #0 ,  a contradiction. Since deg(a,a~As)  <~ (2n + 1) d, by 
Lemma 1 we conclude that randomly chosen wl ..... wv do not nullify 
ana~A f with probability at least 1 - ( 2 n +  1)d/card(S). I 

Notice that if char (F)=  0, then the condition Of/~x # 0 in the previous 
lemma is automatically satisfied. However, in the case that char(F) = p > 0, 
this condition cannot be omitted. For example, if F is a finite field with p 
elements, then x p + y is irreducible but for every w E F, x p + w = (x + w) p is 
not squarefree. Lemma 4 in Section 3 proves, to some extent, that this is 
the only kind of counterexample possible. 

Third, we establish that evaluations rarely allow a GCD of higher degree 
to occur. For more clarity in the later proof of Theorem 2 we shall defer 
the application of Lemma 1 and not formulate this lemma in terms of 
probabilities. 

LEMMA 3. Let  f l , . . . , f k E F [ x l , . . . , x v ]  , F a field, with deg(fi)~<6 for  
1 <~i<~k and G C D ( f l  ..... f k ) =  1. Furthermore, assume that f l (O ..... 0 ) ¢ 0 .  
Then there exists a polynomial A(y2 ..... Yv) E F [ y 2  ..... y~] with deg(A) ~<262 
such that for  any elements c2 ..... c ~  F with A(c2 ..... c~) ¢ 0 the 
GCD1 ~<i~k(f,.(Xl, c2xl ..... C~Xl)) = 1. 

Proof  As can be seen easily from the fact that x~ ~f l (x~,  y2x~ ..... y~x~), 

GCD1 ~/~k(fi(xl ,  Y2Xl,..., y , x l ) )  = 1 in Fix1 ,  Y2,..., Y~]. Therefore we can 
find (not necessarily unique) polynomials s~ ..... s k~F(y2 , . . . , y~ ) [x l ]  with 
deg~,(s~) < 6 such that 

k 

I = 2 s i (Y2  ..... Yv ,  x I ) U z ( X I ,  y 2 X 1 ,  ..., y v X l ) .  
i 1 
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This identity leads to a linear system over F(y2 ..... y~) in 2c5 equations and 
k6 unknown coefficients of s~. Hence we can find a solution in 
(1/A(y2,,..,y~)) F l y  2 ..... y~], where A is a 2m by 2m, m<~6, determinant of 
coefficients of powers of x~ in .~(x~, y2x~ ..... y~xl). Therefore deg(A) ~< 262 
and any choice of c2 ..... c~ with A(c 2 ..... c~ )#0  forces G C D l ~ k ( f ~ ( x l ,  
ezXl ..... c~,xl)) = 1 since Y~=l si(c2 ..... c~,, Xl) f i (x t ,  e2x~ ..... e~xl) = 1. | 

In Theorem 2 we will need a non-monic version of the Hensel lemma 
whose statement and proof follows for completeness. We adopt the follow- 
ing vector notation: k -  (k I ..... k~), 0 = (0 ..... 0), yk = y ~ . . .  yf~,, k_+ k' -= 
(kl _+ k'l ..... kv _+ k'~), k <~ k' if, for all i, ki ~< k'i, and finally Ikl -= kl + " + kv 
if k ~> 0, and - oo otherwise. 

THEOREM 1 (Hensel lemma). Let f(Yl,.. . ,  Y~, x) e F l y  1,..., y~, x],  F a 
field, be of  degree n in x, l(yl,..., y~,) = ldcfx(f )  such that l o = l(O ..... O) ~ 0  
and fo(x) = f ( 0  ..... O, x) is squarefree. Suppose 

(loxi + go(x) )(Iox j + ho(x) ) = lofo(x), i+ j = n 

is a non-trivial factorization of  lofo in F ix] .  Then there exist, for all k with 
Ik[ ~> 1, unique polynomials gk(X), hk(x) ~ F i x ]  with deg(gk) < i, deg(hk) < j 
such that 

l(yl ,.,., y~ ) f (Y l  ,..., Y~, x) 

=(I(yl , . . . ,Y~) xi + 
k~>0 

gk(x) yk ) ( l (Y l  ..... y~)xJ+ ~" hk(x) y k ) . ( l )  
k>~O 

Proof We truncate the multivariate Taylor series in (1) to maximum 
order m and establish the existence and uniqueness of gk, hk, 0 ~< Ik] ~< m in 
that truncated equation by induction on m. For m = 0 ,  k = 0  and the 
statement is true by assumption. Rewrite l=Zk>~O lky k with lkEF, and 
If--lZx n= ~2k >/0 f k  yk with f k  ~ Fix]  and deg(fk) < n. We now consider the 
coefficient of yk, lkl = m, in 

k>~O k~>O 

namely 

gl,(lo xj + ho) + hk(lo x~ + go) 

+ ~ (ls(xihk s+XJgk s)+ gshk s) 
O~<s~<k,1 ~<lsl~<lkl 1 

where we denote the sum in this expression by bk. By induction hypothesis, 
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bk is unique and deg(bk)< n. It is necessary and sufficient for (1) to be true 
to order m that gk and hk, [kf = m, satisfy 

gk(lo Xj + ho) + hk(lo )ci + go) = f k  -- bk. 

Since f0 is squarefree, Io xj + h o and lo xi + go have no common polynomial 
factor which, by the extended Euclidean algorithm for polynomials guaran- 
tees the existence of gk and h k. Under the degree constraints deg(gk)< i, 
deg(hk)<j ,  and the fact d e g ( f k - b k ) < n  these polynomials are also uni- 
que. | 

Remark. The purpose of multiplying f with l before lifting is to be able 
to uniquely predetermine the leading coefficients of any possible 
polynomial factorization of f = gh. 

3. AN EFFECTIVE HILBERT IRREDUCIBILITY THEOREM 

We proceed to prove a random, but very effective version of the Hilbert 
irreducibility theorem for multivariate polynomials over an arbitrary field F 
with one restriction. In the case in which char (F)=  p > 0 we require that 
for each element a ~ K there exists a b e K such that b p = a. This condition 
is, of course, satisfied if F is a finite field. 

The fundamental theorem of this section is 

THEOREM 2. Let f ( x l  ,..., x~) E Fix1,..., x~], F afield, have total degree 6 
and be irreducible. Assume that Of/Ox~O. Let S~_F and let c2,..., c~ 1, 
w~,..., w~_~ be random elements in S. Then the probability 

P( f (x l  +Wl,C2Xl-}-w2,...,c v lXl-JrWv_l,X2) 

becomes reducible in FE x l , x2])~< 462~/card( S). 

Proof By Lemma2 the probability that f ( w 1 , . . .  , W v 1, X )  remains 
squarefree and of the same degree as f is at least 1 - (2n + 1) d/card(S), 
where n=degx~( f  ) and d=degxl  ....... l (f)" Assume now that this is the 
case. 

We first show how to evaluate f such that it remains irreducible in 
F()Cl)[X2]. Write 

g(Yl ..... Y ~ - I , x ) = I ( Y a  ..... yv 1 ) f ( y l + w l  ..... y v _ l + w ~ _ l , x )  

where 

l(yl ..... Yv-1) = ldcfx0(f)(yl + W 1 . . . . .  Y v - - 1  "4- W v _ 1)" 
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Let F[Ey~,...,y~_~]] denote 
y~ ,..., y~_ 1 over F. We set 

and 

the domain of formal 

g¢(Yl, x) = g(Yl, c2 Yl,..., c~_ 1Yl, x) 

power series in 

lc(yl) = l(yl,  C2 Yl ..... c~_ 1 Yl) '  

Then each factor f:(yl, x ) e F [ [ y l ] ] [ x ]  of gc with ldcfx(/~)=/~ 
corresponds to a factor h e F [  [Yl ..... Y~- 1] ] I x ]  of g with ldcfx(h) = l such 
that 

]~(y l ,  X ) = h c ( y l , x ) = h ( c  2yl, . . . ,cv l Y l ,  X)" 

Since if that were not the case we could present, by Theorem 1, two dif- 
ferent factorizations of gc, that, when evaluated at Yl = 0 would result in 
one and the same factorization of g¢(O, x ) ~ F [ x ] .  But this is impossible 
due to the uniqueness of the Hensel lifting procedure, as proven in 
Theorem 1. 

We will show that for integers c2,...,c~_1 not nullifying a certain 
polynomial g(z2,..., z~ 1) ~ F[z2,..., zo 1] of degree at most 4d(2 ~- a - 1) 
no factor derived from g in such a way can be a polynomial dividing g~. 
Let 

i 

h(y,,..., yv 1, xl : Z Z bk.jykx j 
j=O k~>O 

be a factor of g(yl , . . . ,y~,x)  in F[Eyl,.. . ,y~ 1]][-x] with O < i < n  and 
ldcfx(h) = l and let 

n--i 
I~(yl,...,y~ 1,x) = ~ ~ bk,jY kXj 

j~O k~>O 

be its cofactor, i.e., g = h/~. There must exist at least o n e  bk, j o r  6k, j with 

2 d <  Ikl ~<4d and ( b k j ¢ 0  or b k j ¢ 0 ) .  

To see this, assume the contrary. Then 

bk,jY kxj ~ bk,jY kxj = g(Yl  ..... Yv-  1, x )  
j 0~<lkl~<2d j 0<~[kl~<2d 

since no monomial  aykx j, a a non-zero element of F, with 2 d <  [kl ~<4d in 
the left product could be cancelled by higher terms in the product of the 
complete expansion of h and/~. Notice that g does not contain a monomial  
in y of degree larger than 2d. But this contradicts the fact that f is 
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irreducible. Without loss of generality we now can assume the existence of 
a vector p and an integer m such that 

bp,m¢O with 2d< Ipl ~<4d and O<~m<i. 

Set 

tp,m(Yl ..... Y~--1)= ~ bj.mY j 
IJl = Ipl 

which is the coefficient of x m in h of order Ipl in Yl,..., Y~ - 1 and which is a 
nonzero polynomial in Fly1,..., Yv-1]. By choosing c2,..., c~ 1 such that 

tp,m(yl,c2Yl ..... C~ l Y 1 ) ¢ 0  

we guarantee that he(y1, x) has a non-zero coefficient of order Ipl in y~. 
Therefore h c cannot be a polynomial dividing gc. The polynomial 
~(z2,...,z~ 1) then can be chosen as the product of tp,m(1, Z2 ..... Z~_I)veO 
over all possible factor candidates h. Since there are at most n irreducible 
factors of g in F[[yl,. . . ,  y~_ l ] ]  Ix ]  and we do not need to consider com- 
plementary candidates there are at most 2 n 1 _ _  1 possibly reducible factors 
to refute (see also Remark below). Thus deg(~z)~<4d(2 n - l -  1) and we 
know that each non-zero c2,..., cv_ 1 of 7[ prevents the polynomial gc(xl, x2) 
from having a factor in F[  Ix1 ] ] [x2] all of whose coefficients have order in 
Xl less than degx~(gc(x~,x2)). Therefore this bivariate polynomials is 
irreducible in F(xl)[x2] and so is 

f ( X 1 - } - W I , C 2 X 2 q - W  2 ..... C v l X v - I  @ W v - I , X 2 ) .  

We finally must refute a possible content in Fix1] .  Let l~(Yl,...,Y~_l) be 
the coefficient of x ~ in f (y~ + Wl,..., y~_ 1 + w~ 1, x), deg(/,) ~< d. Note that 
l, is our previous l and also /n(0,.. . ,0)¢0. Since f is irreducible 
G C D o ~ , ( / ~ ) = I .  By Lemma3 there exists a polynomial A with 
deg(A) ~< 2d 2 such that A(cz,...,c~_ 1 ) ¢ 0  implies G C D o ~ , ( I ~ ( y  ~, C 2 Y l , . . .  , 

c~ ~ y~)) = 1. For such c~ our evaluated polynomial cannot have a content 
in x2, i.e., a factor in Fix1]. 

In summary, we must avoid zeros of ~A. By lemma 1, random c2 ..... c~_ 1 
from S make (~A)(c2 ..... c~_ 1) ¢ 0 with probability 1 - (deg(~) + deg(A))/ 
card(S). Taking the choice of the w into account, the probability of success 
is at least 

(1 (2n+ 1)_d']( 1 
c a r d ( S ) ] \  

4d(2n ~aard-(S~-i _ 1) + 2d2.) >~ 1 

i>1 

462 a -  3d 

card(S) 

462 a 

card(S) 

with 6 = d e g ( f ) .  I 
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Remark. The bound 462~/card(S) can be substantially improved if one 
knows the number r of factors of g(0,..., 0, x) in Fix] .  For example, 
2~(2r + 26)/card(S) is a possible upper bound for the probability of failure. 

As we have already pointed out after Lemma 2, the condition Of/#x~ ~ 0 
is automatically satisfied if char (F)=  0. For characteristic p > 0 we can 
prove that Theorem 2 is still correct without this assumption about the 
derivative of f provided that for each element a e F there exists an element 
b e F such that b p - ~  a. We need the following additional lemmas. 

LEMMA 4. Let F be a field of characteristic p>  0 and let f ( x ) =  
anxn + "'" + ao e F i x ]  be irreducible. Furthermore, assume that there exists 
an index i, 1 ~ i ~ n, such that for all b e F, b p ~ a~. Then f ( x  p;) is irreducible 
in F[x] for all integers ,~ >10. 

Proof. By induction on 2. For )~=0, f ( x )  is irreducible in F[x]  by 
assumption. Now assume that f ( x  ;~ ~) is irreducible in F[x],  but suppose 
f ( x  px) is not. Then there exist polynomials g, h e Fix] ,  g non-constant and 
irreducible, GCD(g,  h) = 1 such that 

f ( x / )  = g(x) k h(x), k >~ 1, (*) 

and either k>~2 or h ~ 1. Differentiating (*) we get, since )~ >~ 1, 

dg dh 
k ~xx h =  - g  d--~" 

Hence, dh/dx= O, which is equivalent to h(x)= t~(xP), ~ie Fix] ,  and either 
k =pl or dg/dx = 0, each of which imply that g(x)~ -= ~,(xP) ~, ~, e F[x]  non- 
constant, /~ >~ 1. Therefore, (*) can be rewritten, with y = x p, as 

f l y ~ - ' )  = fi,(y)~ fi(y). 

By induction hypothesis we conclude that/~ = 1 and/~ = 1. Thus h = 1 and 
k >/2 and we must have f ( x / )  = (g(x)l) p which means that each coefficient 
a i is the pth power of a coefficient of g(x) t, contradicting our second 
assumption. | 

LEMMA 5. Let f ( x  1,'", Xv) E F[Xl,..., xv], F a field of characteristic p > O, 
have total degree ~ and assume that there exists an index i, 1 <~ i <~ v, such 
that ~f/#xi#O. Furthermore, let S~_F and let c2,..., cv, wl ..... wv be random 
elements in S. Then the probability 

 (  Xl+WlC2Xl+w2c Xl+W  )dxl ..... 0 c a r a f e ,  
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Proof Write 

f(xl, . . . ,  x~)= ~ akXkll "'' Xk~. 
O~<lkl<6 

Then, by assumption there exists a k such that a k ~ 0 and p ~ k~. The coef- 
ficient of x~ ~ in f(x~ + Yl, z2xl + Y2,..., z~xl + y~) ~ F[x l ,  Yl ..... y~, z2 ..... z~] 
is 

, ' " ,  = " Y i -  lZi Y i +  i Y o  "4- " ' "  

where the given monomial only occurs once since we can unambiguously 
deduce from the given exponents the term in the expansion it came from. 
Therefore 7 ~ 0  with deg(7)~<6. Thus, by Lemma 1, 7(w~,..., w~, 
c2 ..... c~)=0 with at most the given probability, but this is obviously 
necessary for df(xl + wl,..., CoXl + w~)/dxl = O. | 

We now formulate our irreducibility theorem in the most general way, 
which we shall prove here. 

THEOREM 3 (Effective Hilbert irreducibility theorem). Let f ( x  1,..., x~) 
F[Xl,...,x~], F a field, have total degree 6 and be irreducible. I f  
char(F) = p  > 0 we require that each coefficient of  f in F possesses a pth 
root in F. A sufficient condition for this to be true is that F be perfect. Let 
S~_F and let c2 ..... c~ 1, Wl,...,w~_l be random elements in S. Then the 
probability 

P ( f ( x l  + Wl, c2xl + w2,..., c~_ lx l  + w~_ 1, x2) 

becomes reducible in F[Xl,  x2])~< 4626/card(S). 

Proof If char (F)=  0 or Of/~xv ¢ 0 then our theorem is identical to 
Theorem 2. Therefore assume that cha r (F)=  p > 0 and that 

f (xl , . . . ,xo)=f(xl , . . . ,x~_~,xo ), ~>>.1, 

with f ( x  I ,..., x v_ 1, z) ~ F[x  I ..... xv_ 1, z]  and ~f/Oz ~ 0 (i.e., # is as large as 
possible). Since f is irreducible so must be f and we can apply Theorem 2 
to f.  Looking at the last inequality in the proof of Theorem 2, randomly 
chosen w~,...,W~_l, c2,...,c~_ 1 from S keep f ( x j + w l ,  c2xl+w2,.. . ,  
c, l X l + W v _ l , x 2 )  irreducible in F[xl ,  x2] with probability at least 
1 - (4~26-  3d)/card(S), where d -  degxl ....... , ( f )  = degx~ ........ l ( f ) ;  note 
that d e g ( f )  ~< 6. 

Now there must exist a coefficient ai(xa ..... X~_l) of (xP~) ~ in f such that 
not all ~a~/Oxj, l<<.j<.v-1,  vanish. Otherwise, by virtue of our 
assumption, f would be a pth power of a polynomial, hence reducible. Let 
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wl,..., W~_l, c2 ..... c~ ~ in addition to the constraints of Theorem 2 also be 
such that, for 

ai (x l )  = ai(xl q- Wl, C2Xl -}- w2,..., Cv- lXl  + wv 1), 

dgti/dx 1 ¢ O. Then 

¢(Xl,  X2) = f ( X l  + Wl, C2Xl + Wz,...,Cv_lXl + Wv_l,  X2) 

must be irreducible in F[Xl ,X2] .  For, interpreting the evaluated 
polynomial corresponding to f as an element of F(xl)[x2] it is clear that 
its coefficient ai is not a pth power. Hence Lemma 4 applies and shows that 
f is irreducible in F(xl)[x2]. By the proof of Theorem 2, f cannot possess 
a content in Fix1]. It remains to estimate with which probability the 
additional condition on the Wl ,..., cv_ ~ is fulfilled. By Lemma 5 this is true 
with probability at least 1 -d/card(S) ,  thus the overall rate of success is at 
least 

_ ( . 4 6 2 a - 3 d  d ) 462 a 
1 \ c a r d ( S )  I - ~  >1 card(S)' I 

We remark that one can generalize Theorem 3 to arbitrary fields. Using 
von zur Gathen's [5] Lemma 4.2 we get a slightly smaller success 
probability 1 - 5d2d/card(S) for these exceptional fields. We note, however, 
that the usual fields occurring in algebraic computation are perfect, such as 
fields of characteristic 0, finite fields, and algebraically closed fields, and 
therefore do not discuss the details of that generalization. 

4. PROBABILISTIC IRREDUCIBILITY TESTING 

We now apply Theorem 3 to cosntruct a probabilistic irreducibility test 
for a sparse multivariate polynomial f ( x l  ..... x~)eF[xl,... ,xv], F an 
arbitrary field (with the restriction stated in Theorem 3 in case that 
char(F) > 0). Our algorithm outputs "definitely irreducible" or "probably 
composite" or "failure" where the chance that the irreducibility of f is not 
recognized as such is less than a given constant e <{ 1. The algorithm selects 
random elements in S_c F and calls an irreducibility test for polynomials in 
two or three variables, depending on the characteristic of F. Apart from the 
calls to these unspecified subroutines our algorithm works in polynomially 
many steps in deg ( f )  and monomials(f) ,  where monomials ( f )  denotes 
the number of non-zero monomials in f 

If we furthermore specify F =  Q or Zp, then our algorithm is also of 
polynomial complexity in the number of bits needed to encode the coef- 
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ficients of f and log 1/e. In this case the required polynomial-time sub- 
routines exist. (Cf. Kaltofen [9] for F = Q  and yon zur Gathen and 
Kaltofen [7] for F =  Zp. The latter algorithm is only a probabilistic one 
and way, with controllably small probability, return "failure.") 

For char(F)= 0 our algorithm is quite simple: 

ALGORITHM 1. [Given an irreducible polynomial f(xl,..., xv) 
F[x 1,..., xo], char(F) = 0, this algorithm attempts to prove the irreducibility 
of f with a failure chance less than e ~ 1:] 

(R) [Random choices:] From a set S_c F with 
ca rd(S)>~4deg( f )  2deg(Y)/e select random elements c2,..., co 1, 
W 1 , ' " ,  W v  -- 1 • 

(I) [Irreducibility test:] 
f(x~, x2) ~ f ( x l  + W 1 ,  C 2 X I  ~- W2  . . . . .  Cv lXl ~- W v  1, Y2)" 
IF d e g a s ( f ) < d e g a s ( f )  THEN RETURN ("failure"), ELSE call 
an algorithm testing f(x~, x2) for irreducibility in Fix1, x2]. IF 
f is irreducible THEN RETURN ,~c is definitely irreducible" 
ELSE RETURN '~  is probably composite." 

Complexity analysis for F = Q :  We first multiply by a common 
denominator of all rational coefficients of f. Therefore we may assume that 
f ~  Z [ x  1,..., xo]. Now let 6 = d e g ( f )  and choose S the interval { -262~/e ~< 
s <~ 262~/e}. We evaluate each monomial bk xk off ,  ]k[ ~< 6, and then add up 
to get f. It is easy to see that 

gk(Xl, X2) = bk(X 1 -1- W1) kl (e2x  1 -]- w 2 )  k 2 " . .  ( c  o i x !  -]- w v _  1) kv-I x2 kv 

can be computed in 0(6 2) integer operations. In fact, the coefficient of x~ in 
gk is 

bk E 
i l+  .. .  + i v _ l _  i 

O<~il<~kl,..-,O<~iv-l~kv 1 

/ \ / k~=l ] ,A,~ ilpi2,a, k2-i2 . . . .  iv l l A , k v - l - - i r  - 1  

\ J il \ i~ 17 -1 ~2"2 ~v--l'~v 1 

which is O(21kl(262~/e) Ikl) in magnitude. Therefore log Igk[ = 
O(62 + 6 log 1/E +Iog  I f [ )  and log I l l  = O(log/~ + tog  Jgkl), where 
/~=monomials ( f ) .  To add up all gu takes 0(#62) integer operations. In 
summary, Algorithm 1 runs in 0(1~62) integer operation with integers of 

O (62 + 61ogl+ log f f l  +log ,u )  

digits. The later is also a bound for log If[ .  The algorithm needs 
O(v6 + v log l/e) random bit choices. This analysis does not account for 
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testing f(xl, x2) for irreducibility. We can call Kaltofen [91, Algorithm 2, 
but the cost of this call might be quite high, 0(814 log 3 I f  I), which most 
likely does not reflect the true behavior of that algorithm. However, the 
actual cost can be expected to grow quickly with 8. This is why we chose S 
dependent on e, the wanted failure probability, and call the bivariate 
algorithm just once. 

We now treat the case in which F has only finitely many elements. 
Algorithm 1 obviously may run into problems since the sufficiently large 
subset S of F may not exist. Our approach here is to work in F* = F[Xl]. 
We now present the algorithm. 

ALGORJTHM 2. [Given an irreducible polynomial f(xl ..... xv)• 
F[xl,...,xv], card(F)< oo, this algorithm attempts to prove the 
irreducibility of f with a failure chance less than e~ 1:] 

(C) [Check for content in F * = F [ x l ] : ]  Rewrite f to 
f*(x2,..., xo)• F*[x2,..., xv] and verify that all coefficients o f f *  
in F* have no GCD in F [ X l ] .  Otherwise RETURN (,~c is 
definitely composite"). 

(R) [Random choices:] From a set S_cF* with 
card(S)/> 4 deg(f*)  2deg(f*)/~ select random elements 
C3~"', Cv 1~ W2, '" ,  W v - l "  

(I) [Irreducibility test:] 
f(x2, x3) *-- f * ( x  2 + w2, C3X2 ~- W 3 ..... C v_  IX2 ~- Wv__ I, x3). 
IF degx3(f ) < degx3(f*) THEN RETURN ("failure"). Compute 
the GCD of all coefficients of f in F*, g*[xl] .  Set 
¢(Xl,  X2, X 3 ) + - - f ( X 2 ,  X 3 ) / g * ( X l ) f f F [ X l ,  X2,  X3]. Now call an 
algorithm testing f for irreducibility in F[xl, x2, x3]. IF )~ is 
irreducible THEN RETURN (')c is definitely irreducible") ELSE 
RETURN (,~c is probably composite"). 

The correctness of this algorithm follows from Gauss' lemma stating that 
if a polynomial h(x~ ..... xv) • D[Xl ,..., x~], D a unique factorization domain, 
is irreducible, it remains irreducible in QF(D)[xx ..... x~]. We again select a 
concrete field F to carry out timing estimates. 

Complexity analysis for F= Zp: Let 6 = deg( f*)  and choose 

S={S(Xl) lS(X~)•F[Xl] anddeg(s)<~L(8+2)l°g2+l°g6-1°ge]} 
log p 

Notice that card(S),,->4826/e. Step (C) takes 0(#82) field operations 
in Zp, #=monomials ( f ) .  Furthermore, f can be computed in 
O(t~62.82((8-1oge)/logp)2), where the second factor arises from com- 
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puting powers of ci and wi. Also d e g x , ( f ) = O ( b ( 6 - 1 o g ~ ) / l o g p )  and 
degx2,x3(f)~<6. Hence the calculation of the GCD g* costs 
0(63((6 - log e)/logp) 2) operations in Zp. Assuming that 6 - log e >~ logp, 
Algorithm 2 runs in 

binary steps. The algorithm needs O ( v ( ~ - l o g e ) )  random bit choices. 
Again, we do not account for testing f(x~, x2, x3) for irreducibility. We can 
call the algorithm presented in von zur Gathen and Kaltofen [7]. That 
algorithm is also random and has a small probability of failure. Further- 
more, its complexity in ~ is quite high. 

In this section we only dealt with irreducibility testing of sparse 
polynomials. Theorem 3 can, of course, be employed to produce sparse fac- 
torizations in the spirit of Zippel [16] and yon zur Gathen and Kaltofen 
[6] (see also Kaltofen [10]). In Zippel [16] the sparse Hensel lifting is 
started with f(cl,..., c~_~, Xl), Cl ..... c~ ~eF, whereas in von zur Gathen 
and Kaltofen [6] the evaluation is to f (x~,  x2, C3Xl + u3x2 + w3 ..... c~x~ + 
UvXz+Wv), G, ui, w ~ F .  Unfortunately, we have no effective Hilbert 
irreducibility theorem for evaluations in F and neither here nor in [6] we 
choose evaluations in the coefficient domain. In order to use a unified Hen- 
sel procedure which always evaluates in F we could, however, view 
Theorem 3 in the following way. Let the coefficient field of f(x~ ..... x~) be 
F(xl)(F(xl ,  x2) for char(F)>0) .  Then our algorithm must select random 
elements in this field which are linear in x~ (x2 for char(D)> 0). 

CONCLUSION 

Though we were able to prove a very effective version for the Hilbert 
irreducibility theorem in the case in which the coefficients came from a 
transcendental extension of the integers, the classical version with integral 
coefficients still defies such error estimates. Again the set of evaluation 
points mapping the irreducible multivariate polynomial into a reducible 
univariate one is of measure 0 (cf. D6rge [3]). Although recent research 
has produced very concrete descriptions of integer point sets preserving 
polynomial irreducibility (cf. [4, 15]), the possibility that the first integer 
preserving irreducibility might be exponentially in size cannot be excluded 
yet. However, practical experience indicates that the classical theorem also 
provides an excellent, though not proven, irreducibility test. 

Within the last two years since this paper has been written the effective 
Hilbert irreducibility theorem presented here has been applied in two new 
settings. First, it is used to determine the factorization pattern of a mul- 
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tivariate polynomial defined by a straight-line program (cf. von zur Gathen 
[5] and Kaltofen [11]). Furthermore, it is used in the algorithm for fac- 
toring multivariate polynomials given by straight-line programs into sparse 
factors [ 11 ]. In retrospect, the usage of linear substitutions also eliminates 
the so called "leading coefficient problem" during the Hensel lifting process 
and therefore appears to be superior to classical evaluation techniques. 
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