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We use the QCD sum rules to study possible Bc-like molecular states. We consider isoscalar J P = 0+
and J P = 1+ D(∗) B(∗) molecular currents. We consider the contributions of condensates up to dimension
eight and we work at leading order in αs . We obtain for these states masses around 7 GeV.

© 2012 Elsevier B.V. Open access under CC BY license.
The study of states with configuration more complex than the
conventional qq̄ meson and qqq baryon is quite old and, despite
decades of progress, no exotic hadron has been conclusively iden-
tified. Famous examples of possible nonconventional meson states
are the light scalars and the X(3872) [1]. While, from a theoretical
point of view the most acceptable structure for the light scalars is
a tetraquark (diquark–antidiquark) configuration [2], in the case of
the X(3872) there is an agreement in the community that it might
be a D D̄∗ molecular state. Establishing the structure of these states
and identifying other possible exotic states represents a remarkable
progress in hadron physics.

Besides the X(3872), in the past decade, more and more
charmonium-like or bottomonium-like states were observed in the
e+e− collision [3–5], B meson decays [1,6–8] and even γ γ fusion
processes [9–11], which have stimulated the extensive discussion
of exotic hadron configurations (for a review see Refs. [12–15]).
An important question that arises is that if some of these ob-
served states are molecular states, then many others should also
exist. In a very recent publication [16], a one boson exchange (OBE)
model was used to investigate hadronic molecules with both open
charm and open bottom. These new structures were labelled as
Bc-like molecules, and were categorized into four groups: DB,
D∗B∗ , D∗B and DB∗ , where these symbols represent the group
of states: D(∗) = [D(∗)0, D(∗)+, D(∗)+] for charmed mesons and
B(∗) = [B(∗)+, B(∗)0, B(∗)0] for bottom mesons. A complete analy-
sis, based on the approach developed in Refs. [17–24], was done
in Ref. [16] to study the interaction of these Bc-like molecules.
These states were categorized using a hand-waving notation, with
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Table 1
Currents describing possible Bc -like molecules.

State I( J P ) Current

D B 0(0+) j = (q̄γ5c)(b̄γ5q)

D∗ B∗ 0(0+) j = (q̄γμc)(b̄γ μq)

D∗ B 0(1+) jμ = i(q̄γμc)(b̄γ5q)

D B∗ 0(1+) jμ = i(q̄γ5c)(b̄γμq)

five-stars, four-stars, etc. A five-star state implies that a loosely
molecular state probably exists. They find five five-star states, all
of them isosinglets in the light sector, with no strange quarks.

Here we use the QCD sum rules (QCDSR) [14,25–27], to check
if some of the five-star states found in Ref. [16] are supported by a
QCDSR calculation. The states we will consider are the isosinglets
J P = 0+ D B = (D0 B+ + D+B0), J P = 1+ D∗B = (D∗0 B+ + D∗+B0),
J P = 1+ D B∗ = (D0 B∗+ + D+B∗0) and the J P = 0+ D∗B∗ =
(D∗0 B∗+ + D∗+B0). The QCDSR approach is based on the two-point
correlation function

Π(q) = i

∫
d4x eiq.x〈0|T [

j(x) j†(0)
]|0〉, (1)

where the current j(x) contains all the information about the
hadron of interest, like quantum numbers, quarks contents and so
on. Possible currents for the states described above are given in Ta-
ble 1, where we have used a short notation for the isoscalars since
we are considering the light quarks, q = u,d, degenerate. We use
the same techniques developed in Refs. [28–39].

The QCD sum rule is obtained by evaluating the correlation
function in Eq. (1) in two ways: in the OPE side, we calculate the
correlation function at the quark level in terms of quark and gluon
fields. We work at leading order in αs in the operators, we con-
sider the contributions from condensates up to dimension eight. In
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the phenomenological side, the correlation function is calculated
by inserting intermediate states for the hadronic state, H , and pa-
rameterizing the coupling of these states to the current jμ(x), in
terms of a generic coupling parameter λ, so that

〈0| j|H〉 = λ, (2)

for the scalar states and

〈0| jμ|H〉 = λεμ, (3)

for the axial currents, where εμ is the polarization vector. In the
case of the axial current, we can write the correlation function in
Eq. (1) in terms of two independent Lorentz structures:

Πμν(q) = −Π
(
q2)(gμν − qμqν

q2

)
+ Π ′(q2)qμqν

q2
. (4)

The two invariant functions, Π and Π ′ , appearing in Eq. (4), have
respectively the quantum numbers of the spin 1 and 0 mesons.
Therefore, we choose to work with the Lorentz structure gμν , since
it projects out the 1+ state.

The phenomenological side of Eq. (1), in the gμν structure in
the case of the axial currents, can be written as

Πphen(q2) = λ2

M2
H − q2

+
∞∫

0

ds
ρcont(s)

s − q2
, (5)

where MH is the hadron mass and the second term in the RHS of
Eq. (5) denotes the contribution of the continuum of the states
with the same quantum numbers as the current. In general, in
the QCDSR method it is assumed that the continuum contribu-
tion to the spectral density, ρcont(s) in Eq. (5), vanishes below a
certain continuum threshold s0. Above this threshold, it is given
by the result obtained in the OPE side. Therefore, one uses the
ansatz [40]

ρcont(s) = ρOPE(s)Θ(s − s0). (6)

The correlation function in the OPE side can be written as a
dispersion relation:

ΠOPE(q2) =
∞∫

(mc+mb)2

ds
ρOPE(s)

s − q2
, (7)

where ρOPE(s) is given by the imaginary part of the correlation
function: πρOPE(s) = Im[ΠOPE(s)].

After transferring the continuum contribution to the OPE side,
and performing a Borel transform, the sum rule can be written as

λ2e−M2
H τ =

s0∫

(mc+mb)2

ds e−sτ ρOPE(s), (8)

where we have introduced the Borel parameter τ = 1/M2, with
M being the Borel mass. To extract MH we take the derivative of
Eq. (8) with respect to Borel parameter τ and divide the result by
Eq. (8), so that

M2
H =

∫ s0
(mc+mb)2 ds se−sτ ρope(s)∫ s0
(mc+mb)2 ds e−sτ ρope(s)

. (9)

The expressions for ρope(s) for the currents in Table 1, using
factorization hypothesis, up to dimension-eight condensates, are
given in Appendix A.
Table 2
QCD input parameters.

Parameters Values

mb (4.24 − 4.60) GeV

mc (1.23 − 1.47) GeV

〈q̄q〉 −(0.23 ± 0.03)3 GeV3

〈g2
s G2〉 (0.88 ± 0.25) GeV4

m2
0 ≡ 〈q̄Gq〉/〈q̄q〉 (0.8 ± 0.1) GeV2

〈g3
s G3〉 (0.58 ± 0.18) GeV6

ρ ≡ 〈q̄qq̄q〉/〈q̄q〉2 (0.5 − 2.0)

To extract reliable results from the sum rule, it is necessary
to establish the Borel window. A valid sum rule exists when one
can find a Borel window where there are a OPE convergence,
a τ -stability and the dominance of the pole contribution. The max-
imum value of τ parameter is determined by imposing that the
contribution of the higher dimension condensate is smaller than
15% of the total contribution. The minimum value of τ is de-
termined by imposing that the pole contribution is equal to the
continuum contribution. To guarantee a reliable result extracted
from sum rules it is important that there is a τ stability inside
the Borel window.

The continuum threshold is a physical parameter that should be
determined from the spectrum of the mesons. Using a harmonic-
oscillator potential model, it was shown in Ref. [41] that a constant
continuum threshold is a very poor approximation. The actual ac-
curacy of the parameters extracted from the sum rules improves
considerably when using a Borel dependent continuum threshold.
It also allows to estimate realistic systematic errors [41]. How-
ever, to be able to fix the form of the Borel dependent continuum
threshold (and the values of the parameters in the function) one
needs to use the experimental value of the mass of the parti-
cle [42]. Since in our study we do not know the experimental
value of the masses of the states, it is not possible to fix the Borel
dependent continuum threshold. For this reason, although aware
of the limitations of the values we are going to extract from the
sum rule, to have a first estimate for the values of the masses of
the states, we are going to use a constant continuum threshold. In
many cases, a good approximation for the value of the continuum
threshold is the value of the mass of the first excited state squared.
In some known cases, like the ρ and J/ψ , the first excited state
has a mass approximately 0.5 GeV above the ground state mass.
Since here we do not know the spectrum for the hadrons stud-
ied, we will fix the continuum threshold range starting with the
smaller value which provides a valid Borel window. The optimal
choice for s0 will be taken when there is a τ -stability inside the
Borel window.

For a consistent comparison with the results obtained for the
other molecular states using the QCDSR approach, we have consid-
ered here the same values used for the quark masses and conden-
sates as in Refs. [29–35,43], listed in Table 2. For the heavy quark
masses, we could use the range spanned by the running M S mass
mQ (M Q ) and the on-shell mass from QCD (spectral) sum rules
compiled in [27] and more recently obtained in Ref. [44]. However,
we do not obtain a valid Borel window with the usual on-shell
mass for b quark, mb = 4.70 GeV. For this reason, we have consid-
ered as the maximum value for b quark mass mb = 4.60 GeV, as
indicated in Table 2. For the 〈G3〉 condensate, we have used the
new numerical value estimated in Ref. [44]. To take into account
the violation of the factorization hypothesis we introduced in Ta-
ble 2 the parameter ρ .

Let us consider first the molecular current for the D B(0+) state.
In Fig. 1 a), we show the relative contribution of the terms in the
OPE side of the sum rule, for

√
s0 = 7.20 GeV. From this figure we
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Fig. 1. D B(0+) molecular state up to dimension-8 contribution for mc = 1.23 GeV
and mb = 4.24 GeV. a) OPE convergence in the region 0.14 � τ � 0.36 GeV−2 for√

s0 = 7.20 GeV. We plot the relative contributions starting with the perturbative
contribution and each other line represents the relative contribution after adding
of one extra condensate in the expansion: +〈q̄q〉, +〈G2〉, +〈q̄Gq〉, +〈q̄q〉2 and
+〈q̄q〉〈q̄Gq〉. b) The pole and continuum contributions for

√
s0 = 7.20 GeV. c) The

mass as a function of the sum rule parameter τ , for different values of
√

s0. For
each line, the region bounded by parenthesis indicates a valid Borel window.

see that the contribution of the dimension-8 condensate is smaller
than 15% of the total contribution for values of τ � 0.27 GeV−2,
which indicates a good OPE convergence. From Fig. 1 b), we also
see that the pole contribution is bigger than the continuum con-
tribution only for τ � 0.22 GeV−2. Therefore, we fix the Borel
window as: (0.22 � τ � 0.27) GeV−2. The results for the mass are
shown in Fig. 1 c), as a function of τ , for different values of s0.
As we can see from Fig. 1 c), the Borel window (indicated through
the parenthesis) gets smaller as the value of

√
s0 decreases. So, we

can only work with values for
√

s0 bigger than 7.00 GeV, other-
wise we do not obtain a valid Borel window for this sum rule. We
also observe that the optimal choice for the continuum threshold
is

√
s0 = 7.20 GeV, because it provides the best τ -stability inside
of the Borel window, including the existence of a minimum point
for the value of the mass.

Therefore, varying the value of the continuum threshold in the
range

√
s0 = (7.00 − 7.30) GeV, and the others parameters as indi-

cated in Table 2, we get

M〈8〉
D B = (6.77 ± 0.11) GeV. (10)

The quoted uncertainty is the OPE uncertainty. The most impor-
tant source of uncertainty is the values of the heavy quark masses.
As discussed in Ref. [42], there is another kind of uncertainty,
called systematic uncertainty, related to the intrinsic limited ac-
curacy of the method. The systematic uncertainty of the physical
quantity extracted from the QCDSR represents, perhaps, the most
subtle point in the application of the method. Without an estimate
of the systematic uncertainty, the numerical value of the physical
quantity one reads off from the Borel window might differ sig-
nificantly from its true value. In Ref. [42] it was shown that the
use of the Borel dependent continuum threshold allows to esti-
mate the systematic uncertainty. In particular, for the case of the
D and Ds mesons studied in [42], the systematic uncertainty turns
out to be of the same order of the OPE uncertainty. Since here
we do not have how to estimate the Borel dependent continuum
threshold, in an attempt to obtain some information about the sys-
tematic uncertainty, we will repeat the analysis considering only
terms up to dimension 6 in the OPE. These new results are shown
in Fig. 2.

As one can see in Fig. 2 a), when we remove the dimension-8
condensates contribution we lose the OPE convergence, since the
most important contributions to the OPE come from 〈q̄q〉 and
ρ〈q̄q〉2 contributions. Thus to be able to extract some results from
this analysis we determine the maximum value of τ parameter
imposing that the contribution of the dimension-6 condensate is
smaller than 25% of the total contribution, otherwise we do not
have a valid Borel window for this sum rule. The minimum value
of τ is not changed since the pole dominance behavior remains
the same. Finally, we obtain the results shown in Fig. 2 c), from
where we get

M〈6〉
D B = (6.63 ± 0.09) GeV. (11)

Note that the value in Eq. (11) differs at maximum only ∼ 5.0%
to that in Eq. (10). Besides, the inclusion of dimension-8 conden-
sate provides a better OPE convergence, τ -stability and an im-
proved Borel window. Therefore, even being aware that this is only
part of the dimension-8 contribution, here we consider it as a form
to estimate the systematic uncertainty. One should note that a
complete evaluation of the dimension-8 contributions require more
involved analysis including a non-trivial choice of the factorization
assumption basis [45]. Then, the final value for the D B molecular
state is given by

MD B = (6.75 ± 0.14) GeV. (12)

The mass in Eq. (12) is ∼ 400 MeV below the D B threshold
indicating that such molecular state would be tightly bound. This
result, for the binding energy, is very different than the obtained in
Ref. [16] for the D B(0+) molecular state. The authors of Ref. [16]
found that the D B(0+) molecular state is loosely bound with a
binding energy smaller than 14 MeV. However, it is very impor-
tant to notice that since the molecular currents given in Table 1
are local, they do not represent extended objects, with two mesons
separated in space, but rather a very compact object with two sin-
glet quark–antiquark pairs. Therefore, the result obtained here may
suggest that, although a loosely bound D B(0+) molecular state can
exist, it may not be the ground state for a four-quark exotic state
with the same quantum numbers and quark content.
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Fig. 2. D B(0+) molecular state up to dimension-6 contribution for mc = 1.23 GeV
and mb = 4.24 GeV. a) OPE convergence in the region 0.19 � τ � 0.27 GeV−2 for√

s0 = 7.20 GeV. We plot the relative contributions starting with the perturbative
contribution and each other line represents the relative contribution after adding of
one extra condensate in the expansion: +〈q̄q〉, +〈G2〉, +〈q̄Gq〉 and +〈q̄q〉2. b) The
pole and continuum contributions for

√
s0 = 7.20 GeV. c) The mass as a function

of the sum rule parameter τ , for different values of
√

s0. For each line, the region
bounded by parenthesis indicates a valid Borel window.

Having the hadron mass, we can also evaluate the coupling pa-
rameter, λ, defined in Eq. (2). We get

λD B = (0.029 ± 0.008) GeV5. (13)

The parameter λ gives a measure of the strength of the cou-
pling between the current and the state. The result in Eq. (13)
has the same order of magnitude as the coupling obtained for
the X(3872) [29], for example. This indicates that such state could
be very well represented by the respective current in Table 1.

We can extend the same analysis to study the others molecu-
lar states presented in Table 1. For all of them we get a similar
OPE convergence in a region where the pole contribution is bigger
than the continuum contribution. We obtain the results shown in
Fig. 3.
Fig. 3. The mass as a function of the sum rule parameter τ , for mc = 1.23 GeV and
mb = 4.24 GeV, considering different values for

√
s0: a) for D∗ B∗ , 0+ molecular

current; b) for D∗ B , 1+ molecular current; c) for D B∗ , 1+ molecular current. For
each line, the region bounded by parenthesis indicates a valid Borel window.

In Fig. 3 a), we show the ground state mass, for the D∗B∗ , 0+
molecular current, as a function of τ . For

√
s0 = 7.80 GeV, we can

fix the Borel window as: (0.18 � τ � 0.21) GeV−2. From this figure
we again see that there is a very good τ -stability in the deter-
mined Borel window.

Varying the value of the continuum threshold in the range√
s0 = (7.60 − 7.90) GeV, the others parameters as indicated in

Table 2 and also estimating the uncertainty by neglecting the
dimension-8 contribution we get

MD∗ B∗ = (7.27 ± 0.12) GeV, (14)

λD∗ B∗ = (0.115 ± 0.021) GeV5. (15)

The obtained mass indicates a binding energy of the order of
∼ 50 MeV below the D∗B∗ threshold. Considering the uncertain-
ties, it is even possible that this state is not bound. In this case,
our central result is in a good agreement with the result obtained
for the D∗B∗ , 0+ , molecular state obtained in Ref. [16]. However,
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since we do not have a trustable estimate for the systematic error,
as discussed above, any conclusion about the possible existence of
this state would be premature.

We now consider the D∗B(1+) molecular current. In
Fig. 3 b), we show the ground state mass, as a function of τ . For√

s0 = 7.70 GeV, we can fix the Borel window as: (0.18 � τ �
0.22) GeV−2.

Varying the value of the continuum threshold in the range√
s0 = (7.50 − 7.80) GeV, the others parameters as indicated in

Table 2 and also estimating the uncertainty by neglecting the
dimension-8 contribution we get

MD∗ B = (7.16 ± 0.12) GeV, (16)

λD∗ B = (0.058 ± 0.013) GeV5. (17)

The obtained mass indicates a central binding energy for the D∗B ,
1+ state of the order of ∼ 130 MeV. Considering the uncertainty,
this result might be compatible with the one obtained by the au-
thors in Ref. [16], or can even be unbound, as the D∗B∗ state.
Therefore, also in this case, any conclusion about the possible ex-
istence of this state would be premature.

Finally, we study the molecular current for D B∗ , 1+ state. As
one can see from Fig. 3 c), we have a very good τ -stability inside of
the Borel window: (0.21 � τ � 0.25) GeV−2, for

√
s0 = 7.30 GeV.

Doing the same procedure to estimate the uncertainties in the
range

√
s0 = (7.10 − 7.40) GeV we get

MD B∗ = (6.85 ± 0.15) GeV, (18)

λD B∗ = (0.036 ± 0.011) GeV5 (19)

which indicates a binding energy of the order ∼ 330 MeV, much
bigger than that obtained in Ref. [16].

We can compare our results with the ones presented in
Ref. [46]. First of all we would like to point out that we have
found some disagreements in the spectral densities expressions
for the D B , D∗B and D B∗ molecular currents. In particular, we
have found some missing terms in the 〈G2〉, 〈q̄Gq〉 and 〈G3〉 con-
tributions, due to some diagrams that have been neglected in their
calculations. We have found that the 〈q̄Gq〉 contribution plays an
important role to the final result, and this can explain why the
mass values found in Ref. [46] differ from ours. Another impor-
tant point, in which our calculations differ, is the fact that the
Borel window (0.10 � τ � 0.14) GeV−2, considered by the authors
in Ref. [46], does not have pole dominance, as can be seen in
Figs. 1 c), 3 a), 3 b) and 3 c). The only result for the mass, which
is in agreement with Ref. [46], is the one for the D∗B∗ molecular
current. For this current we found disagreements only for the 〈G3〉
contribution. Since the 〈G3〉 contribution is very small, as com-
pared to the others, the differences found could not modify the
final result.

In conclusion, we have studied the mass of the exotic Bc-like
molecular states using QCD sum rules. We find that for the molec-
ular currents D∗B∗( J P = 0+) and D∗B( J P = 1+), the QCDSR cen-
tral results lead approximately to the same predictions made by
the authors in Ref. [16], for the respective molecular states in a
OBE model. However, since our uncertainties are underestimated
due to our crude model for the continuum threshold, any conclu-
sion about the possible existence of these states would be prema-
ture.

In the case of the D B( J P = 0+) and D B∗( J P = 1+) molecu-
lar currents, from the QCD sum rule point of view, the masses of
the corresponding states are smaller than the masses obtained for
the respective molecular states studied in Ref. [16]. We interpret
this result as an indication of the possible existence of four-quark
states, with the same quark content and quantum numbers as
the D B( J P = 0+) and D B∗( J P = 1+) molecular states, but with
smaller masses.
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Appendix A. Spectral densities

The spectral densities expressions for the molecular currents
given in Table 1, were calculated up to dimension-6 condensates,
at leading order in αs . To keep the heavy quark mass finite, we
use the momentum-space expression for the heavy quark propa-
gator. We calculate the light quark part of the correlation function
in the coordinate-space, and we use the Schwinger parameters to
evaluate the heavy quark part of the correlator. To evaluate the
d4x integration in Eq. (1), we use again the Schwinger parameters,
after a Wick rotation. Finally we get integrals in the Schwinger
parameters. The result of these integrals are given in terms of loga-
rithmic functions, from where we extract the spectral densities and
the limits of the integration. The same technique can be used to
evaluate the condensate contributions. To evaluate the systematic
uncertainty we also include a part of the dimension-8 contribution,
related with the mixed-condensate times the quark condensate. In
Ref. [38] it was shown that the contribution of this condensate is
much bigger than other dimension-8 condensates, related with the
gluon condensate.

For the D B , 0+ molecular current we get

ρ
pert
D B (s) = 3

211π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)F (α,β)4,

ρ
〈q̄q〉
D B (s) = −3〈q̄q〉

27π4

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β2
(βmc + αmb)F (α,β)2,

ρ
〈G2〉
D B (s) = 〈g2

s G2〉
212π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
F (α,β)

[
3αβ(α + β)F (α,β)

+ 2(1 − α − β)
(
β3m2

c + α3m2
b

)]
,

ρ
〈q̄Gq〉
D B (s) = −3〈q̄Gq〉

28π4

[ αmax∫
αmin

dα

α(1 − α)

(
mc + α(mb − mc)

)
H(α)

− 2

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β2

(
β2mc + α2mb

)
F (α,β)

]
,

ρ
〈q̄q〉2

D B (s) = mbmcρ〈q̄q〉2

16π2
λbc v,

ρ
〈G3〉
D B (s) = 〈g3

s G3〉
213π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

[
2
(
β4m2

c + α4m2
b

)

+ (
α3 + β3)F (α,β)

]
,
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ρ
〈8〉
D B(s) = mcmbρ〈q̄q〉〈q̄Gq〉

25π2

1∫
0

dα

α(1 − α)

[
1 − α + α2

− (
m2

c − α
(
m2

c − m2
b

))
τ
]
δ

(
s − m2

c − α(m2
c − m2

b)

α(1 − α)

)
.

For the D∗B , 1+ molecular current we get

ρ
pert
D∗ B(s) = 3

212π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

× (1 + α + β)F (α,β)4,

ρ
〈q̄q〉
D∗ B(s) = −3〈q̄q〉

27π4

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β2

[
βmc + α(α + β)mb

]

× F (α,β)2,

ρ
〈G2〉
D∗ B (s) = 〈g2

s G2〉
212π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
F (α,β)

[
αβ

(
3α(α + β)

− β(2 − α − β)
)

F (α,β) + (
β3m2

c + α3m2
b

)
× (1 − α − β)(1 + α + β)

]
,

ρ
〈q̄Gq〉
D∗ B (s) = −3〈q̄Gq〉

28π4

[ αmax∫
αmin

dα

α(1 − α)

(
mc − α(mc − mb)

)
H(α)

− mb

αmax∫
αmin

dα

1−α∫
βmin

dβ

β2
(2α + 3β)F (α,β)

]
,

ρ
〈q̄q〉2

D∗ B (s) = mcmbρ〈q̄q〉2

16π2
λbc v,

ρ
〈G3〉
D∗ B (s) = 〈g3

s G3〉
214π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)(1 + α + β)

× [
2
(
β4m2

c + α4m2
b

) + (
α3 + β3)F (α,β)

]
,

ρ
〈8〉
D∗ B(s) = mcmbρ〈q̄q〉〈q̄Gq〉

25π2

1∫
0

dα

α(1 − α)

× δ

(
s − m2

c − α(m2
c − m2

b)

α(1 − α)

)

× [
α2 − (

m2
c − α

(
m2

c − m2
b

))
τ
]
.

For the D B∗ , 1+ molecular current we get

ρ
pert
D B∗(s) = 3

212π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

× (1 + α + β)F (α,β)4,

ρ
〈q̄q〉
D B∗(s) = −3〈q̄q〉

27π4

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β2

[
β(α + β)mc + αmb

]

× F (α,β)2,

ρ
〈G2〉
D B∗ (s) = 〈g2

s G2〉
212π6

αmax∫
α

dα

α3

1−α∫
dβ

β3
F (α,β)

[
αβ

(
3β(α + β)
min βmin
− α(2 − α − β)
)

F (α,β) + (
β3m2

c + α3m2
b

)
× (1 − α − β)(1 + α + β)

]
,

ρ
〈q̄Gq〉
D B∗ (s) = −3〈q̄Gq〉

28π4

[ αmax∫
αmin

dα

α(1 − α)

(
mc − α(mc − mb)

)
H(α)

− mc

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ(3α + 2β)F (α,β)

]
,

ρ
〈q̄q〉2

D B∗ (s) = mcmbρ〈q̄q〉2

16π2
λbc v,

ρ
〈G3〉
D B∗ (s) = 〈g3

s G3〉
214π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)(1 + α + β)

× [
2
(
β4m2

c + α4m2
b

) + (
α3 + β3)F (α,β)

]
,

ρ
〈8〉
D B∗(s) = mcmbρ〈q̄q〉〈q̄Gq〉

25π2

1∫
0

dα

α(1 − α)

× δ

(
s − m2

c − α(m2
c − m2

b)

α(1 − α)

)

× [
(1 − α)2 − (

m2
c − α

(
m2

c − m2
b

))
τ
]
.

For the D∗B∗ , 0+ molecular current we get

ρ
pert
D∗ B∗(s) = 3

29π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)F (α,β)4,

ρ
〈q̄q〉
D∗ B∗(s) = −3〈q̄q〉

26π4

αmax∫
αmin

dα

α2

1−α∫
βmin

dβ

β2
(βmc + αmb)F (α,β)2,

ρ
〈G2〉
D∗ B∗(s) = 〈g2

s G2〉
29π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

× (
β3m2

c + α3m2
b

)
F (α,β),

ρ
〈q̄Gq〉
D∗ B∗ (s) = −3〈q̄Gq〉

27π4

αmax∫
αmin

dα

α(1 − α)

(
mc − α(mc − mb)

)
H(α),

ρ
〈q̄q〉2

D∗ B∗(s) = mcmbρ〈q̄q〉2

4π2
λbc v,

ρ
〈G3〉
D∗ B∗(s) = 〈g3

s G3〉
211π6

αmax∫
αmin

dα

α3

1−α∫
βmin

dβ

β3
(1 − α − β)

[
2
(
β4m2

c + α4m2
b

)

+ (
α3 + β3)F (α,β)

]
,

ρ
〈8〉
D∗ B∗(s) = −mcmbρ〈q̄q〉〈q̄Gq〉

8π2

1∫
0

dα

α(1 − α)

× δ

(
s − m2

c − α(m2
c − m2

b)

α(1 − α)

)

× [
α(1 − α) + (

m2
c − α

(
m2

c − m2
b

))
τ
]
.



498 R.M. Albuquerque et al. / Physics Letters B 718 (2012) 492–498
In all these expressions we have used the following definitions:

H(α) = m2
bα + m2

c (1 − α) − α(1 − α)s, (A.1)

F (α,β) = m2
bα + m2

c β − αβs, (A.2)

λbc = 1 + (
m2

c − m2
b

)
/s, (A.3)

v =
√

1 − 4m2
c /s

λ2
bc

, (A.4)

and the integration limits are given by

βmin = αm2
b

αs − m2
c
, (A.5)

αmin = λbc

2
(1 − v), (A.6)

αmax = λbc

2
(1 + v). (A.7)
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