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R E PLY  TO E.T. JAYNES'  A N D  A. ZELLNER'S C O M M E N T S  
ON M Y  TWO A R T I C L E S  

CORNELIS A. Los 
NMB Bank, 135 East 57th St., New York, NY 10022, U.S.A. 

PREFACE 

The Bayesian physicist E.T. Jaynes has written a very detailed and intelligent commentary. He 
clearly understands the scientific essence of my two articles. The essence of my two articles is that 
a system of linear relationships has to be identified from the data alone, that the conventional 
(statistical) identification schemes introduce ad hoc prejudices, and that there currently exists 
serious research of prejudice-free alternatives. The Bayesian econometrician A. Zeliner provides 
some very brief remarks. 

A detailed reply is required since, unfortunately, both commentaries include statements that 
factually misrepresent, and therefore confuse, the contents of my two articles and of my collab- 
orative research with Kalman, e.g., I never propose a "Los Solution", as Jaynes claims. The 
particular scheme he refers to is the Frisch scheme, which he calls a "radical new approach." 
Radical maybe, but new? Frisch proposed it already in 1934 [1]. Moreover, Jaynes' "Simple So- 
lution" is the Principal Components scheme, thoroughly criticized in the first of my two articles. 
Both schemes I showed to be prejudiced. 

In this reply, I will: (i) correct similar erroneous representations; (ii) clarify issues that nec- 
essarily remained unresolved at the time I wrote the articles; (iii) add some commentary on the 
nonscientific use of Kolmogorov's probability theory; and, most importantly, (iv) present the 
application of Kalman's new (1991) objective method of linear identification to my original data 
for comparison. 

Despite the considerable difference in viewpoints between the two sides in this debate, two 
major positive conclusions emerge: (1) both sides agree that it is essential to identify the number 
of linear relations from the data. Jaynes and I both conclude that my data are modelled by 
two independent linear relationshipsmand not one relationship, as the original researchers at 
the Federal Reserve Bank of New York presumed--plus some relatively small noise. Moreover, 
(2) even Jaynes shows in his commentary that probability theory plays no role whatsoever to 
reach this conclusion. The data covariance matrix and linear algebra are all that is needed. 
The presumption of stochasticity of the data is superfluous. This must be a clear warning for 
statisticians, who indiscriminatingly use probability theory. 

Algebraic data analysis in general and linear identification in particular involve both "deduc- 
tion" and "induction". The problem is that the exact isomorphism between exact data and the 
minimal model ( = UNIQUENESS PRINCIPLE) breaks down as soon as uncertainty is intro- 
duced. We investigate why and how this happens. Statisticians have provided a pseudo-solution 
to this problem by adding suitable prejudices, like "all data are samples from populations" to 
create uniqueness of the resulting models, i.e., to create certainty out of thin air. 

According to the UNCERTAINTY PRINCIPLE [2, Lecture 1, p. 2]: "Uncertainty (noise) in 
the data is inherited as uncertainty in the model for the data." Engineers know that uncertainty, 
or noise, can persist even for infinite samples. This should not surprise us. Noise is not necessarily 
stochastic or probabilistic, but can be deterministic, as the theory of deterministic chaos (based 

I thank the Guest Editor for providing for this debate a forffim, for his efforts to eliminate noise and for insisting 
on decorgm. 
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on nonlinear equations) teaches us. Noise, uncertainty, is what is unknown and unexplainable 
within the adopted (linear) framework. To assume certainty, even if that is the certainty of a 
probability distribution, where there is not, may be acceptable in the occult, but is not in science. 

For the reader to understand this debate, it is essential to know that throughout their com- 
mentaries Jaynes and Zellner use the term "unknown errors", while we use the term noise. In 
information and system theory the term noise is well defined: it is that part of the data that is not 
the exact signal. Furthermore, Jaynes uses the term "solution", where I prefer the term scheme. 
The term scheme indicates that prejudices are involved. Newton's technical concept of prejudice 
is defined as an a priori assumption, not obtained from the data, or tested against the data. This 
scientific concept is very helpful in dissecting some embarrassing problems in statistics. 

REBUTTALS 

1. First things first: the data. The data in Appendix A [3, pp. 130i-1302] are not time series 
data, as Zellner assumes, but cross-sectional data, as I explicitly state: "These data are from 
32 large bank holding companies followed regularly by Salomon Brothers, Inc., in their published 
statistical report for the year 1985." [3, p. 1301]. Not every T stands for time: T -- 32 large 
banking holding companies. 

These data were clearly given to me: "The data were kindly provided by the Banking Studies 
and Analysis FunCtions of the Federal Reserve Bank of New York" [3, p. 1301]. I was not 
concerned how they were collected or chosen, because that was irrelevant for my purpose. I 
am concerned about the prejudices inherent in the currently used linear identification schemes 
to analyze this and similar empirical data sets. Article [4] contains the precise mathematical 
formulation of these concerns. Article [3] illustrates, and compares these concerns, on the basis 
of these simple data. 

2. In [3], I never intend to prove that the 32 banking holding companies behave today or tomorrow 
as in 1985. Zellner's inference that "Los would have us believe" so, is false. I only prove that this 
cross-sectional data set of 1985 is completely described by two independent linear relationships, 
plus some relatively small noise. Not such a startling conclusion, maybe, but it is derived from 
the data alone. That should be startling. Only if we collect a similar three-variable data set from 
these same 32 banks in another year and we prove that this new data set is also described by 
the same two linear relationships, we would make a small, but progressive step on the long and 
arduous road of scientific investigation. Because then the profitability behavior of these banks 
would show integrity. 

3. Contrary to Jaynes' assertion, nowhere in my articles I recommend that all conventional 
schemes for estimating linear relations from noise-contaminated data be scrapped. I state that 
all conventional schemes are severely prejudiced and I mathematically show how in [4]. These 
conventional schemes do not produce objective, scientific results. They produce biased, prejudiced 
results. Our task is to find out exactly what their inherent prejudices are and how we can eliminate 
or neutralize these prejudices. 

4. In both papers, which were written in 1986 and published in 1989, I state clearly that at that 
time the noisy identification problem was still not objectively solved [3, p. 1285; and 4, p. 1282]. 
However, I am happy to report that now there does ezist an exact, objective mathematical method 
for identification of a linear system from noisy data. This method uses the Least Squares scheme 
as its computational tool and uses the data covariance matrix as its only input. (All existing linear 
identification schemes use the data covariance matrix as an input). The Least Squares scheme is 
prejudiced and the effect of its prejudices has to be neutralized. Therefore, the required scientific 
objectivity is only obtained by applying the Least Squares scheme in a comprehensive fashion. 
This new identification method could not be described in my two papers, since Kalman only 
formulated it in the fall of 1989 and presented it in [5]. That is scientific progress. 

5. Jaynes claims that "methods for dealing with the problem which are optimal in all cases have 
been known for 20 years." But the "solution" presented in [6], for which Jaynes is a proponent, 
is clearly not "the correct general solution". It is not, since it keeps the prejudices, inherent in 
the conventional identification schemes, implicit and does not neutralize them. In addition, the 
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Table 1. Objective identification of q. 
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Notes:  
(1) LS(n,q) = Least Squares scheme applied to n variables with q independent linear rehttionshJpe 
(2) LSi = the computational result from the ith projection 

theory of the British clergyman T. Bayes accepts stochastic subjectivity as its ra/s0n d'etre, a 
flagrant violation of the tenets of exact scientific objectivity. 

6. To clarify the issues, let me once more state the Problem: if we have T observations on an n 
component vector, thus a (T × n) matrix X of data values, the objective is not to see whether 
there is evidence for q linear relations between the n data values of the form X B  = 0, as Jaynes 
restates it, but whether there is evidence in the data X for q linear relations among the n exact 
signals, of the form XA = 0, where .~ is the exact part of the data X and A an (n x q) matrix 
of unknown rank q, with 0 < q < n. (q cannot be equal t o 0 o r  to n). The objective is to 
determine q from the data alone, and in the process to separate X from X, where X = .~ + .~, 
with X orthogonal to .~. (All existing linear identification schemes accept the additivity and 
orthogonality of the signal and noise components of the data.) .~ is the (multi-channel) signal, 
while ~" is the noise component of the data. 

7. I challenge Jaynes and Zellner to present to the scientific community a published example 
where, "in the conventional approaches", a researcher has taken a particular value of q only as a 
"tentative worldng hypothesis" (Jaynes' emphasis). After extensive research, I only find that even 

seasoned researchers choose subjectively a particular q, and keep that value of q as a "maintained 
hypothesis", when they attempt to determine the value of the coefficients of A. They never go 
back to check their chosen q against the data. 

Kalman has now a Linear Identification Theorem [5, Theorem 9.6] which has the following 
operational interpretation. If you choose q a priori and q(chosen) <~ q(true), then the computed 
values of the coefficients of A do not cluster closely around a point but lie on a hyperplane, 
frequently in different orthants. (Surprisingly, this is something that can be checked easily by 
plotting the computed values). The values of the coefficients of A are likely to be sign-inconsistent, 
so there is not even the possibility of a "best fit" [4, pp. 1274-1275, Example 4]. Therefore, I 
can state unconditionally that "significance testing" will not accomplish the checking of q. If 
q(chosen) ~> q(true), then the computed coeffcients of A do also not cluster closely around 
a point, but this time they are truly randomly "scattered" in a totally unpredictable fashion, 
throughout the hyperspace. Only if q(chosen) = q(true), the computed coefficients of A cluster 
closely around a point and are thus sign-consistent. 

24:8/9-S 
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These results only hold true when the noise is relatively low. No method can extract reliable 
information from noisy data when the noise levels are too high. However, since the new method 
places absolute boundaries on the computed coefficients of A, based on the data, it provides a 
clear indication of the accuracy of the results. 

8. Let me now present the application of Kalman's new linear identification method to the data 
in [3, p. 1302]. The simplicity of the method is rather surprising: it relies only on the row vectors 
of the adjoint of the data covariance matrix E and on combinatorics. But that is its strength, 
since modern computers are extremely good in processing such combinatorial applications, even 
when the number of variables n is very large. Table 1 summarizes all the relevant results for the 
objective determination of q from the data. The inescapable conclusion is that q = 2, since only 
then all possible Least Squares results are sign-consistent. (A plot can be found in [3, p. 1291].) 

Note that in Tables 1, 2 and 3 the A matrices are normalized for the purpose of comparison 
only. This normalization is arbitrary. All possible normalizations might be tried to neutralize 
the prejudice of a particular choice of normalization. Such a procedure produces another combi- 
natorial computation. The particular normalization in these tables consists of the inversion of a 
submatrix of the adjoint of Z, which may introduce numerical computer errors because of fixed 
memory bit lengths. There are ways to avoid these numerical errors, for example, by using exact 
symbolic algebra. 

In Table 2, I compare the computational results of this identification method with the best 
results from the two major prejudiced schemes discussed in [3]. It is striking how close the 
computed coefficients of A cluster together, for all applications, when q = 2. The conclusion is 
that the noise in the data is not overwhelming the signals and that the q(chosen) -" q(truc) - 2. 

Notice that the computational results of Jaynes' "Simple Solution", which is the Principal 
Components scheme, lie between those boundaries, after Jaynes has somehow convinced himself 
that q = 2. In contrast, the new method computes the value ofq strictly from only the data. For 
all cases I provide in the Tables a summarizing indication of the signal/noise ratios by computing 
t r ~ / t r ~  and the related percentages of the total data variance explained by the q = 2 system. 

In [3], in response to earlier commentary by Zellner in Tempe, Arizona, in March, 1988, I said 
I hope that the contents of Tables 1 and 2 would be convincing and would function as standards 
of comparison for any further discussion of these issues. Since Jaynes and Zellner are still not 
convinced, I challenge them to provide me with a set of static data that, in their opinion, would 
be more convincing. In the true spirit of scientific competition, I ask them to analyze these 
data applying Bayesian Inference, of course within the limits of Linear Identification, i.e., only 
applying "linear modelling". I will analyze the same data. Let us then compare the results. 
I request a set of static data (say, cross-sectional), since the problems of objectively analyzing 
dynamic data are of a much higher order than discussed here and are still not solved by anyone 
in the scientific community despite appearances. 

9. The data covariance matrix ~ contains all the information needed for determining q and A. 
Of course, it is trivially true that for the reconstruction of the original X, the means of the data 
need to be added back in. Using the data covariance matrix as input we obviously operate on 
the deviations from the means, in all ezisting linear identification schemes. 

The number of data points T is relevant only for questions of the homogeneity of the data. 
If I have three million data points, as Jaynes suggests, I would like to do windowing with the 
new scheme, to establish the homogeneity of the data and, ergo, the integrity of the linear sys- 
tem. It is not necessarily true, as Jaynes implies, that more data points lead somehow to greater 
accuracy of the computational results. To apply such a "Law of Large Numbers" often uncheck- 
able assumptions (prejudices?) are conventionally made, such as: "the data are homogeneous" 
and "the datapoints are m-independent." Observing raw data, I am not prepared to make such 
facilitating, and often fallacious, assumptions. I examine the issue by applying (overlapping, 
non-overlapping, etc.) windows, i.e., by creating subsets of data and comparing the results of all 
subsets with each other. In other words, not I but statisticians impose prejudicial restrictions on 
the data, by supposing to know their characteristics a priori. 

10. Jaynes' misrepresentation is most obvious when he computes the spectral decomposition 
of ~ and then states: "Los demands that we choose our linear relations solely from [this spectral 
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decomposition] (2) without making use of what we may know about the measurement errors 
in the three directions, or other relevant evidence." (If we really have such information there is 
more data than Los assumes.) Los [4, pp. 1276-1277] states that such a spectral decomposition 
(on which the Principal Components scheme is based) is trivial and does nowhere make such a 
demand. However, the conventional normalization, used by Jaynes, is a prejudice, rendering the 
decomposition unique. 

Confusion may have arisen, because the Frisch scheme looks similar to the spectral decomposi- 
tion of the data covariance matrix. But it clearly isn't, because the eigenvalues (and eigenvectors) 
of the spectral decomposition contain signal plus noise, since they are both based on E. The di- 
agonal elements of the Frisch noise matrix ~ are variances of the Frisch noise only. The spectral 
decomposition works with the data (-- signal ÷ noise), but does not by itself decompose the  
data in signal and noise. The prejudices of the Principal Components or of the Common Factor 
Scheme are necessary to accomplish this, by prejudging how many ( :  n - q) eigenvalues to 
retain [4, pp. 1276-1278). Or as Jaynes prefers it: how many eigenvectors to retain. 

The results of Table 2 also show that knowledge about the noise is irrelevant for system 
identification. Notice that identified system coefficients in matrices A are identical for LS2, LS3 
and for Frisch, but the corresponding noise matrices ~ differ. 

11. It is revealing that Jaynes uses phrases like: "If we want to find two relations" ( i .e . ,  q - 2)  
and " . . .  if one believes that these data give good evidence for the presence of two linear relations" 
(my emphasis). Science has no place for "wants" or "beliefs": science is about data analysis, 
about identifying the system, about finding out from the data if there are one, or more linear 
relations among the exact components of the data series. 

The Frisch scheme does not a priori  determine the number of relations q. But the Frisch 
scheme is prejudiced, as I noted: "But the Frisch scheme apparently has its own prejudice" [3, 
p. 1296]. Why? Precisely because of the presupposed diagonality of its noise matrix, i.e., the 
presupposed orthogonality of the noise vectors. Not only did I clearly note that the Frisch scheme 
is prejudiced, but I made it clear that it illustrates some of the subtle issues involved in such 
prejudices. For example, the results of the Frisch scheme do not exist in general, but only in 
a limited set of cases, because of Wilson's inequality [3, pp. 1295-1296, and 4, p. 1280], which 
makes this peculiar scheme non-trivial. 

It is remarkable that in all statistics textbooks, the sign of this inequality is incorrectly reversed, 
virtually from the very moment after it was published by Wilson in 1929 [7]. It was Wilson's 
inequality that finally convinced Kalman and me that the Frisch scheme was prejudiced [3, p. 1296, 
and 4, pp. 1280-1281]. Worse, the Frisch prejudice cannot be neutralized, unlike the Least Squares 
prejudices. 

12. I wonder: what can one know about the "measurement errors" of these cross-sectional bank- 
ing data when the only data available is contained in X? If one does know more (from these 
32 large banking holding companies ?), then one has already extended the data set X by some 
extraneous information. I do not have this extraneous information, nor did, apparently, the 
Banking Studies and Analysis Function of the Federal Reserve Bank of New York. 

Jaynes asserts: "There can be no defensible solution until the data are supplemented by addi- 
tional information about the nature of the problem." Obtaining additional data is always a good 
idea, if possible, but often we cannot obtain it. The data are the only given. "Prior information" 
is additional data, and then only if it is obtained by objective measurement, not by subjective 
assertion. It is not in the interest of science to enlarge our data sets by beliefs (in particular when 
strongly held on the basis of "authority"). 

13. Jaynes asserts that the spectral decomposition tells him that q - 2. But he leaves his 
audience in the dark how he arrives at this judgement, and why he retains, subjectively, the 
largest eigenvalue. He calls his solution the "Simple Solution", which he compares with the 
Frisch Solution. There are many examples in major computer software manuals that show that, 
on the basis of a plot of the eigenvalues, a researcher can often not discriminate between what is 
signal and what is noise [4, p. 1280]. 

Since the Frisch solution is the exact equivalent of the factor analysis scheme with the data 
covariance matrix as input, it does not surprise me that the Frisch solution is only a small 
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rotation away from Jaynes' "Simple Solution" or spectral decomposition (which is equivalent to 
the Principal Components scheme). The rotation by 5.35 degrees achieves diagonality of the 
noise matrix, i.e., the prejudice of the Frisch scheme. 

14. Jaynes discusses extensively the impact of a change in units on his "Simple Solution". It 
is educational to analyze in detail what he says. The relevant computational results are all in 
Table 3. First, the change in units of measurement changes the eigenvalues and eigenvectors. 
That is correct, since they contain both signal and noise components. The impact of a 100-fold 
increase in the first data series Zl, is dispersed over all three eigenvalues and their corresponding 
eigenvectors. (That is exactly why any choice of q in this scheme remains a prejudice, no matter 
how arrived at.) One cannot determine where the impact will be the greatest. Magnitudes and 
directions change: it is not clear a pr ior i  where the noise resides and how large it is. However, 
I will show that it does not matter much for any linear identification scheme, not even for the 
"Simple Solution". 

It is easy to see this mathematically: premultiply X by a positive definite matrix F (in case of 
Jaynes' change in units of measurement this would be the diagonal matrix F = diag(1/100, 1, 1), 
then 

A ' F - 1 F ~ F  ' = A ~ F - 1 F ~ F  ' + A ' F - 1 F ~ , F  ' = A ' ~ F  ~ + A ' ~ F '  

= A t ~ F  I = A I ~ F ' .  

The system equation has not changed, 

A l ~  = A I F - 1 F ~ F  I = O, 

nor the rank q of A. Notice that the transformed system matrix is A I F  -1 .  For Jaynes' example, 
the all coefficient is now 100 times smaller, but since we normalized all = 1, this is equivalent 
to als to be 100 times larger in this relationship. 

I do not understand why Jaynes states that the new "Simple Solution" is nearly orthogonal 
to the original one. As observed in Table 3, the original and new U matrices of eigenvector are 
not orthogonal to each other, and why should they? (Note that the original U matrix in Jaynes' 
Example is inconsistent qua vector signs, undoubtedly a typing error. I computed the correct 
original U in Table 3.) What I do see is that the new (normalized) system matrix " A I F  -1" ,  
which represents the linear dependencies, has a coefficient ala in the first row that is a factor of 
about 100 larger than the earlier A ~ of the "Simple Solution", as one would expect. The first row 
and column of ~ are both increased by a factor of 100, and thus one expects that those of ~ and 
of ~ would increase by about the same factor. (Notice how the signal/noise ratios are affected 
by this transformation.) 

15. Jaynes himseff admits that the change in measurement units does not matter for the Frisch 
scheme, when he states: "However, we must concede a surprising point: Los does manage to 
achieve invariance under a change of units, in spite of the fact that he takes no note of the need 
for it". Where is the need? My mathematical explanation in the preceding Rebuttal clearly 
shows that there exists no such need for the Frisch scheme, nor for any other linear identification 
scheme that does not refract the noise arbitrarily. Premultiplication of the data X by a positive 
definite matrix has no substantial effect on the identification results. It does not change the q, 
and it does change the original A matrix as expected: A~F -1.  The problem is not "ill-posed" or 
"mathematically undetermined", as Jaynes claims. The identification problem remains the same: 
determine the unique minimal number of relations q from the data ~. 

Jaynes' concession also shows that the Frisch scheme is rational (as is the Least Squares 
scheme), while his "Simple Solution" is not. The change in unit of measurement has no im- 
pact on the computational results of the Frisch scheme or of all applications of the Least Squares 
scheme, but the results of his "Simple Solution" are affected. It is precisely for this reason that 
Kalman and I use the Least Squares scheme as computational tool in our new identification 
method. The Least Squares scheme does not suffer from the Frisch prejudice nor from the prej- 
udices of the "Simple Solution", since it operates linearly on the submatrices of the transposed 
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data covarianee matrix. To paraphrase Jaynes, any rational method of identification from noisy 
data ought to lead to the same results, if the noise is relatively small, irrespective of what we 
believe the noise to be. His "Simple Solution" does not. 

This mathematical analysis demonstrates also that Jaynes' statement: "Common sense might 
tell us that it is not the absolute size of the data eovarianee, but the data eovarianee in comparison 
with the sampling variances that is relevant for inference" is devoid of any meaning. 
16. I fail to understand how "Conventional methods of inference achieve this necessary invarianee 
by using sampling distributions," as Jaynes claims. The issue is not sampling, as we proved! It is 
significant, though, that Jaynes invokes the dens ez machina of "sampling distributions", since 
that raises other questions. How does he know that (1) the data are sampled? Or, that (2) 
the data are stochastic? We only know that the data are inexact = uncertain = can-not-be- 
direetly-deacribed-by-a-linear-relationship. And, (3) even if the data were stochastic, why would 
they adhere to an a priori assumed distribution? In the ease of the banking data, I even reject 
the assertion that the data are a sample, since the data represent the available universe. No 
sampling is involved. 

But, in analogy to the exact situation, I know how such a change in measurement unit would 
be reflected in my computational results, if the noise is relatively small. Contrary to Jaynes' 
assertion, there is no arbitrariness involved. There is only uncertainty in the data, that gets 
reflected in the computed a13, in any linear identification scheme. 

17. Correlations, being dimensionless, are indeed independent of the system of units. However, 
since the data correlations are ratios of data covarianees and data variances, which both contain 
noise, I fail to see any improvement in using ratios that contain noise divided by noise, as inputs 
for identification. The scaling is done by elements that contain noise and thus distorts the 
information available in the data covariance matrix [4, p. 1278]. 

The scaling by variances, c.q. standard deviations, is different from the change in units of 
measurement, where the transformation is accomplished by noise-free constants that do not 
distort the information in the data for system identification. Most certainly, the use of correlations 
will not assist in "correcting the arbitrary distortions in covariance functions" as Jaynes believes. 
Since the data covariances are the given, I do not understand how one can even assert to know 
that there are "distortions". There is only one relevant form of invarianee: and that is of q, the 
(minimal) number of independent linear relations among the exact data. The q remains invariant 
under multiplieative transformations, such as a change of measurement, as shown in Rebuttal 14. 
18. Jaynes correctly states: "Even the criterion of smallness of the residuals leads to arbitrary 
results." Nature does not have a criterion for smallness of the residuals, only statisticians have. 
"Least Squares", for example, is a misnomer: it is easily proved, but, regrettably, not well known, 
that all least squares results can be directly read from the adjoint of the data eovarianee matrix E. 
Therefore, the Least Squares (projection) scheme can be characterized by minimization, but need 
not be defined in that way. Kalman proves, though, that for a given matriz A, the Least Squares 
scheme implies the "smallest" noise covariance matrix of all the linear identification schemes [2, 
Lecture 6]. This result is far more general than the conventional "best"-ness criterion of the 
econometric BLUEs. 

19. In our formulation, the objective is to decompose the data matrix (and not the reduced 
data matrix!) into an "exact" or "explained" component ~', and a "noise" or "unexplained" 
component X. However, Jaynes blissfully calls X the "data vectors", although they are the 
vectors of the exact components of the data. Because Jaynes fails to see this crucial distinction 
(he writes, for example, X = (ylX2), while he should have written X = (~1~'2)). Because 
AX = 0, we have A X  = Af( .  

The condition (8) in Jaynes' Commentary is implied by A'~ = 0 and is, indeed, a tautology, 
or an Organizing Principle, as I called it [3, p. 1287]. It does not make reference to the data (It is 
based on E, the exact part of the data covariance matrix, not the data covariance matrix E). The 
only interest in introducing (8) is to show that all linear identification schemes (conventional and 
unconventional) are structured by this Organizing Principle. A fact that no statistician before 
has discovered. This Organizing Principle defines a set of linear schemes that is much wider than 
the set of linear identification schemes considered in conventional statistics. 
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20. The "linearity" does impose restricting conditions on the universe of all possible identification 
schemes. But while linear algebra is well defined, nonlinear algebra (whatever that may be) is 
not. So I think the scientific community will forgive us for using linear identification schemes 
for the time being. In addition, one is, of course, allowed to non-linearly transform the data, if 
the transformation is one-to-one. Linear identification is about linearity in the coefficients. The 
objective is to reduce the noise in the transformed data set. After all, the noise incorporates 
the non-linearities. Once the linear system of the transformed data is established, one can go 
directly back to the original data by reversing the one-to-one trangformation. Such one-to-one 
transformations of the raw data are what scientific observational instruments are all about. The 
creativity and technology of finding a useful one-to-one transformation of the data that reduces 
the noise, i.e., that leads to the unique determination of the system, is what drives scientific 
progress. 

The great discovery of Kalman is that there are new linear identification schemes to be discov- 
ered, i.e., new scientific instruments for the observational sciences. He opened up a new world. 
In [3], I discussed the comparative application of such a scheme, that has not been researched 
by statisticians. The Frisch scheme was researched in some detail by the mathematician E. B. 
Wilson in the 1930s. It continues to live an obscure and very limited existence in econometrics 
as in a variant of the "errors-in-variables" model, and in psychometrics as the exact equivalent 
of the common factor scheme. 

21. To call q = n - 1 a general solution, as Jaynes does, for almost all real data with large n, 
strikes me as highly arbitrary. It is the one common factor "solution" of Spearman [8], which is, 
by all standards, wrong. However, in our data case of n = 3, indeed q = 2. While the Frisch 
scheme fits equation (8), the Frisch scheme is not a projection operator, contrary to what Jaynes 
asserts, as can be checked easily using the algebraic formulas in [4]. 

One of Kalman's fundamental discoveries is that not all linear identification schemes (i.e., 
schemes that fit the system equation (5), respectively (8) in Jaynes' Commentary) are projection 
operators. The mathematical interest in the Frisch scheme derives from the fact that it not 
a projection operator, although it belongs to the set of linear identification schemes. Both the 
Least Squares and Principal Components schemes, e.g., Jaynes' "Simple Solution", are projection 
operators [4, pp. 1272 and 1277]. 

The diagonaiity of the Frisch noise matrix superimposed on the data is a prejudice par ezcel- 
fence, and "almost certainly false", as Jaynes correctly states. The Frisch prejudice, however, 
is remarkable by its explicitness. Something that cannot be said about all the other conven- 
tional statistical identification schemes, where the prejudices are often implicit and, worse, not 
acknowledged by researchers. 

22. Jaynes correctly observes that to turn the linear identification equation (8) into a well-defined 
mathematical problem, n(n + 1)/2 - q(q + 1)/2 exact conditions must be imposed on the noise 
( ~on those measurement errors", as he calls it). He also correctly states: "However this is done, 
it requires to assume a great deal of information which we do not possess; how could one ever 
justify any such assumption?" However, all existing linear identification schemes do impose such 
conditions, one way or another, prejudicially. 

23. As a general principle: if the noise is relatively small, all linear identification schemes will 
lead to the same consistent results. What if the noise levels are relatively large? Then no linear 
identification scheme can lead to conclusive results. Statisticians are so hung up on probability 
theory that they always expect to find point estimates. (This subjectivity in statistics is most 
clearly expressed in the use of terminology like "significance levels" and "degrees of confidence". 
Different fields of science appear to use different, but arbitrary, calibration levels for these notions, 
like 90%, 95% or 99% confidence). But since we cannot know if the data are stochastic, the best 
we can do is establishing absolute limits on the possible coefficient values of A. If the intervals 
between these boundaries are close together, then that is proof that the noise levels are relatively 
low and that we can be confident of our findings. For example, looking at Table 2, I am impressed 
to see how close the absolute boundaries on coefficient values of A lie together. 
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24. Jaynes states correctly, "Surely, the fundamental basis of scientific inference---almost a prin- 
ciple of morality--is that we should 

(1) take into account all the relevant information we have, of whatever type, 
(2) carefully avoid assuming information that we do not have." 

I could not agree more, but a casual reading of the statistical literature provides evidence that 
statisticians violate both rules. For example, anybody who runs only one regression using n 
variables is clearly violating rule (1), since he/she ignores most of the information available in the 
n x n data covariance matrix. This has led to extensive literature on the discussion of an artificial 
problem--the '~multicollinearity problem"--which is in fact not a problem. The collinearity of 
the data expresses in coded form the information about the system we try to identify. 

Next, rule (2) is clearly violated when one states that all empirical data are samples from 
probability distributions, or even only that all empirical data are stochastic, since, in general, we 
don't know and cannot know that. 

Contrary to Jaynes' assertion, I did not commit "egregious violations of both these rules" by 
discussing the prejudices of the available linear identification schemes, conventional or uncon- 
ventional. An  contraire, Kalman and I pride ourselves in serving science by pointing out these 
prejudices. 

25. Not unrelated to Jaynes' concern about the "morality" of scientific research, I find it dis- 
turbing that J. C. Bailar III plans to write ethics books on the Scientific Method [9, p. 5]. In 
particular since Bailar plans to base his books on the (false) tenets that 

(i) "Inference is the heart of the scientific method." The substance of our debate shows it 
isn't; 

(ii) "Statistical thinking is the heart of inference." The results of Kalman's and my articles 
make this, at least, doubtful, since simple algebra suffices; and 

(iii) "Anything that damages the process of inference is unethical." 

I must repeat a harsh truth that scientists have known since about four centuries: Scientif ic 
claims are not ethical or unethical: science is true or false. 

26. I now address a series of erroneous assertions at the end of Jaynes' commentary, which I cite 
here between quotation marks and then comment on: 

(i) "Least squares is a special case of maximum likelihood." Least squares is an algebraic 
scheme of identification that presumes the number of relations and attributes zero noise 
to a subset of the data variables, the so-called "regressors". Maximum likelihood intro- 
duces the additional (restrictive) notions of probability and even of (Gaussian) probability 
distribution within the framework of algebraic identification schemes. Within the frame- 
work of linear identification schemes, maximum likelihood can be demonstrated to be a 
very special case indeed. It produces conflicting results, as demonstrated by Solari [10], 
depending on the assumption if the signal is stochastic or not, and is impotent in identi- 
fication, as demonstrated by Kalman [5;2, Lecture ?]. 

(ii) "One may have highly cogent prior information about the likely linear relations." "Sto- 
chastic information" is no information, but a subjective guess. I agree that if one has 
exact prior information, like the existence of identities between variables, one should use 
this information by eliminating as much as possible of the noise in the data set. But in 
the observational sciences, we seldom have such priceless information. 

(iii) "We need some algorithm to update our estimated relations when new data become avail- 
able", when one has a sequence of data sets. One does not "update relations", i.e., update 
systems. One updates forecasts. If one has a sequence of data sets, one should apply 
the windowing approach and analyze each data set as if it were a stand-alone set. If all 
sets produce the same results one has found something to publish in a scientific journal: 
the data sets are homogeneous and the system shows integrity. If a particular data set is 
isomorph to a different system, i.e., a different q, the conclusion is that the system has no 
integrity. 

A Kalman filter can be interpreted as a sequential Least Squares estimator. Therefore 
one has to know the system, i.e. q for it. One knows q in most engineering situations, but 
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(iv) 

(v) 

not in most observational sciences. In those sciences one has to determine the system, i.e., 
q first, before one can apply the Kalman filter to sequentially update the exact X. This 
is precisely the problem we have been discussing here. Kalman started this research into 
the identification of linear systems from empirical data ten years ago, because he became 
concerned about the abuse of his filter in the observational sciences. 
~rhe real problem may have "nuisance parameters" of no interest to us." The problem 
of parametrization is trivial. Linear identification results in "reduced form" systems, that 
can be parametrized, i.e., "interpreted" in expert language, in an infinite number of ways 
[11, p. 280]; by changing, for example, the units of measurement. But q remalnA invariant 
under all these transformations. The concept of "nuisance parameters" is therefore just 
that: a nuisance that the modeler invents to annoy himself. 
"One needs also a way to judge the relative merits of different models, in the light of the 
data, so that cumulative improvements can take place over long time." For one particular 
data set there exist only one particular model with one particular q. That is what science 
is all about: the uniqueness of the model to be identified. The story of the discovery of the 
structure of the DNA molecule by J. D. Watson and F. H. C. Crick is an example. There 
was no cumulative improvement of models. There was a unique geometric constellation of 
atomic elements that fitted the observations. When Watson and Crick found the correct 
double-helix structure, it was immediately obvious to all involved in the research that it 
was true. No additional data were required. 

There can be uncertainty about the actual coefficient values of a linear system, because 
of the noise in the data, but not about q, the minimum number of linear relationships 
minimally describing the data. '~Improvement" only occurs, when new data show less 
noise and the same system. If additional data show different q's, there is heterogeneity 
of data: the systems describing the different data do not show integrity and no scientific 
progress is guaranteed. 

REFERENCES 

1. P.. F~rlsch, StatisticAl confluence analysis by means of complete regression systems, Publication No. 5, Uni- 
varsity of Oslo Economic Institute, Oslo, Norway, (1934). 

2. ILE. Kalmsn, Nine L e c ~ l  on Idea~i.?i¢~tion, Springe~Verl~, New Yc~k, (19@2) (to appear). 
3. C.A. L~ ,  Ide~tillcstion of a linear system from inexact data: a three-variable example, Comp1,|ers Ma~h. 

Applie. x7 (s-9), 12ss--1so4 (19s9). 
4. C.A. Los, The lxejudices of least squares, principal components and ~omm~ fac t~  schemes, CompwterJ 

Math. Applic. 1Y (8-9), 1269-1283 (1989). 
5. RE.  Kalman, A theory for the id~n~t_.~ficatinn of linear relations, In Frontiers i# P~re and Applied Mathe- 

matics (Edited by R. Dautray), pages 117-132, North-Holland, Amsterdam, (1991). 
6. A. Zellner, A~ l#trod~etion to Bayesian Inference in Econometrics, Wiley, New York, (1971). 
7. E.B. Wilson, Book review of C ~  in the mind of man: A study of differ~tiable mental abilities 

(Edited by T.L. Kelly), J. Gen. PJ~chol. 2, 153--169 (1929). 
8. C. Spearman, General intelligence, objectively determined and measured, Am. J. PR1eltol. 15, 201-293 

(1904). 
9. John G. Ballar III  becomes MacArthur fellow, Editorial in Am~t~t News, page 5 (November, 1990). 

10. M.E. Sob~, The amaximum likelihood solution" of the problem of estimating a linear functional relationship, 
J. RoTs/St6t. $0e., Series B 31,372-375 (1969). 

11. P.J. Dhrymes, Introd~eto~ Econometrics, Springer-Verlag, New York, (1978). 


