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a b s t r a c t

Drought characteristics for the Indian monsoon region are analyzed using two different datasets and
standard precipitation index (SPI), standardized precipitation-evapotranspiration index (SPEI), Gaussian
mixture model-based drought index (GMM-DI), and hidden Markov model-based drought index (HMM-
DI) for the period 1901–2004. Drought trends and variability were analyzed for three epochs: 1901–1935,
1936–1971 and 1972–2004. Irrespective of the dataset and methodology used, the results indicate an
increasing trend in drought severity and frequency during the recent decades (1972–2004). Droughts are
becoming more regional and are showing a general shift to the agriculturally important coastal south-
India, central Maharashtra, and Indo-Gangetic plains indicating higher food security and socioeconomic
vulnerability in the region.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Droughts in the monsoon dominated regions have gained
greater importance in the recent past, as monsoons not only define
the unique features of the climate, but also affect the socio-
economic well-being of more than two third of global population
(Niranjan Kumar et al., 2013; Rajeevan et al., 2008). Recent chan-
ges in Indian monsoon precipitation have received wide attention
(Kripalani et al., 2003; Mishra et al., 2012; Rupa Kumar et al., 2006)
with some plausible uncertainty on whether trends associated
with summer monsoon precipitation are related to global warm-
ing or those due to regional changes (Chung and Ramanathan,
2006; Kishtawal et al., 2010; Niyogi et al., 2010). A number of
studies (Kumar et al., 1992; Rajeevan et al., 2008; Stephenson,
2001) have indicated that the mean precipitation during the
monsoon season may be unaltered over the Indian monsoon
region (IMR), however the extreme precipitation events have
shown statistically significant increasing trends in last five decades
resulting in modification of drought characteristics over IMR
(Goswami et al., 2006; Mishra et al., 2012). Trends associated with
the Indian summer monsoon rainfall (ISMR) have also shown a
great regional variability where some parts of India have seen
an increase in precipitation while others show a reduction in
precipitation during the monsoon season (Guhathakurta and
B.V. This is an open access article u
Rajeevan, 2008; Niyogi et al., 2010; Roxy et al., 2015). Significant
interannual, decadal and long term trends have been observed in
the monsoon drought time series over IMR influenced by El Nino
Southern Oscillation and global warming (Niranjan Kumar et al.,
2013).

Recently, contrasting conclusions were drawn about global
drought climatology by two synthesis studies (Sheffield et al.,
2012; Dai, 2013). While Sheffield et al. (2012) showed that there
was little change in drought climatology in recent years, the study
by Dai (2013) concluded that droughts were intensifying as a re-
sult of a warming climate. Building off these assessments, Tren-
berth et al. (2014) summarized that the choice of precipitation
dataset and other forcing datasets could influence drought ana-
lysis in addition to the choice of model parameterizations being
used in deriving the drought indices [e.g. potential evapo-
transpiration calculations while estimating PDSI as reported in
Sheffield et al. (2012)]. These studies highlight the need for using
multiple drought indices and datasets for drought climatology, and
form the basis for reassessing the drought of the Indian Monsoon
Region.

Evaluation of trends and variability associated with retro-
spective drought events provides a basis to understand regional
patterns of severity, duration, and areal extent of droughts. It also
enables an understanding of the nature of possible future droughts
and potential vulnerabilities. Building off the findings of drought
assessments over the IMR in recent years and the recommenda-
tions cited in Trenberth et al. (2014) the aims of this paper are
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.sciencedirect.com/science/journal/22120947
www.elsevier.com/locate/wace
http://dx.doi.org/10.1016/j.wace.2016.01.002
http://dx.doi.org/10.1016/j.wace.2016.01.002
http://dx.doi.org/10.1016/j.wace.2016.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wace.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wace.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.wace.2016.01.002&domain=pdf
mailto:climate@purdue.edu
http://dx.doi.org/10.1016/j.wace.2016.01.002


Fig. 1. Study domain showing 1° grid cell locations for India Meteorological Department precipitation dataset as cross-hairs, and 0.5° grid cell locations for University of
Delaware precipitation dataset as dots.
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(i) to study the retrospective droughts and associated trends over
IMR using different precipitation datasets and drought indices, and
(ii) to identify regions in IMR that are vulnerable to droughts.
2. Data and methods

We used gridded daily precipitation data from the India Me-
teorological Department (IMD) (Rajeevan, 2006) available for the
period 1901–2004 at °1 spatial resolution (Fig. 1). The daily pre-
cipitation data obtained from IMD was then aggregated over
monthly time scale. The second dataset used in this study was
monthly precipitation data from University of Delaware (UD)
available for the period of 1900–2004 (UDel_AirT_Precip data
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
from their Web site at 〈http://www.esrl.noaa.gov/psd/〉) at °0. 5
spatial resolution (Fig. 1). The precipitation data from high-
mountainous regions in northern and northeastern parts of the
country were not used in the study.

Despite the differences in the spatial resolution, the precipita-
tion datasets show similar patterns in the spatial distribution and
variance of precipitation over the study region. Fig. A.1a and b
shows the distribution of mean monthly precipitation over the
study region, and Fig. A.1c and d compares the standard deviation
in monthly mean precipitation between the two datasets. While
the overall patterns are similar, the effects of resolution on the
magnitudes are evident. For instance, the UD dataset provides
more detail in the spatial distribution of precipitation statistics;
and a comparison of monthly mean precipitation time series
(Fig. A.2) between the two datasets shows that while the overall
monthly time series pattern are similar, the precipitation magni-
tude for IMD grids are lower compared to UD grids during the
months June to September, and relatively identical for the re-
maining months.

Standardized precipitation index (SPI; McKee et al., 1993),
standardized precipitation-evapotranspiration index (SPEI; Vice-
nte-Serrano et al., 2010; Niranjan Kumar et al., 2013), Gaussian
mixture model-based drought index (GMM-DI; Mallya, 2011), and
hidden Markov model-based drought index (HMM-DI; Mallya,
2011; Mallya et al., 2012) were calculated for drought character-
ization at multiple time scales ending in September (i.e. for
1-month, 4-month, and 12-month moving time-window) and
December (i.e. for 7-month moving time-window). The results for
12-month moving time window accounts for precipitation events
occurring over both the active monsoon and the non-monsoon
months and 7-month time-window ending in December accounts
for summer monsoon (JJAS) and winter monsoon (OND) months
over the study area and are discussed here in detail. These indices
differ in their mathematical formulation and the drought classifi-
cation technique. While SPI relies on fixed thresholds for drought
classification, GMM-DI and HMM-DI employ a probabilistic data-
driven approach. SPEI uses temperature (UDel_AirT_Precip,
〈http://www.esrl.noaa.gov/psd/〉) for calculating evapotranspira-
tion, thus accounting for any temperature rise in the study area
during recent decades. The mathematical formulations of the
drought indices are summarized in Appendix A.

The drought index values obtained were analyzed further to
extract drought characteristics such as severity, duration, areal
extent, and frequency. The drought impact index was then com-
puted for each year, by normalizing the product of mean severity
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Fig. 2. Drought characteristics over IMR computed for IMD dataset using (a) SPI, (b) GMM-DI, and (c) HMM-DI for 12-month time window ending in September. In each
figure the top-panel shows time-series plot of moderate drought severity averaged over all grids. Middle-panel shows the bar-plot of areal extent of moderate droughts
represented as percentage of total area in the IMR. Bottom-panel shows the bar-plot of drought impact index for moderate droughts. Solid line represents the median value
and dotted line represents slope during the sub-periods 1902–1935, 1936–1970 and 1971–2004 respectively.
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Fig. 3. Same as Fig. 2, but using °0.5 University of Delaware precipitation dataset.
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Fig. 4. Epochal variation in drought statistics over IMR using IMD dataset where (a) number of drought events, (b) average intensity of drought, and (c) duration of drought
in months. In each sub-plot top panel represents SPI, followed by SPEI, GMM-DI, and HMM-DI.
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and the areal extent of drought.
The study period was divided into three segments (1901–1935,

1936–1970, and 1971–2004) to understand the trends and varia-
bility associated with retrospective droughts. This was done be-
cause droughts have a multiyear influence, and the three periods
chosen approximately correspond to periods where IMR experi-
enced significant droughts (e.g. 1918, 1965, 1972, 1987, and 2002).
Dividing the entire 104 years (1901–2004) of data into three per-
iods (35, 35, and 34 years) was expected to provide a sufficient
length of time series to estimate trends and other statistical values.

A modified Mann-Kendall trend test that accounts for auto-
correlation in time-series (Kulkarni and von Storch, 1995; Hamed
and Rao, 1998) was used to detect trends in the annual SPI, SPEI,
GMM-DI, and HMM-DI values. Trends were estimated on the an-
nual time series for the entire period and for each sub-periods (i.e.
1901–1935, 1936–1970, and 1971–2004) using a 5% significance
test. The effect of spatial correlations in the data (Burn and Elnur,
2002; Yue and Wang, 2002) on the trend results were accounted
by using false discovery rate (FDR) (Benjamini and Hochberg,
1995; Ventura et al., 2004).
3. Results

3.1. Drought characterization

The drought indices were able to capture (Fig. 2 and Fig. A.3a)
the major documented drought events over IMR (De et al., 2005).
For the study period, the six most notable moderate-droughts
occurred in 1905, 1946, 1965, 1974, 1979, and 1984. In the figure
moderate drought refers to SPI values between �1.0 and �1.49
(Charusombat and Niyogi, 2011). Three of the most severe historic
droughts occurred during the recent period of 1971–2004. The
drought characteristics showed an increasing trend during the
same period. Modified Mann-Kendall trend test was performed to
test the statistical significance of the trends in these average



Fig. 4. (continued)
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drought statistics. For example, SPI analyses (Fig. 2a) showed a
drying trend in the mean severity of moderate droughts (�0.04/
decade, p-value40.05) during the period 1971–2004, indicating
increased drying. During the same period the areal extent and
drought impact index of moderate droughts also showed in-
creasing trends. Similar trends were observed for SPEI, GMM-DI
and HMM-DI analyses (Fig. A.3a and Fig. 2b, c). These trends are
consistent with the precipitation trends documented in other
studies (Guhathakurta and Rajeevan, 2008; Kripalani et al., 2003;
Rupa Kumar et al., 2006).

The trends were reanalyzed in the °0.5 resolution UD pre-
cipitation data, thus providing means to compute and validate
trends in drought characteristics at a relatively finer spatial re-
solution over IMR. As in the case of IMD dataset-SPI, SPEI, GMM-DI
and HMM-DI were computed. The drought characteristics such as
mean severity, areal extent, and drought impact index were
computed for each drought index. Again the drought indices were
able to capture (Fig. 3 and Fig. A.3b) the major drought events
documented over IMR (De et al., 2005) during the period of 1901–
2004 and agree well with IMD dataset results (Fig. 2 and Fig. A.3a).
There are broad similarities and also specific differences in the
characteristics revealed by the choice of index and data. For ex-
ample, the SPI and SPEI yields a relatively smaller drought impact
index as compared to GMM-DI and HMM-DI.

3.2. Spatial and temporal variability in drought characteristics

To study the spatiotemporal variability in droughts; average
drought characteristics based on SPI, SPEI, GMM-DI, and HMM-DI
values were obtained for each epoch over all grids in IMR by
computing the mean number, severity and duration of droughts
(e.g. 1901–1935; 1936–1970 and 1971–2004). For the IMD dataset
and 12-month time window, during the period 1901–35 there
were many widespread droughts (Fig. 4) mainly in the northern,
central and the Deccan Plateau regions of IMR. While more
number of drought events were observed in the Deccan region
(Fig. 4a), the drought duration and intensity were higher in
northern and central regions of IMR. During the epoch of 1936–
1970 the droughts were more active in the western region and
parts of Deccan Plateau of IMR. Compared to 1901–35, droughts
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were less frequent during this epoch (1936–1970). During 1971–
2004, the number of drought events and their duration increased
in the central and eastern Indo-Gangetic plain (IGP; 20N-28N), and
southern parts of IMR. High drought intensities were recorded in
central and eastern IGP, south-India, and parts of western-India
(that include states of Maharashtra, Gujarat, and Rajasthan).
Drought patterns were mostly similar for all four drought indices
in each epoch – while GMM-DI showed more wide spread
droughts; SPI, SPEI, and HMM-DI were better able to distinguish
the drought hotspots.

Results for the UD dataset were similar to those obtained for
IMD dataset. There were many widespread droughts in the wes-
tern and central parts of IMR during 1901–1935 (Fig. 5). During
1936–1970, except for some parts of western, central and southern
India, most of the IMR was the wettest and droughts were in-
frequent. As in case of IMD dataset (Fig. 4), the number of droughts
and duration of droughts increased in the central and eastern IGP
(20N–28N), and southern parts of India during 1971–2004. The
drought intensities were higher in interior parts of south-India,
western parts of India (Maharashtra, Gujarat, and Rajasthan) and
IGP. The drought indices – SPI, SPEI, GMM-DI and HMM-DI were
able to consistently capture the space and time evolution of
drought characteristics over the IMR during the entire study per-
iod. A notable west to east migration in the drought severity and
extent over the last century is seen.

Similar comparison of epochal drought characteristics over IMR
for 7-month time window using IMD (Fig. A.4) and UD (Fig. A.5)
datasets showed that during 1901–1935 droughts were more in-
tense and frequent in parts of Deccan Plateau, western and
northern parts of India. Droughts were comparatively less frequent
during the epoch 1936–1970 according to SPI and SPEI, however
GMM-DI and HMM-DI analysis shows that droughts continue to be
intense and frequent in western-India and parts of Deccan Plateau.
During 1971–2004 central-India, eastern IGP, and parts of south-
India emerge as drought hotspots – along with high intensity but
short-term droughts in western-India.

A decadal comparison of 12-month time window drought
characteristics over IMR using IMD dataset (Fig. A.6) shows higher
level of drought activity in northern-India, western-India and
Deccan Plateau during the 1901–10, 1911–20, with more



Fig. 5. Same as Fig. 4, but using °0.5 University of Delaware precipitation dataset.
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intensification during 1921–30. The subsequent two decades
(1931–40 and 1941–50) were amongst the wettest in the past
century. Droughts started to emerge in the eastern-IGP during late
1951–60 and intensified in IGP and parts of western-India during
1961–70. During 1971–80 droughts continued to persist over
eastern IGP, and in the following decade (1981–90) additional
hotspots emerged in south-India and parts of western-India.
During 1991–2000 and onwards, eastern-IGP and parts of central-
India continue to be the drought hotspot. Similar patterns in
drought characteristics were observed in our analysis when using
UD dataset, and for different time windows.

3.3. Trends

Figs. 6 and 7 show the trends in drought intensity computed
using modified Mann-Kendall trend test, for SPI, SPEI, GMM-DI,
and HMM-DI analysis for the IMD and UD datasets respectively, for
12-month time window ending in September. In the IMD dataset,
for SPI analysis, during the epoch 1936–1970 (Fig. 6a) drought
intensity increased (trend is towards negative SPI values as its
magnitude is negative) in the eastern Indo-Gangetic plain and
parts of south-India. During the recent epoch 1971–2004, addi-
tional grids showed an increase in drought intensity in south-India
(parts of coastal Tamilnadu and coastal Karnataka) and western-
Rajasthan. These results are consistent with Niyogi et al. (2010)
who have shown using empirical orthogonal functions and genetic
algorithm-based analyses that anthropogenic land use modifica-
tions due to agricultural intensification may have resulted in sig-
nificant decline in precipitation in north/northwest India and in-
creasing patterns over east central India. Similar conclusions could
be drawn from SPEI analysis (Fig. 6b), GMM-DI analysis (Fig. 6c)
and HMM-DI analysis (Fig. 6d). Thus parts of eastern Indo-
Gangetic plain, western-Rajasthan, and parts of coastal south-India
emerge as the current hotspots for droughts.
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For the finer-resolution UD dataset (Fig. 7), using a 12-month
time window ending in September, each of the four drought in-
dices show an increasing trend in drought intensity during the
period 1936–70 over the eastern Indo-Gangetic plain. However,
during 1971–2004 trends in drought intensity also show an in-
crease in south-India (parts of coastal Tamilnadu, coastal Karna-
taka, and central Maharashtra) and western-Rajasthan, in addition
to central and eastern IGP. Thus as in case of IMD dataset, we can
conclude that parts of eastern Indo-Gangetic plain, and parts of
coastal south-India are emergent vulnerable regions to droughts.

At shorter time scales (e.g. 7-months ending in December) it
was found that in addition to central- and eastern-IGP and costal
south-India, interior parts of Maharashtra and central India were
emerging as vulnerable regions to droughts for both IMD (Fig. A.7)
and UD datasets (Fig. A.8).

3.4. Drought frequency

Hypothesis tests were carried out to investigate whether the
number of droughts had significantly increased during the recent
epoch 1971–2004, when considering 12-month droughts ending
in September. A right tailed t-test with significance level α( ) of 5%
was used. Fig. 8a and b shows the results of the hypothesis test at
each grid of the IMD and UD datasets for SPI, SPEI, GMM-DI, and
HMM-DI, respectively. The results indicate that the hypothesis test
was significant, or in other words the number of droughts had
shown a statistically significant increase at several grids in the
study region. To account for the bias induced in the hypothesis test
due to spatial correlation in the gridded meteorological data, a FDR
test (Ventura et al., 2004; Wilks, 2006) was performed. The FDR
test further confirmed that the number of droughts showed a
statistically significant increase in the Indo-Gangetic plains, coastal
south-India, and central Maharashtra during the recent period
1971–2004.

Similarly, for 7-month time window ending in December, it was
found that the number of droughts showed a statistically sig-
nificant increase in the central and eastern IGP and interior parts
of Maharashtra during the recent epoch (1971–2004) for both IMD
(Fig. A.9a) and UD datasets (Fig. A.9b).
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3.5. Drought vulnerability

Fig. 9a and b shows the regions over IMR that were vulnerable
to droughts (defined as SPIo�1.0) using IMD and UD precipita-
tion datasets for the three study periods, considering a 12-month
time window. Using the gridded population estimates available
(CIESIN, 2005), an estimate of the population affected by droughts
for the three periods was made. According to SPI, during the re-
cent period of 1971–2004 approximately 405 million people were
in the drought affected region. This is equivalent to a GDP of USD
208 billion. The population and GDP estimates are calculated after
defining a threshold for drought intensity below which a drought
is considered to have negative impact on the economy and society.
The values in the bar plot (see inset in Fig. 9a and b) correspond to
an intensity threshold of �1.0 for SPI. Similar computations using
SPEI, GMM-DI and HMM-DI resulted in consistently higher esti-
mates compared to SPI for each of the three periods. This may be
due to the choice of threshold and the differences in the
methodology used in their computation.
4. Conclusions

Recent studies have highlighted that IMR has a steady increase
in the drought patterns. Motivated by the cautionary conclusions
of Trenberth et al. (2014), a reassessment of the drought patterns
using multiple data sources and methods was desired. Accord-
ingly, we examined the long-term retrospective drought variability
over the Indian Monsoon Region (IMR) using two gridded pre-
cipitation datasets that differ in their primary data source and
spatial resolution. Moreover, we compared several drought char-
acteristics (severity, duration, areal extent, and frequency) using
SPI, SPEI, GMM-DI, and HMM-DI to assess the variability in the
results.

The 104 year (1901–2004) SPI, SPEI, GMM-DI, and HMM-DI
were analyzed for three periods 1901–1935, 1936–1970, and 1971–



Fig. 6. Mann-Kendall trend slope for 12-month droughts ending in September over IMR during the periods 1901–2004, 1902–1935, 1936–1970, and 1971–2004. Results
correspond to the IMD dataset using (a) SPI, (b) SPEI, (c) GMM-DI, and (d) HMM-DI.
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2004. Epochal and decadal variation in drought characteristics
over IMR were analyzed. Consistent with the findings from recent
studies that indicate that the monsoon precipitation is becoming
extreme and regionally varied, we found that there is a significant
change in the drought climatology over the IMR. Results indicated
that the droughts are becoming much more regional in recent
decades and showing a general migration from west to east
and the Indo-Gangetic plain. We found an increased duration,
severity, and spatial extent in the recent decades and identify
the Indo-Gangetic plain, parts of coastal south-India and central
Maharashtra as vulnerable regions for recent droughts. Despite
some differences in results for the choice of drought indices, the
time window chosen for analysis, and/or the precipitation dataset
(resolution) used, overall the results and conclusions are
consistent.

It is beyond the scope of present study to assess the causal
mechanism of droughts, and to find if the observed trends are
related to other phenomena such as changes observed in the
monsoon break (active-dry spell) periods (Singh et al., 2014).
There are a number of possible mechanisms – aerosols, landuse



Fig. 7. Same as Fig. 6, but using °0.5 University of Delaware precipitation dataset.
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change, SST changes, global changes, thermodynamic feedback
due to heating rates (Roxy et al., 2015), as a result, diagnosis and
discussion of potential mechanisms will have to be a part of fol-
low-up study using numerical models. The results from this study
provide the baseline for future climate change studies, and also
provide robust conclusion that irrespective of the datasets and
methodology used, the IMR has high potential of droughts and
that the droughts appear to be migrating to the agriculturally
important regions including Indo-Gangetic plains.
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Fig. 8. Hypothesis test to see if the number of droughts (moderate, severe and extreme) of 12-month time window ending in September have increased during the period
1971–2004 in comparison to 1936–1970 for (a) IMD and, (b) UD precipitation datasets according to SPI, SPEI, GMM-DI, and HMM-DI. Grids where the number of droughts
show a statistically significant increase at α¼0.05 are displayed.

Fig. 9. The estimate of population and GDP affected, and the drought hotspots
during the sub-periods 1901–1935, 1936–1970, and 1971–2004 according to
SPIo�1.0 for (a) IMD precipitation dataset and (b) UD precipitation dataset.
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Appendix A

See Appendix Figs. A.1–A.9.

Time window accounting

Droughts of different time-windows (1-month, 4-months,
7-months, 12-months, and so on) were analyzed as part of this
study. In this paper we discuss results for 7-month time window
ending in December which accounts for precipitation over the
summer monsoon season (June to September or JJAS) and winter
monsoon season (October to December or OND). Thus 7-month
precipitation ending in December-2000 would account for the
total precipitation from June-2000 to December-2000.

We also present results for 12-month time window ending in
September as it accounts for the total precipitation during mon-
soon and non-monsoon months. For 12-month precipitation
ending in September 2000, would account for cumulative rainfall
from October-1999 to September-2000.

SPI methodology

The SPI, measures the deficit in observed precipitation (McKee
et al., 1993) and has been used widely to identify meteorological,
agricultural, and hydrological droughts (Mishra and Singh, 2010;
Mo, 2008). Precipitation time-series for each grid cell over IMR at
any desired time-scale was first used to fit a probability distribu-
tion function, and then normalized using a standard inverse
Gaussian function to obtain SPI values. Drought severity was
identified using the SPI ranges as described by Charusombat and
Niyogi (2011). A drought event was classified as moderate if SPI
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Fig. A.1. Comparison of IMD and UD monthly precipitation statistics over each grid in the study region. Mean of monthly precipitation (in mm) over (a) IMD grids, and
(b) UD grids. Standard deviation of monthly precipitation (in mm) over (c) IMD grids, and (d) UD grids.
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was between �1.0 to �1.49, severe if SPI was between �1.5 to
�2.0, and extreme if SPI was less than �2.0.

SPEI methodology

SPEI (Vicente-Serrano et al., 2010) first requires the computa-
tion of potential evapotranspiration (PET). We have used
Thornthwaite's equation (Thornthwaite, 1948) for computing PET,
but other popular approaches may also be used (Penman, 1948;
Priestley and Taylor, 1972; Allen et al., 1998). After subtracting the
PET from precipitation, SPEI may be computed using similar ap-
proach as SPI (McKee et al., 1993).

GMM-DI methodology

A GMM is a probabilistic model where the parametric density
function is represented as a weighted sum of the Gaussian com-
ponent densities (Reynolds and Rose, 1995). GMMs have been
successfully used in recent studies involving estimation of weather
parameters using remotely sensed radar data (Li and Zhang, 2011),
and hydrologic forecasting studies (Liang et al., 2011). In this study,
each individual Gaussian component is assumed to represent the
underlying distribution of the hidden drought (or wet) classes
with a mean μ, and a covariance matrix Σ. Such a GMM model
closely represents a hidden Markov model (HMM) with equal
transition probabilities amongst all hidden states. The mathema-
tical formulation of the GMM used in this study is described
below.

Let the precipitation at time t be denoted by xt , = …t N1, ,
{ ∈x Rt and =[ … ] = }X x x x, ,t N

T
:N1 . If the total number of components

of the GMM, M , are known a priori, then the weighted sum of
Mcomponent GMM is given by the equation,

∑λ μ( | ) = ( | Σ )
( )=

p x w g x , ,
A.1i

M

i i i
1

where wi are the mixture weights, and |μ( Σ )g x ,i i are the compo-
nent Gaussian densities of the form,

μ
π

μ μ( | Σ ) =
( ) Σ

− ( − )′Σ ( − )
( )

−⎧⎨⎩
⎫⎬⎭g x x x,

1
2

exp
1
2

,
A.2i i D

i
i i i/2 1/2

1

with mean μi and covariance matrix Σi. In this study, since only
precipitation data are used, the number of dimensions, =D 1.
Further, the mixture weights satisfy the constraint ∑ == w 1i

M
i1 . The

parameter set can be represented by the notation shown below.
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Fig. A.2. Comparison of monthly mean precipitation between IMD and UD datasets for all months of a year (January to December), (a) averaged over all grids in the study
region, (b) IMD grid 18 and UD grid 208 over Western Ghats, (c) IMD grid 275 and UD grid 430 over Punjab, and (d) IMD grid 140 and UD grid 1005 over West Bengal.

a) IMD dataset

b) UUD dataset

Fig. A.3. Drought characteristics over IMR computed for (a) IMD dataset and (b) UD dataset using SPEI values for 12-month time window ending in September. In each figure
the top-panel shows time-series plot of moderate drought severity averaged over all grids. Middle-panel shows the bar-plot of areal extent of moderate droughts represented
as percentage of total area in the IMR. Bottom-panel shows the bar-plot of drought impact index for moderate droughts. Solid line represents the median value and dotted
line represents slope during the sub-periods 1902–1935, 1936–1970 and 1971–2004 respectively.
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Fig. A.4. Epochal variation in 7-month drought statistics over IMR using IMD dataset where (a) number of drought events, (b) average intensity of drought, and (c) duration
of drought in months. In each sub-plot top panel represents SPI, followed by SPEI, GMM-DI, and HMM-DI.
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λ μ= { Σ } = … ( )w i M, , , 1, , A.3i i i

Expectation-maximization (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997) was used to estimate the
parameters of the GMM using a maximum likelihood approach.
The a posteriori probability for component i was given by

λ
μ

μ
( | ) =

( | Σ )
∑ ( | Σ ) ( )=

P i x
w p x

w p x
,

,

, A.4
t

i t i i

k
M

k t k k1

To compare the results of GMM-DI with SPI, the number of
mixture components, M , was set to 7 (3 drought statesþ1 normal
stateþ3 wet states).

HMM-DI methodology

The mathematical formulation of the hidden Markov model-
based drought index (HMM-DI) is described in detail in Mallya
(2011). The precipitation at time t be denoted by xt , = …t N1, ,
{ ∈x Rt and =[ … ] = }X x x x, ,t N

T
:N1 . In a HMM, the precipitation xt is

assumed to depend only on the state variable { =[ … ] }z Z z z, , ,t N
T

1

that denotes a drought or wet state, is hidden (not observed), and
follows the first order Markov property. The state variable zt is a
K -dimensional binary random variable. If the number of states, K ,
are known a priori, the standard HMM can be parameterized using
the following three distributions: (i) The conditional distribution
of precipitation given the drought state, ( | )p x zt t , referred to as the
emission distribution. (ii) The conditional distribution of the pre-
sent drought state given the previous state i.e. ( | )−p z zt t 1 . Because
zt is a K dimensional binary variable, the conditional distribution
is given by a ×K K transition matrix A whose element

= ( = | = )−A p z z1 1jk tk t j1, . (iii) The marginal distribution of the drought
state at the first time step, ( )p z1 , is given by a K dimensional vector



Fig. A.4. (continued)
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Π whose element π = ( = )p z 1k k1 .
The precipitation data at the desired time-scale was trans-

formed to represent percentage deviation from their long term
mean. The HMM model was then applied to this transformed data.
The probability density function of the emission distribution was
selected to be a Gaussian distribution of the form

∏ μ σ( | ) = Ν( | )
( )=

p x z x ,
A.5

t t
k

K

t k k
z

1

2 tk

where μk and σk
2 are the mean and the variance of a Gaussian

distribution, respectively. The μk's and σk's were considered to be
free parameters and were estimated along with other parameters
of HMM. Since the results of HMM-DI are to be compared with SPI
and GMM-DI, the number of states (components in the Gaussian
mixture) K was set to 7 (3 drought statesþ1 normal stateþ3 wet
states).
The underlying emission distributions are not known before
hand and were assumed to be Gaussian. This was done for
mathematical convenience, and also because many processes
combine to create droughts, and one may expect that their com-
bined influence expressed through deviations from the mean
could be Gaussian. Additionally, if there is no temporal depen-
dence, the HMM automatically collapses to a Gaussian mixture for
which the theories are well developed.

Both GMM-DI and HMM-DI provides probabilities of belonging
to each drought class. To get drought intensity values we have
multiplied an intensity factors (e.g. assumed intensity factors for
Extreme drought¼�3.0, Severe drought¼�2.0, Moderate
drought¼�1.0 and so on) with corresponding probability
measures.
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Fig. A.5. Epochal variation in 7-month drought statistics over IMR using UD dataset where (a) number of drought events, (b) average intensity of drought, and (c) duration of
drought in months. In each sub-plot top panel represents SPI, followed by SPEI, GMM-DI, and HMM-DI.
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Fig. A.5. (continued)
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Fig. A.6. Decadal variation in 12-month drought statistics over IMR using IMD dataset where (a) number of drought events, (b) average intensity of drought, and (c) duration
of drought in months. In each sub-plot, top panel represents SPI, followed by SPEI, GMM-DI, and HMM-DI.

Fig. A.5. (continued)
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Fig. A.6. (continued)
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Fig. A.7. Mann-Kendall trend slope for 7-month droughts ending in December over IMR during the periods 1901–2004, 1902–1935, 1936–1970, and 1971–2004. Results
correspond to the IMD dataset using (a) SPI, (b) SPEI, (c) GMM-DI, and (d) HMM-DI.
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Fig. A.8. Same as Fig. A.7, but using °0.5 University of Delaware precipitation dataset.
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Fig. A.9. Hypothesis test to see if the number of droughts (moderate, severe and extreme) of 7-month time window ending in December have increased during the period
1971–2004 in comparison to 1936–1970 for (a) IMD and, (b) UD precipitation datasets according to SPI, SPEI, GMM-DI, and HMM-DI. Grids where the number of droughts
show a statistically significant increase at α¼0.05 are displayed.
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