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Abstract

It is well known, although sometimes ignored, that not only thed = 5 but alsod = 6 proton decay depends on fermio
mixings. In general we study carefully the dependence ofd = 6 decay on fermion mixings using the effective operator appro
We find that without specifying a theory it is impossible to make clear predictions. Even in a given model, it is often not p
to determine all the physical parameters. We point out that it is possible to make a clear test of any grand unified the
symmetric Yukawa couplings. We discuss in some detail realistic theories based onSU(5) andSO(10) gauge symmetry.
 2004 Elsevier B.V.

1. Introduction

The decay of the proton is the most dramatic prediction comingfrom matter unification. Since the paper b
Pati and Salam in 1973[1], proton decay has been the most importantconstraint for grand unified theories[2–13].
There are different operators contributing to the nucleon decay in GUTs, in supersymmetric scenarios thed = 5
contributions are the most important, but quite model dependent. They depend on the whole SUSY sp
on the structure of the Higgs sector and on fermion masses. In recent years these contributions have been u
discussion, in order to understand if the minimal supersymmetricSU(5) [2,3] is ruled out[14,15]. There are severa
solutions to this very important issue in the context of the minimal SUSYSU(5) [16,17].

The d = 6 contributions for proton decay in general are the second more important, but they are less mo
dependent. From the non-diagonal part of the gauge field we get the gauge contributions, which basically depen
only on fermion masses. The remainingd = 6 operators coming from the Higgs sector are less important and
are quite model dependent, since we can have different structures in the Higgs sector. There are sever
where due to a specific structure of the Higgs sector, thed = 5 operators contributing to the decay of the pro
are not present[18].

In general we study in detail the gauged = 6 contributions. Assuming thatin the future the decay of th
proton will be measured, we analyze all possible information that we could get from these experiments. Us
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information we will study the possibility to test the realistic grand unified theories based on theSU(5) andSO(10)
gauge groups. Our analysis is valid in supersymmetric and non-supersymmetric GUT scenarios.

2. d = 6 operators

Using the properties of the Standard Model fields we can write down the possibled = 6 operators contributing
to the decay of the proton, which areSU(3)C × SU(2)L × U(1)Y invariant[5–7]:

(1)OB−L
I = k2

1εijkεαβuC
iaγ

µQjαae
C
b γµQkβb,

(2)OB−L
II = k2

1εijkεαβuC
iaγ

µQjαad
C
kbγµLβb,

(3)OB−L
III = k2

2εijkεαβdC
iaγ

µQjβau
C
kbγµLαb,

(4)OB−L
IV = k2

2εijkεαβdC
iaγ

µQjβaν
C
b γµQkαb.

In the above expressionsk1 = gGUTM
−1
(X,Y ), andk2 = gGUTM

−1
(X′,Y ′), whereM(X,Y ),M(X′,Y ′) ∼ MGUT ≈ 1016 GeV

andgGUT are the masses of the superheavy gauge bosons and the coupling at the GUT scale.Q = (u, d), L = (ν, e);
i, j andk are the color indices,a andb are the family indices, andα,β = 1,2.

The effective operatorsOB−L
I andOB−L

II (Eqs. (1) and (2)) appear when we integrate out the superheavy ga
fields (X,Y ) = (3,2,5/3), where theX andY fields have electric charge 4/3 and 1/3, respectively. This is th
case in theories based on the gauge groupSU(5). Integrating out(X′, Y ′) = (3,2,−1/3) we obtain the operator
OB−L

III andOB−L
IV (Eqs. (3) and (4)), the electric charge ofY ′ is −2/3, while X′ has the same charge asY . In

SO(10) theories all these superheavy fields are present. Notice that all these operators conserveB − L, i.e., the
proton always decays into an antilepton. A second selection rule�S/�B = −1,0 is satisfied for those operato
[19].

Using the operators listed above, we can write the effective operators for each decay channel in the phys
basis:

(5)O
(
eC
α , dβ

) = k2
1c

(
eC
α , dβ

)
εijku

C
i γ µuj eC

α γµdkβ,

(6)O
(
eα, dC

β

) = c
(
eα, dC

β

)
εijku

C
i γ µujd

C
kβγµeα,

(7)O
(
νl, dα, dC

β

) = c
(
νl, dα, dC

β

)
εijku

C
i γ µdjαdC

kβγµνl,

(8)O
(
νC
l , dα, dC

β

) = k2
2c

(
νC
l , dα, dC

β

)
εijkd

C
iβγ µujν

C
l γµdkα,

where:

(9)c
(
eC
α , dβ

) = V 11
1 V

αβ
2 + (V1VUD)1β

(
V2V

†
UD

)α1
,

(10)c
(
eα, dC

β

) = k2
1V 11

1 V
βα
3 + k2

2

(
V4V

†
UD

)β1(
V1VUDV

†
4 V3

)1α
,

(11)c
(
νl, dα, dC

β

) = k2
1(V1VUD)1α(V3VEN)βl + k2

2V
βα
4

(
V1VUDV

†
4 V3VEN

)1l
,

(12)c
(
νC
l , dα, dC

β

) = (
V4V

†
UD

)β1(
U

†
ENV2

)lα + V
βα
4

(
U

†
ENV2V

†
UD

)l1
, α = β �= 2.

The mixing matricesV1 = U
†
CU , V2 = E

†
CD, V3 = D

†
CE, V4 = D

†
CD, VUD = U†D, VEN = E†N andUEN =

EC†
NC . The quark mixings are given byVUD = U†D = K1VCKMK2, whereK1 andK2 are diagonal matrice

containing three and two phases, respectively. The leptonic mixingVEN = K3V
D
l K4 in case of Dirac neutrino, o

VEN = K3V
M
l in the Majorana case,V D

l andV M
l are the leptonic mixings at low energy in the Dirac and Major

case, respectively.



478 P. Fileviez Pérez / Physics Letters B 595 (2004) 476–483

o
,
o more

an

iral
gauge

s
re

the
ients
o,
a

Notice that in general to predict the lifetime of the proton due to the presence ofd = 6 operators we have t
knowk1, k2, V 1b

1 , V2, V3, V4 andUEN . In addition we have three diagonal matrices containing CP violating phases
K1, K2 andK3, in the case that the neutrino is Majorana. In the Dirac case there is an extra matrix with tw
phases.

3. Two body decay channels of the nucleon

As we know the gauged = 6 operators conserveB − L, therefore the nucleon decays into a meson and
antilepton. Let us analyze all different channels. Assuming that in the proton decay experiments[20] one cannot
distinguish the flavour of the neutrino and the chirality of charged leptons in the exit channel, and using the ch
Lagrangian techniques (see Ref.[21]), the decay rate of the different channels due to the presence of the
d = 6 operators are given by:

(13)Γ
(
p → K+ν̄

) = (m2
p − m2

K)2

8πm3
pf 2

π

A2
L|α|2

3∑
i=1

∣∣∣∣ 2mp

3mB

Dc
(
νi , d, sC

) +
[
1+ mp

3mB

(D + 3F)

]
c
(
νi, s, d

C
)∣∣∣∣

2

,

(14)Γ
(
p → π+ν̄

) = mp

8πf 2
π

A2
L|α|2(1+ D + F)2

3∑
i=1

∣∣c(νi , d, dC
)∣∣2,

(15)Γ
(
p → ηe+

β

) = (m2
p − m2

η)
2

48πf 2
πm3

p

A2
L|α|2(1+ D − 3F)2

{∣∣c(eβ, dC
)∣∣2 + k4

1

∣∣c(eC
β , d

)∣∣2},

(16)Γ
(
p → K0e+

β

) = (m2
p − m2

K)2

8πf 2
πm3

p

A2
L|α|2

[
1+ mp

mB

(D − F)

]2{∣∣c(eβ, sC
)∣∣2 + k4

1

∣∣c(eC
β , s

)∣∣2},

(17)Γ
(
p → π0e+

β

) = mp

16πf 2
π

A2
L|α|2(1+ D + F)2

{∣∣c(eβ, dC
)∣∣2 + k4

1

∣∣c(eC
β , d

)∣∣2},

(18)

Γ
(
n → K0ν̄

) = (m2
n − m2

K)2

8πm3
nf

2
π

A2
L|α|2

×
3∑

i=1

∣∣∣∣c(νi , d, sC
)[

1+ mn

3mB

(D − 3F)

]
− c

(
νi, s, d

C
)[

1+ mn

3mB

(D + 3F)

]∣∣∣∣
2

,

(19)Γ
(
n → π0ν̄

) = mn

16πf 2
π

A2
L|α|2(1+ D + F)2

3∑
i=1

∣∣c(νi , d, dC
)∣∣2,

(20)Γ (n → ην̄) = (m2
n − m2

η)
2

48πm3
nf

2
π

A2
L|α|2(1+ D − 3F)2

3∑
i=1

∣∣c(νi, d, dC
)∣∣2,

(21)Γ
(
n → π−e+

β

) = mn

8πf 2
π

A2
L|α|2(1+ D + F)2

{∣∣c(eβ, dC
)∣∣2 + k4

1

∣∣c(eC
β , d

)∣∣2}.

In the above equationsmB is an average baryon mass satisfyingmB ≈ mΣ ≈ mΛ, D, F andα are the parameter
of the chiral Lagrangian, and all other notation follows[21]. Here all coefficients of four-fermion operators a
evaluated atMZ scale.AL takes into account renormalization fromMZ to 1 GeV.νi = νe, νµ, ντ andeβ = e,µ.

Let us analyze all different channels. When the nucleon decays into a strange meson plus an antineutrino
amplitudes (Eqs. (13) and (18)) of these channels are proportional to a linear combination of the coeffic
c(νi, s, d

C) andc(νi, d, sC). In the case of the nucleon decays into a lightunflavored meson plus an antineutrin
the amplitudes (Eqs. (14), (19) and (20)) are proportional to

∑3
i=1 c(νi, d, dC). Looking at the channels with
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charged antilepton, we see that the amplitudes (Eqs. (15), (17) and (21)) of the channels with a light meson a
proportional to a linear combination of the coefficientsc(eα, dC) andc(eC

α , d), while in the case that we have
strange meson they are proportional to a linear combination ofc(eα, sC) andc(eC

α , s) (Eq. (16)). If the neutrinos are
Dirac-like we have extra channels to the decayof the nucleon, where we have the decays intoνC

i and a meson. Th
amplitudes in this case are proportional toc(νC

i , d, dC), c(νC
i , s, dC) andc(νC

i , d, sC), respectively. Notice tha
from the radiative decays[22] we get the same information as in the case of the decays into a charged antile

Note that fromEqs. (13)–(21)we can get only seven relations for all coefficients of the gauged = 6 operators
contributing to nucleon decay. Therefore, if we want to test a grand unified theory thenumber of physical quantities
entering in the proton decay amplitude must be less than seven. This is an important result which hel
know when it is possible to test a GUT scenario. However, as we will see in the next section looking only
antineutrino channels we can get interesting predictions.

4. Testing GUT models

Let us analyze the possibility to test the realistic grand unified models, theSU(5) and SO(10) theories,
respectively. Let us make an analysis of the operators ineach theory, and study the physical parameters enteri
the predictions for proton decay. Here we do not assume any particular model for fermion masses, in order to
sure that we can test the grand unification idea.

In these models the diagonalization of the Yukawa matrices is given by:

(22)UT
C YUU = Y

diag
U ,

(23)DT
CYDD = Y

diag
D ,

(24)ET
CYEE = Y

diag
E .

4.1. A GUT based on SU(5)

Let us start with the simplest grand unified theories, which are based on the gauge groupSU(5). In these theorie
the unification of quark and leptons is realized in two irreducible representations, 10 and5̄. The minimal Higgs
sector is composed by the adjoint representationΣ , and two Higgses 5H and 5̄H in the fundamental and ant
fundamental representations, respectively[2,3], if we want to keep the minimal Higgs sector and write dow
realisticSU(5) theory, we need to introduce non-renormalizable operators, Planck suppressed operators, to get
correct quark–lepton mass relations. A second possibility is introduce a Higgs in the 45H representation.

In this case we have only the operatorsOB−L
I (Eq. (1)), andOB−L

II (Eq. (2)) contributing to the decay of th
proton. UsingEqs. (9)–(12), and takingk2 ≡ 0 the coefficients for the proton decay predictions are given by:

(25)c
(
eC
α , dβ

)
SU(5)

= V 11
1 V

αβ

2 + (V1VUD)1β
(
V2V

†
UD

)α1
,

(26)c
(
eα, dC

β

)
SU(5)

= k2
1V

11
1 V

βα

3 ,

(27)c
(
νl, dα, dC

β

)
SU(5)

= k2
1(V1VUD)1α(V3VEN)βl, α = β �= 2,

(28)O
(
νC
b , dα, dC

β

)
SU(5)

= 0.

We see from these expressions that in order to make predictions in any theory based on theSU(5) gauge group
using proton decay, we have to knowk1, V 1i

1 and the matricesV2, andV3. Note that in aSU(5) theory there are no
decays into aνC , even if the neutrino is a Dirac-like particle (seeEq. (28)), it could be a possibility to distinguis
a SU(5) theory of the rest of GUTs.
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In order to compute the decay rate into antineutrinos we must use the following relation:

(29)
3∑

l=1

c(νl, dα, dβ)∗SU(5)c(νl, dγ , dδ)SU(5) = k4
1

(
V ∗

1 K∗
1V ∗

CKM

)1α(
K∗

2

)αα
(V1K1VCKM)1γ K

γγ

2 δβδ.

Using this expression we can see that the antineutrino channel depends on the matricesV1 andK1. Since we have
only three independent equations (Eqs. (13), (14) and (18)) for these channels, it is clear that we cannot te
GUT model based onSU(5). Notice that from the channels with charged leptons is even more difficult to get
information, due to the presence of the matricesV2, V3 and the elementsV 1i

1 . In the naive case without all C
violation sources beyondVCKM we could get the information aboutV1 from the nucleon decays into antineutrino

Let us analyze a particular case, the unrealistic minimalSU(5) model, whereYU = YT
U and YD = YT

E (see
Ref. [23]), in this case we have the following relations:

(30)c
(
eC
α , dβ

)unreal-min
SU(5)

= (
K∗

u

)11
[
δαβ + V

1β
CKMK

ββ
2

(
K∗

2

)αα(
V

†
CKM

)α1
]
,

(31)c
(
eα, dC

β

)unreal-min
SU(5)

= k2
1

(
K∗

u

)11
δβα,

(32)c
(
νl, dα, dC

β

)unreal-min
SU(5)

= k2
1

(
K∗

u

)11
K11

1 V 1α
CKMKαα

2 V
βl
EN , α = β �= 2.

Notice that in this naive GUT model, all the channels are determined byVCKM . Unfortunately it is a prediction
that we lost in the case of realistic versions ofSU(5). However, if this modification of the theory does not chan
the relationYU = YT

U , we could test aSU(5) theory from the nucleon decays into an antineutrino (seeEq. (29)).

4.2. A GUT model with symmetric Yukawa couplings

There are many examples of grand unified theories with symmetric Yukawa couplings. This is the case ofSO(10)
[4] theories with two Higgses 10H and 126H , including the minimal supersymmetricSO(10) model[24,25].

In Ref. [26] has been investigated the dependence of thed = 6 gauge contributions on fermion mixings. Th
consider two different cases, the naive minimalSO(10), where all fermion masses arise from Yukawa coupli
to 10H , and the case where we have the Higgses 10H and 126H . Assuming only two generations, and neglect
the possible mixings which appear when the neutrino mass matrix is diagonalized, they showed approxima
the predictions for the decay channelsp → π+ν̄ andp → K0l+ do not change in the different models for fermi
masses. At the same time, it has been showed that the predictions for the decaysp → K0e+, andp → µ+π are
quite different in these two scenarios for fermion masses.

In this section we will analyze the properties of all decays in those theories, using the fact that the Yuk
matrices are symmetric. We will take into account the mixings of the third generation and all possible CP v
effects.

In theories with symmetric Yukawa couplings we get the following relations for the mixing matrices,UC =
UKu, DC = DKd andEC = EKe , whereKu, Kd andKe are diagonal matrices containing three CP violat
phases. In those casesV1 = K∗

u , V2 = K∗
e V

†
DE , V3 = K∗

dVDE andV4 = K∗
d . Using these relations the coefficien

in Eqs. (9)–(12)are given by:

(33)c
(
eC
α , dβ

)
sym= (

K∗
u

)11(
K∗

e

)αα
[
δβi + V

1β
CKMK

ββ

2

(
K∗

2

)ii(
V

†
CKM

)i1
](

V ∗
DE

)iα
,

(34)c
(
eα, dC

β

)
sym= (

K∗
u

)11(
K∗

d

)ββ[
k2

1δ
βi + k2

2

(
K∗

2

)ββ(
V

†
CKM

)β1
V 1i

CKMKii
2

](
V iα

DE

)
,

(35)c
(
νl, dα, dC

β

)
sym= (

K∗
u

)11
K11

1

[
k2

1δαiδβj + k2
2δ

αβδij
(
K∗

d

)αα
Kii

d

]
(VCKMK2)

1i
(
K∗

d VDEVEN

)j l
,

(36)c
(
νC
l , dα, dC

β

)
sym= (

K∗
d

)ββ(
K∗

1

)11
[(

K∗
2

)ββ(
V

†
CKM

)β1
δαi + δαβ

(
K∗

2

)ii(
V

†
CKM

)i1
](

U
†
ENK∗

e V
†
DE

)li
,

with α = β �= 2.
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Notice all overall phases in the different coefficients. In order to compute the decay rate into an antineutrino we
need the following expression:

3∑
l=1

c(νl, dα, dβ)∗symc(νl, dγ , dδ)sym

(37)

=
[
k2

1δαiδβj + k2
2δαβδijKαα

d

(
K∗

d

)ii][
k2

1δ
γ i′δδj + k2

2δγ δδi′j (K∗
d

)γ γ
Ki′i′

d

](
V ∗

CKMK∗
2

)1i
(VCKMK2)

1i′ .

Using the above expression, andEq. (13)we find that it is possible to determine the factork1 = gGUT/M(X,Y ):

(38)k1 = Q
1/4
1

[|A1|2|V 11
CKM |2 + |A2|2|V 12

CKM |2]1/4
,

where:

(39)Q1 = 8πm3
pf 2

π Γ (p → K+ν̄)

(m2
p − m2

K)2A2
L|α|2 ,

(40)A1 = 2mp

3mB

D,

(41)A2 = 1+ mp

3mB

(D + 3F).

Notice that we have an expression fork1, which is independent of the unknown mixing matrices and the
violating phases. In other words, we find that the amplitude of the decayp → K+ν̄ is independent of all unknow
mixings and CP violating phases, this only depends on the factork1. Therefore it is a possibility to test any gra
unified theory with symmetric Yukawa matrices through this channel.

Once we knowk1, and using the expression(14)we can find the factork2, solving the following equation:

(42)k4
2 + 2k2

2k
2
1

∣∣V 11
CKM

∣∣2 + k4
1

∣∣V 11
CKM

∣∣2 − 8πf 2
πΓ (p → π+ν̄)

mpA2
L|α|2(1+ D + F)2

= 0,

(43)k2 = k1
∣∣V 11

CKM

∣∣{−1+ √
Q2

}1/2
,

with:

(44)Q2 = 1+ 8πf 2
πΓ (p → π+ν̄)

k4
1|V 11

CKM |4mpA2
L|α|2(1+ D + F)2

− ∣∣V 11
CKM

∣∣−2
.

Using the conditionQ2 > 1, we get the following relation:

(45)
τ (p → K+ν̄)

τ (p → π+ν̄)
>

m4
p|V 11

CKM|2(1+ D + F)2

(m2
p − m2

K)2[|A1|2|V 11
CKM|2 + |A2|2|V 12

CKM |2] .

It is a clear prediction of a GUT model with symmetric Yukawa couplings.
Using the expressions(13), (14), (18), (19), and(20)we can get the following relations:

(46)
τ (n → K0ν̄)

τ (p → K+ν̄)
= m3

n(m
2
p − m2

K)2[|A1|2|V 11
CKM |2 + |A2|2|V 12

CKM|2]
m3

p(m2
n − m2

K)2[|A3|2|V 11
CKM |2 + |A2|2|V 12

CKM|2] ,

(47)
τ (n → π0ν̄)

τ (p → π+ν̄)
= 2mp

mn
,

(48)
τ (n → η0ν̄)

τ (p → π+ν̄)
= 6mpm3

n(1+ D + F)2

(m2 − m2)2(1− D − 3F)2 ,

n η
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with:

(49)A3 = 1+ mn

3mB

(D − 3F).

Notice that using the expressions fork1 andk2 (Eqs. (38) and (43)), and the relation between the different dec
rates of the neutron and the proton into an antineutrino (Eqs. (45)–(48)), we can conclude that it is possible to ma
a clear test of a grand unified theory with symmetric Yukawa couplings.

As we say before, there are realisticSO(10) theories with symmetric Yukawa couplings. In aSO(10) theory
all fermions of a family live in the 16F spinor representation[4]. In this case the coefficients for the gauged = 6
operators are given byEqs. (9)–(12).

Let us analyze the most realistic and studiedSO(10) theories, where all Yukawa couplings are symmetric. I
the case of theories with the 10H and/or 126H Higgses[24,25,27–34]. We have already studied the case of G
models with symmetric Yukawa couplings, where we pointed out the possibility to make a consistent check
theories. In order to predict the decay rates into charged antileptons in this case, we have to know the maK2
andVDE (seeEqs. (33) and (34)). In thoseSO(10) theories there is a specific expression for the matrixVDE :

(50)4V T
UDK∗

uY
diag
U VUD − (3 tanα10 + tanα126)K

∗
d Y

diag
D = V ∗

DEK∗
e Y

diag
E V

†
DE(tanα10 − tanα126).

In the above expressions tanα10 = vU
10/v

D
10, and tanα126 = vU

126/v
D
126. In Eq. (50)we see explicitly the relation

between the different factors entering in the proton decay predictions.
To compute the amplitude for proton decay into charged antileptons we need the following expression:

2∑
α=1

c
(
eC
α , dβ

)∗
symc

(
eC
α , dγ

)
sym

(51)=
[
δβi + V

1β
CKMK

ββ

2

(
K∗

2

)ii(
V

†
CKM

)i1][
δγj + V

1γ
CKMK

γγ

2

(
K∗

2

)jj (
V

†
CKM

)j1
] 2∑

i=1

V iα
DE

(
V

jα
DE

)∗
.

Therefore the amplitude of the channels with charged antileptons always depend on the matricesK2 andVDE .
Therefore it is not possible to make a clear test of the theory through those channels, they are useful to di
between different models for fermion masses with symmetric Yukawa matrices. Notice that in Ref.[26] has been
showed that the predictions for the decay channelp → l+K0 are the same in different models for fermion mass
however as we can appreciate fromEq. (51)it is not true in the general case when we consider all generations an
the extra CP violating phases.

5. Conclusions

We have studied in detail the predictions coming from the gauged = 6 operators, the less model depend
contributions for proton decay. Analyzing the different decay channels, we find that there are only se
independent equations for the coefficients involved in the two bodies decay channels for proton decay. In genera
we could say that the number of physical parameters involved in those predictions must be less than seve

We have pointed out that it is possible to make a clear test of any grand unified theory with symmetric Y
couplings through the decay of the nucleon, since in thesecases the decay rates of the nucleon into an antineutrino
are independent of the mixings matrices and the new sources of CP violation beyondVCKM andVl , they depend
only on the factorsk1 andk2. The relations between the decays of the proton and the neutron into an antineutri
have been found. Notice that it is the case of realistic grand unified theories based on theSO(10) gauge group. The
predictions for the decay channels with charged leptonsare not the same in different models for fermion mas
with symmetric Yukawa couplings, therefore they could be useful to distinguish between different models. O
results are valid in supersymmetric and non-supersymmetric scenarios.
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