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Abstract

Bayesian model determination in the complete class of graphical models is considered using

a decision theoretic framework within the regular exponential family. The complete class

contains both decomposable and non-decomposable graphical models. A utility measure

based on a logarithmic score function is introduced under reference priors for the model

parameters. The logarithmic utility of a model is decomposed into predictive performance and

relative complexity. Axioms of decision theory lead to the judgement of the plausibility of a

model in terms of the posterior expected utility. This quantity has an analytic expression for

decomposable models when certain reference priors are used and the exponential family is

closed under marginalization. For non-decomposable models, a simulation consistent estimate

of the expectation can be obtained. Both real and simulated data sets are used to illustrate the

introduced methodology.
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1. Introduction

During the past two decades, numerous researchers have shown the value and
versatility of graphical models in multivariate analysis; for a comprehensive list of
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references, see [17] or [29]. However, only recently, sound methods for graphical
model determination, dealing simultaneously with the uncertainty involved in the
dependence structure and the parameters, have been discussed in the statistical
literature. After a landmark paper by Dawid and Lauritzen [8], where the general
principles for Bayesian analysis of decomposable graphical models were developed,
Bayesian strategies for model determination have been considered by Madigan and
Raftery [19], Madigan and York [20], Dellaportas and Forster [9], Giudici and Green
[11], and Giudici et al. [12].
Model determination strategies have mostly been considered within the class of

decomposable graphical models, since the simple structure of such models reduces
considerably the complexity of the model determination task. The exception is the
paper by Dellaportas and Forster [9] where also non-decomposable models were
considered for multinomial data. Here, we develop a method for model
determination in the complete class of graphical models, using a decision theoretic
framework within the regular exponential family. In practical application of the
proposed method we focus on multinomial and multinormal distributions.
Numerous authors have advocated the view of statistical inference as a special case

of decision theory, one of the most impressive works on this area being the book by
Bernardo and Smith [4]. Advantages of such an approach to solving the problem of
learning about graphical model structure given the observed data are: (i) it provides
a formal framework which necessitates only a manageable amount of effort in
specifying a priori information, (ii) it facilitates a convenient communication of the
results of learning, and (iii) it guarantees a coherent solution regardless of the
amount of information available in the data.
In a decision theoretic formulation the plausibility of a graphical model in the light

of data is measured in terms of its posterior expected utility. We propose the use of a
utility function which is a proper score function of a logarithmic form, for a detailed
derivation of these concepts, see [4]. The expected utility ‘‘scores’’ a graphical model
for its ability in predicting data, while weighting the ability against the complexity of
the model, under the current uncertainty about the parameters.
Inspired in particular by the work of Bernardo [3], we enter into a criterion for

graphical model determination, which can be used both in the absence and presence
of a priori information concerning model parameters. We concentrate on the former
case and derive the criterion under reference priors. For a general discussion on such
priors, see [15].
There has been a considerable interest in the statistical community to define

Bayesian methods for model determination which necessitate as little effort as
possible by the potential user. See, for instance, [2,16,23,26]. Apart from the methods
based on asymptotic approximations, such that the one by Schwarz [26], the
common feature of the ‘‘automatic Bayesian’’ model determination methods is that
their application to complex problems, such that the one considered in the current
paper, is seldom described or even discussed.
Methods relying on asymptotic approximations are usually of the ‘‘penalized

maximum likelihood’’ type, with various forms of penalty functions, and it is widely
recognized that they have poor performance for small data sets. Here it will be
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shown that the penalized maximum likelihood methods can be viewed as asymptotic
approximations to the currently considered posterior expected utility, similarly as
Smith and Spiegelhalter [27] showed that they can be viewed in the framework of
Bayes factors (for the definition of Bayes factor, see [14]).
The present paper is organized as follows. The general concepts of graphical

models are presented in Section 2. Model determination within the decision theoretic
framework will be discussed in Section 3. Application of the introduced
methodology to multinomial and multinormal data is considered in Sections 4 and
5, respectively. Some concluding remarks are given in Section 6.

2. Graphical models

We consider graphical modeling of distributions within the regular exponential
family, for which a detailed theory is developed in [1,5].
Consider a finite set D of k stochastic variables with a joint sample space X; which

is either a discrete set ID or Rk: The joint distribution of D is characterized by a
parameter hAH and a statistic tðxÞ; xAX; such that the inner product /h; tðxÞSAR:
The density of x with respect to a s-finite measure m on X; is assumed to be

f ðxjhÞ ¼ expf/h; tðxÞS� KðhÞg ð2:1Þ

so that the probabilistic behavior of the variables D is described by an exponential
model. It is assumed that (2.1) is strictly positive for all xAX: For a subset aCD; the
marginal density of xaAXa is denoted by faðxajhaÞ; where ha is a subvector of h:
A generalization of the considered situation would allow the set D to be

partitioned into variables of discrete and continuous type. Within the regular
exponential representation (2.1) there is then the possibility of using CG
distributions introduced by Lauritzen and Wermuth [18]. However, the CG family
does not obey closure under marginalization, which leads to technical difficulties and
necessitates substantial further work in constructing a practically applicable method
for model determination.
Let G be the class of undirected graphical models, where each GAG restricts h to

take values in an affine subspace HG of H: The terms graphical model and graph are
used interchangeably in the sequel. For further details and explanations concerning
graphical models, see [30] or [17].
For any particular value hAH; the projection hðGÞ ¼ projðhjGÞ of h onto HG is

defined as the unique parameter value, which minimizes the Kullback–Leibler
divergence

Dðh; hðGÞÞ ¼
Z

f ðxjhÞ log f ðxjhÞ
f ðxjhðGÞÞ mðdxÞ ð2:2Þ

from f ðxjhÞ to f ðxjhðGÞÞ: The entropy of f ð�jhÞ is

hðf ð�jhÞÞ ¼ �
Z

f ðxjhÞ log f ðxjhÞmðdxÞ: ð2:3Þ
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Let CðGÞ denote the set of cliques of a graph G: When G is decomposable the
separators S of the cliques can be obtained by a sequence of decompositions of G

into CðGÞ; see [17]. For such graphs the density f ðxjhðGÞÞ can be written as

f ðxjhðGÞÞ ¼
Q

cACðGÞ fcðxcjhcÞQ
sASðGÞ fsðxsjhsÞ

: ð2:4Þ

For a decomposable model, divergence (2.2) can be written in terms of entropies of
the marginal distributions, asX

cACðGÞ
hðfcð�jhcÞÞ �

X
sASðGÞ

hðfsð�jhsÞÞ � hðf ð�jhÞÞ: ð2:5Þ

The standard condition for the decomposability of a graph G is that the
graph should not contain any chordless cycles of length four or larger. When G is
non-decomposable, the density f ðxjhðGÞÞ cannot be directly presented in terms
of marginal densities as in (2.4), and the projection of h cannot be expressed in a
closed form, but it has to be found by some iterative method. However, there is a
possibility to utilize the concept of decomposability to represent the affine
restrictions imposed by a non-decomposable model, which is done in the following
definition (originally introduced in [6]). Essentially the same idea was discovered by
Rudas [25], and used for the maximum likelihood estimation of graphical log-linear
models.

Definition 2.1. For any two graphical models G;G0 in G; we let GCG0; if the
edges present in G are also present in G0: We say that G0 is a supermodel of G:
For any non-decomposable model G; let AG denote the class of minimal
decomposable supermodels, consisting of all G0 for which the following three
conditions hold:

(1) G0 is decomposable,
(2) GCG0;
(3) there does not exist any decomposable G00; such that GCG00CG0:

The affine restrictions to h imposed by a non-decomposable G are such that the
density f ðxjhðGÞÞ satisfies factorization (2.4) simultaneously for all G0AAG: Assume
AG contains the m graphs G1;y;Gm: It follows from the general results of Csiszar
[7], that the projection hðGÞ can be obtained as a limit of a cyclical projection hðG1Þ;
hðG1ÞðG2Þ;y; hðGm�1ÞðGmÞ; hðGmÞðG1Þ;y to the subspaces HG1

;y;HGm
: As

discussed in [25], this representation in terms of decomposable models has
advantages over alternative, rather standard projection methods, such that
those described in [28,30]. The above cyclical projection method facilitates both a
simpler coding of the problem and a faster convergence to the parameter value
minimizing (2.2).
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3. Graphical model determination using decision theory

Let x denote a set of n exchangeable observations x1;y; xn whose probabilistic
behavior is governed by (2.1). It is desired to determine the degrees of plausibility of
the elements of G under the current uncertainty about h: The stated problem can
formally be described as a decision problem, where the action to be taken is the
choice of a model from G: As discussed in [3,4], under quantitative coherence, we
then need to specify: (i) the utility function %uðGÞ; measuring the desirability of
choosing G; as a function of the plausibility of the parameter values hAHG; (ii) the
prior distribution pðhÞ of h; (iii) the model G which maximizes the expected posterior
utility %uðGjxÞ:
To specify the utility structure for the stated decision problem, we use the general

utility theory considered in [4]. A logarithmic utility function measures the
appropriateness of an approximation to the density f ðxjhÞ in terms of

a log f ðxÞ þ bðxÞ; xAX; ð3:1Þ
where a40 and bð�Þ is an arbitrary real-valued function. Let cðGÞ denote a cost
function representing the relative complexity of G: Since the data is assumed to be
generated from f ðxjhÞ; the expected logarithmic utility of G before the data are
actually observed, is defined as

%uðGÞ ¼ an

Z
f ðxjhÞ log f ðxjhðGÞÞmðdxÞ þ n

Z
bðxÞf ðxjhÞmðdxÞ � cðGÞ; ð3:2Þ

where the first part is proportional to the negative entropy of f ð�jhÞ minus the
negative Kullback–Leibler divergence from f ðxjhÞ to f ðxjhðGÞÞ:
The maximization of the logarithmic utility does not depend on the actual form of

the function bð�Þ; since the posterior expectation of the term n
R
bðxÞf ðxjhÞmðdxÞ does

not depend on G: Hence, the optimal decision is to choose the G which maximizes
the posterior expected logarithmic utility

%uðGjxÞ ¼ an

Z Z
f ðxjhÞ log f ðxjhðGÞÞmðdxÞ

� �
pðhjxÞdh � cðGÞ: ð3:3Þ

The decision criterion thus involves the negative posterior expected entropy of the
distribution with density f ð�jhðGÞÞ:
When G is large, it may be impractical or not feasible to calculate the expected

utilities for all models. In such situations, the model determination may be carried
out by an efficient heuristic search algorithm, such as the one considered in [19]. In
the search among models, and in communicating the model determination results, it
is useful to consider relative expected logarithmic utilities on an exponential scale

expf %uðGjxÞgP
GAG expf %uðGjxÞg; ð3:4Þ

where G can be replaced by a subclass of models under consideration. The relative
utilities also facilitate a weighting of the models in the light of data, which is useful
for prediction purposes. The positive effect of taking into account several models by
their posterior weights in prediction has been illustrated, for instance, in [19].
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In contrast to the Markov chain Monte Carlo (MCMC) model determination
methods considered in [9,11,12,20], models are visited only once in the search
algorithm of Madigan and Raftery [19]. In an MCMC approach the plausibility of a
model is measured by the number times that particular model is visited in a Markov
chain over the model space. This is a potential problem, since when G is large, the
Markov chain may remain for long periods in non-representative parts of G; making
convergence to the target distribution slow. On the contrary, the algorithm of
Madigan and Raftery [19] should be capable of finding efficiently the relevant part of
the model space, even for large G:
Let Gn denote the model for which HG ¼ H: The difference between the expected

utilities %uðGnjxÞ and %uðGjxÞ is

an

Z Z
f ðxjhÞ log f ðxjhÞ

f ðxjhðGÞÞ mðdxÞ
� �

pðhjxÞdh � ðcðGnÞ � cðGÞÞ; ð3:5Þ

where the first part is the expected log-likelihood ratio under f ð�jhÞ: As noted by
Bernardo [3], this quantity measures the amount of information about future

observations which would be needed to recover Gn from G: Further, the utility
constant a may be interpreted as the value of one unit of information about data
generated from f ðxjhÞ:
Recalling the definition of the density of x according to a decomposable graph, we

see that for such a model, the expected logarithmic utility %uðGjxÞ involves only
expectations of entropies of marginal distributions.

%uðGjxÞ ¼ an
X

cACðGÞ
hðfcð�jhcÞÞ �

X
sASðGÞ

hðfsð�jhsÞÞ

2
4

3
5pðhjxÞdh � cðGÞ: ð3:6Þ

It will be shown in the subsequent sections that these expected entropies have an
analytic expression under a reference prior. For non-decomposable models, the

expected value of
R

f ðxjhÞ log f ðxjhðGÞÞmðdxÞ has to be calculated by simulating

values from pðhjxÞ and projecting each of these into HG to obtain a Monte Carlo
approximation. The computational burden due to this task might at first sight
appear prohibitive. Note, however, that when the expectation needs to be calculated
for several models, the same set of simulated values from pðhjxÞ can be used for all
models. Furthermore, it is necessary to calculate the Monte Carlo approximation
only for the part of G involving chordless cycles of length four or larger. In large
graphs this is a real advantage, since a major part of the graph may be
decomposable.
The computational burden may also be reduced by performing the search in G at

two stages; at first among the decomposable models, and then, given the graphs with
the highest utilities, among the non-decomposable ones. Such a procedure will
reduce considerably the number of non-decomposable models that need to be
investigated.
Comparison of the expected utilities of different models is particularly simple for

certain decomposable models. Consider the difference between %uðGjxÞ and %uðG0jxÞ
where G0CG: If both these models are decomposable, and G0 is obtained from G by
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removing a single edge fd; d0g; the utility difference will simplify considerably. Note

that the edge fd; d0g is contained in a single clique c of G; and let cd ¼ c\fd0g; cd0 ¼
c\fdg and c0 ¼ c\fd; d0g: Then, the utility difference equals

an

Z
½hðfcdð�jhcdÞÞ þ hðfcd0 ð�jhcd0 ÞÞ � hðfc0ð�jhc0ÞÞ � hðfcð�jhcÞÞ�pðhjxÞ dh

� ðcðGÞ � cðG0ÞÞ: ð3:7Þ

We now consider the choice of a and cðGÞ; which, together with the choice of prior
pðhÞ for h; are crucial for the practical implementation of the model determination
procedure. An obvious requirement to be met by a model determination procedure
in the current context is that of asymptotic consistency, which means that as the
sample size approaches infinity, ‘‘the true model’’ among those in G will be chosen
with probability one. Although the truth of a model is merely a mathematical
artifact, such a formulation provides valuable guidance in specifying a procedure
which is applicable in practice. Notice that all models in G with at least one missing
edge are nested in the model corresponding to the complete graph, which by
assumption gives the data generating mechanism. Therefore, the true model may be
taken to correspond to the simplest possible graph G for which hAHG:
Let qðGÞ denote the number of non-restricted elements in hAHG; and let n-N; so

that the posterior distribution approaches a Dirac spike at the value #h maximizing
the log-likelihood lðxjhÞ over H: At this limit, the expected logarithmic utility
reduces to

alðxj#hðGÞÞ � cðGÞ: ð3:8Þ

It is clear from (3.3) that the choice of a does not affect the order of the models with
respect to %uðGjxÞ; since a is constant over G: On the other hand, for the simplicity of
interpretation of the relative utilities (3.4), one may set a ¼ 1: Now, any choice of
cðGÞ which involves qðGÞ; and not n; will lead (asymptotically) to a non-consistent
Akaike-type penalized maximum likelihood criterion. Whereas, if cðGÞ is set equal to
qðGÞðlog nÞ=2; the logarithmic utility will tend to the Schwarz criterion [26], which is
consistent in the present context. However, since the expected utility will be lower

than lðxj#hðGÞÞ for finite samples, the cost qðGÞðlog nÞ=2 will produce even more
conservative results than the Schwarz criterion.
One possible solution to the problem of specifying the cost cðGÞ is to seek for the

least conservative asymptotically consistent criterion. Such a criterion, leading to
cðGÞ ¼ qðGÞ log log n; was introduced in [13], for the determination of the order of
autoregression. Heuristics suggest that their result holds more generally in the
exponential family, as does that of Schwarz [26], but this is sincerely difficult to
demonstrate rigorously.
Although the asymptotic behavior of %uðGjxÞ is used to provide insight into the

problem of choosing cðGÞ; it should be noted that %uðGjxÞ is not derived as an
approximation to any other quantity. The choice of cðGÞ corresponds to the choice
of the degree of uncertainty in a prior distribution to be used for the calculation of
the marginal likelihood of a model. The marginal likelihood is defined as the

J. Corander / Journal of Multivariate Analysis 85 (2003) 253–266 259



expectation of the likelihood with respect to prior
R

LðxjhÞpðhÞ dh; and it is the

standard Bayesian model determination criterion used in all papers concerning
graphical model determination listed in the first section.
A disadvantage of approximations of type (3.8) is that they are linear with respect

to the model complexity for a fixed n: When n is small, these approximations tend to
breakdown since they do not take into account the curvature in the likelihood

around #hðGÞ: In this respect %uðGjxÞ behaves as a marginal likelihood, since the
expectation of the logarithmic utility with respect to posterior penalizes a model for
increased complexity in a non-linear manner.
As noted in [3], in scientific applications of statistical inference there is usually a

pragmatic need for a model-based prior, which has a minimal effect to the posterior
inference relative to the data. Priors with such a desired property are often called
reference or non-informative, reflecting the fact they are intended to be utilized
without further subjective assessment of prior hyper parameters. This is a
particularly important point, since it can be extremely difficult to specify reasonable
subjective priors when the number of variables is large, see the discussion in [11].
When the expected utility %uðGjxÞ is based on a reference prior, and on the choices

cðGÞ ¼ qðGÞ log log n; a ¼ 1; we define it as the reference criterion for graphical
model determination. To summarize the advantages of this criterion: (i) it provides a
unified approach to graphical model determination in the complete class of graphical
models, (ii) it is consistent while having desirable small sample properties, (iii) it does
not require further setting of prior hyperparameters, and (iv) it facilitates a simple
communication of the model determination results.

4. Multinomial case

We now consider graphical model determination for multinomial data. Let the
finite set Id index the possible outcomes of dAD: On the set ID ¼ 
dADId we
assume a multinomial distribution with the probabilities pD: For any aCD; the
corresponding marginal distribution with probabilities pa is defined on Ia ¼

dAaId: We write nD ¼ ðnðxÞ ¼

Pn
i¼1 Iðxi ¼ xÞ; xAIDÞ for the observed counts of

the different outcomes.
Let kD be a vector of constants ðlðxÞ; xAIDÞ: Assuming the prior distribution for

pD is the Dirichlet ðkDÞ distribution, the corresponding posterior is Dirichlet ðkD þ
nDÞ: If the Jeffreys’ reference prior is used, then lðxÞ ¼ 1=2; xAID: However, as
discussed in [9], for a largeID this choice leads to marginal priors that are not vague.
A more reasonable, symmetric prior is obtained by setting lðxÞ equal to 1=jIDj for
all xAID: This prior was originally suggested in [24]. Given the Dirichlet-posterior
for pD; marginal posteriors for any subset aCD are straightforward to obtain.
For decomposable graphical models, the expected logarithmic utility involves

posterior expectations of the entropies fhðfcð�jhcÞÞ; hðfsð�jhsÞÞ; cACðGÞ; sASðGÞg:
When the posterior is Dirichlet ðkD þ nDÞ; the expected entropy hðf ð�jhÞÞ has the
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following expression, see, [31],

�
X

xAID

lðxÞ þ nðxÞ
n þ lðxÞjIDj

½cðlðxÞ þ nðxÞ þ 1Þ � cðn þ lðxÞjIDj þ 1Þ�; ð4:1Þ

where cð�Þ is the digamma function. As illustrated in [31], when n is relatively small
and the cardinality of ID is large, the above Bayesian estimator of the entropy tends
to be more stable and yield larger values than the maximum likelihood estimator,
which is obtained by replacing the probabilities by relative frequencies in the
definition of entropy.
We now illustrate the model determination methodology using the risk factor data

from Whittaker [30, p. 268]. In the present example and in the next section, the
variables are represented by the integers 1;y; 4 in the given order. The risk factor
data consists of a cross-classification of 1841 car factory employees with respect to
four binary variables: smoking, strenuous mental work, strenuous physical work,
and ratio of lipoproteins.
For k ¼ 4 there are 64 models in G; of which 3 are non-decomposable, so it is

feasible to compute the expected logarithmic utility for all models. To estimate the
expected entropy under a non-decomposable model, we experimented with various
numbers of parameter values, and stable estimates were already obtained by using
1000 simulated values from the posterior. All estimates used in the present paper are
based on 10,000 values from the posterior.
The results of model determination are presented in Table 1, using the relative

utilities (3.4). There is no ambiguity concerning the optimal model, which could be
expected bearing the large sample size in mind. The optimal model appears to be
non-decomposable, which illustrates the disadvantage of model determination
strategies which can be applied only to decomposable models. We note that the
current model determination approach for multinomial distributions is expected to
produce very similar results as that of Dellaportas and Forster [9].

Table 1

The models with largest relative expected utilities (3.4) for the risk factor
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5. Multinormal case

We now consider model determination in the class of graphical Gaussian, or
covariance selection models [10,30]. In this class, the joint distribution of D equals a
multinormal distribution Nkð0;RÞ: Let S denote the observed covariance matrix
based on a sample of size n:
The entropy of Nkð0;RÞ is given by

hðRÞ ¼ k

2
ð1þ logð2pÞÞ þ 1

2
log jRj: ð5:1Þ

Since the maximum likelihood estimate of hðRÞ is provided by replacing R with the
sample covariance matrix S; it tends to be lower than the true value, as EjSjojRj for
k41; see, for instance, [22]. To derive an expression for the Bayesian estimate, we
need the following lemma, which follows by an obvious modification of the proof of
Theorem 3.4.8 in [21].

Lemma 5.1. Let M follow the inverse Wishart distribution W�1
k ðU;mÞ; and let w�2ðnÞ

denote an inverted chi-squared random variable with n degrees of freedom. Then, jMj is

distributed as jUj
Qk�1

i¼0 w�2ðm � iÞ; where w�2ð�Þ are all independent.

Given Lemma 5.1, and the expectations of the logarithms of w2ð�Þ and w�2ð�Þ; we
may state the following result.

Proposition 5.2. Let S be a k 
 k sample covariance matrix under Nkð0;RÞ: Under the

reference prior pðRÞpjRj�ðqþ1Þ=2
and quadratic loss, the Bayesian estimate of the

entropy hðRÞ is unbiased and equals %hðRÞ ¼ k
2ð1þ logð2pÞ þ log nÞ þ 1

2ðlog jSj �
log 2�Sk�1

i¼0 ðcððn � 1� iÞ=2ÞÞÞ:

The reference posterior based on the prior pðRÞpjRj�ðqþ1Þ=2 is the inverse Wishart

distribution W�1ðnS; n � 1Þ; with the parameterization of Mardia et al. [21]. As in
the multinomial case, the above formula cannot be used for a non-decomposable
part of the investigated graph, but the expected entropy has to be found by
simulating covariance matrices from the posterior, and projecting them to the
corresponding affine subspace.
To illustrate graphical model determination for multinormal data we consider the

Fret’s heads data set, analyzed previously in [11,21,30]. The data consists of 25
measurements of the head length and breadth of the first and second son,
respectively. The models with largest relative expected utilities (3.4) are given in
Table 2. For comparison, the posterior model probabilities obtained in [11] are also
given.
Situation is quite opposite to the previous example, as there is a considerable

uncertainty about the dependence structure. The relative expected utilities differ
from the posterior probabilities obtained in [11], since their analysis was restricted to
decomposable models only, and favors thus unnecessary complex models according
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to our results. However, the ordering of the decomposable models is roughly the
same according to the posterior probabilities and the relative utilities based on the
cost function qðGÞ log log n:
To investigate performance of the model determination procedure based on

different cost functions more systematically, we generated data sets from multi-
normal distributions at various parameter values. The entropy criteria with the cost
functions qðGÞðlog nÞ=2 and qðGÞ log log n are in the sequel referred to as EC1 and
EC2, respectively. The SBC criterion of Schwarz [26] was also included in the
comparison.
Four different trivariate normal distributions, which were identical except for the

covariance between two of the variables, were investigated. The means and variances
were chosen to be 0 and 10, respectively. The two fixed covariances were set to 5 and
the third ðyÞ was given the values 2:5; 3; 4; 5; where the first value corresponds to a
model with conditional independence between two of the variables. These models are
referred to as model 1;y; 4; respectively. The permutation of variable labels
corresponding to the covariance matrix

10 5 y

10 5

10

0
B@

1
CA

was chosen. With three variables, there are 8 models in the class G: The sample sizes
20; 30; 40; 50; 75; 100; 200 and 300, with 50,000 replications of each, were used. The
proportions of replicates for which the correct model was indicated as the optimal

Table 2

The models with largest relative expected utilities (3.4) for the Fret’s heads data

The used cost functions qðGÞðlog nÞ=2 (1), qðGÞ log log n (2) are indicated at the beginning

of each row. For comparison, the posterior model probabilities (3) obtained in [11] are

given.
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one are given in Table 3. For the investigated models EC2 is nearly uniformly better
in indicating the correct model than the other two criteria, the exception being model
1 for which SBC performs best. On the other hand, EC1 performs nearly uniformly
worst, as might be expected on the basis of the discussion in Section 3. The results
thus strongly discourage the use of the cost function qðGÞðlog nÞ=2 in the current
model determination procedure.

6. Discussion

We have demonstrated the importance of considering both decomposable and
non-decomposable models in graphical model determination. Non-decomposable
models arise frequently in applications, and may represent a subject-matter theory
about a dependence structure equally well as decomposable models. Therefore,
learning about dependence structures should not be restricted to decomposable
models on the basis of mathematical and computational convenience.
In addition to the identification of the ‘‘optimal’’ model in the light of data, it is

important to consider the degrees of optimality of various competing models, as
illustrated in our examples. When the relative utilities are not strongly supporting a
single model, they are useful in communicating the model determination results and
facilitate a weighted posterior inference about any model-dependent quantity of
interest.
Although we have presented a unified approach to graphical model determination

within the exponential family, some substantial matters remain for further research.
First, a practically applicable method for the calculation of expected utilities has still
to be developed for the CG distributions of Lauritzen and Wermuth [18]. Second, it
would be useful to generalize the currently considered model class to allow for
graphs with directed edges. Finally, the current approach should be extended to
handle situations with missing data. It is worth to notice that this important issue has

Table 3

Proportions of replicates for which the correct models were indicated as optimal using different criteria

Model n 20 30 40 50 75 100 200 300

1 EC1 0.4050 0.6046 0.7595 0.8537 0.9532 0.9760 0.9871 0.9898

1 EC2 0.4724 0.6669 0.7993 0.8698 0.9350 0.9497 0.9614 0.9648

1 SBC 0.4830 0.6692 0.7976 0.8705 0.9444 0.9626 0.9780 0.9827

2 EC1 0.0139 0.0094 0.0091 0.0140 0.0281 0.0401 0.0610 0.0746

2 EC2 0.0251 0.0220 0.0308 0.0453 0.0729 0.0919 0.1317 0.1667

2 SBC 0.0266 0.0214 0.0266 0.0360 0.0549 0.0671 0.0901 0.1077

3 EC1 0.0041 0.0032 0.0137 0.0395 0.1523 0.2887 0.6332 0.8216

3 EC2 0.0095 0.0185 0.0592 0.1207 0.3070 0.4619 0.7813 0.9118

3 SBC 0.0011 0.0132 0.0520 0.0984 0.2350 0.3932 0.7089 0.8680

4 EC1 0.0021 0.0051 0.0290 0.0842 0.3325 0.5972 0.9757 0.9990

4 EC2 0.0070 0.0336 0.1130 0.2268 0.5472 0.7744 0.9928 0.9999

4 SBC 0.0065 0.0311 0.0940 0.1916 0.4783 0.7138 0.9860 0.9995
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not so far been treated in any of the papers concerning Bayesian graphical model
determination.
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