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ABSTRACT 

This expository article describes work which has been done on various problems 
involving infinite graphs, mentioning also a few unsolved problems or suggestions for 
future investigation. 

1. INTRODUCTION 

This is an expository article which originated as mimeographed notes 
issued in connection with a lecture given in 1966 at the N.A.T.O. 
Conference on Contemporary Methods of Discrete Mathematics directed 
by Professor F. Harary and Dr. B. Roy. The aim of this article is to 
survey a selection of topics in the theory of infinite graphs, an area of 
graph theory which perhaps receives at the present time less attention 
than it might deserve. 

2. DEFINITIONS AND NOTATION 

The set of vertices of  a graph G will be denoted by V(G) and its set 
of edges will be denoted by E(G).  G is f in i te  if I V(G) u E(G)[ is finite, 
enumerable if  [ V(G) w E(G)I -- ~0, countable if it is finite or enumerable, 
and locally f in i te  if the degree of every vertex is finite (i.e. if each vertex 
is incident with only finitely many edges). 

A walk  in G is a finite, one-way infinite or two-way infinite sequence of 
one of the forms 

vo , e l ,  Vl , e~ , v~ , e8 ..... en , vn ( f in i te  walk) 

or vo , e l ,  vj , e~ , v~ , e8 .... (one-way infinite walk) 

o r  . . . , e _  2 , v _ ~ , e _  1 , v _ J , e  o , v  o ,  e l ,  v j , e  2, . . .  

( two-way  infinite walk) 
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where the v~ are vertices of G and each e~ is an edge joining the vertices 
immediately preceding and following it in the sequence. 

A walk is a trail if no edge appears more than once in it, and is a path 
if no vertex appears more than once. A finite walk is closed if  its first 
and last terms are the same. A closed walk with more than one term in 
which there are no repetitions apart from the first and last terms being 
the same is a circuit. A trail in G is Eulerian if every vertex and edge of G 
appears in it. A path or circuit in G is Hamiltonian if every vertex of G 
appears in it. A set of trails in G constitute a decomposition of G if every 
vertex of G appears in at least one of  them and every edge of G appears 
in exactly one of them (so that the trails subdivide E(G) into disjoint 
subsets). 

Two vertices of  a graph are adjacent if they are joined by an edge. 

3. GENERAL OBSERVATIONS 

It may be 
four layers: 

(I) the 

(II) the 

(III) the 

(IV) the 

convenient to think of graph theory as being divided into 

theory of finite graphs, 

theory of locally finite graphs, 

theory of countable (not necessarily locally finite) graphs, 

theory of graphs with no restrictions on cardinality. 

The theory of infinite graphs appears at present to be in an even more 
incomplete state than the theory of finite graphs, in the sense that some 
of the work which has been done for finite graphs has either not been 
extended to infinite graphs or been extended only to some infinite graphs, 
e.g., locally finite ones. Of course, there are some problems in the theory 
of finite graphs (e.g., certain enumerative problems) which may not in 
any reasonable sense raise corresponding questions concerning infinite 
graphs. Other cases in which work done for finite graphs has not been 
extended to infinite graphs may be due either to difficulties involved in 
so extending it or to the fact that those concerned have (as is entirely 
permissible) no particular interest in extending their work to infinite 
graphs. 

The degree of additional difficulty involved when we try to extend work 
done for finite graphs to infinite graphs varies from one problem to 
another. Extension to enumerable graphs is usually easiest when it can 
be done by means of K6nig's "Unendlichkeitslemma" [13, Chapter VI]. 
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Let $1, Sz ,  S 3 .... be an infinite sequence o f  disjoint non-empty finite sets 
and ~, be a relation in Sx u $2 u ... such that 

whenever n is a positive integer and x E Sn+l , f (1) 
there exists a y ~ Sn such that y ~ x. 

Then there exists an infinite sequence Xl ,  x~, x3 , . .  such that x~ ~ S,  
(n = 1, 2,...) andx~ ~ x~ ~ x3 ~ ",'. (The proof is quite an easy exercise.) 

ILLUSTRATIVE APPLICATION. Let k be a positive integer and G be an 
enumerable graph. I f  every finite subgraph of  G is k-colorable, then so is G. 
(We call G k-colorable if its vertices can be colored using at most k colors 
so that no two adjacent vertices have the same color.) 

PROOF: Write G = G 1 u G ~ u G 3 L ) " "  where G1,Ge .... are finite 
subgraphs and G1 C G2 C .... Let C1, C2 ..... Q be k colors, and let Sn 
be the set of all colorings of the vertices of Gn using some or all of C~ ..... Ck 
in which no two adjacent vertices of G~ have the same color. For xi ~ Si ,  
xj e Sj ,  we define " x / ~  xs" to mean that i ~< j and the coloring x~ of Gj. 
induces (in the obvious sense) the coloring xi of G~. Since every coloring 
in S~+I induces a coloring in S~, condition (1) of K~Snig's lemma is satisfied 
and we may conclude that there exist colorings Xl, x~ .... belonging to 
$1, Sz .... respectively such that xl ~ x~ ~ xa -< ""; and obviously these 
colorings may be combined to give an admissible k-coloring of G. 

From this discussion, we can, for instance, deduce the theorem that 
every enumerable planar graph is 5-colorable from the corresponding 
theorem concerning finite planar graphs: for, if G is an enumerable planar 
graph, every finite subgraph of G is once again planar, and therefore 
5-colorable, and therefore G is 5-colorable. 

The following theorem, which is Lemma 1 of [30] and Theorem 7.1.3 
of [27], can be used to prove that a general (not necessarily enumerable) 
infinite graph is k-colorable if all its finite subgraphs are k-colorable, 
k being a positive integer. 

THEOREM A. Let  Y, Z be sets and let J r  denote the class o f  all finite 
subsets o f  Y. For each A ~ J r  let fA be a function f rom A into Z and, for  
each y ~ Y, let the set {f,4(y) : y ~ A ~ Jr} be finite. Then there exists a 
function f :  Y - +  Z such that, for  every A ~ J r ,  there exists a B E J r  such 
that A C B and f [  A = f s  t A. 

(The notation f [  A indicates the function g : A  ~ Z such that 
g(y)  = f ( y )  for every y e A, and fB I A is similarly defined.) 

To prove that an infinite (not necessarily enumerable) graph G is 
k-colorable if all its finite subgraphs are k-colorable let the set Y of  
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Theorem A be V(G) and let Z----{C1 ..... Ck} be a set of  k colors. I f  
A ~ ~ r ,  the k-colorability of  every finite subgraph of G ensures that we 
can select a function f a  : A ~ Z such that no two elements of A which 
are adjacent in G have the same image under fA .  Assuming the Axiom 
of Choice we thus select an fA for every A e ~ r ,  and it is then not hard 
to see that a function f :  Y ~ Z satisfying the condition of Theorem A 
gives a coloring of G using at most the colors C1 .... , Ck such that no 
two adjacent vertices of G receive the same color. This theorem concerning 
k-colorability of infinite graphs was first established by ErdSs and 
de Bruijn in [7]. 

Theorem A is useful, in suitable cases, for extending known theorems 
concerning finite graphs to infinite graphs which are not necessarily 
enumerable, as the foregoing discussion may suggest. 

4. SUBTREES AND SUBFORESTS 

A graph is a forest if each of its components is a tree. A subtree 
(subforest) of a graph G is a subgraph of G which is a tree (forest), and a 
spanning subtree (spanning subforest) of G is a subtree (subforest) of G 
which includes all the vertices of  G. 

THEOREM B. Let G be a graph and k be a positive integer. Then G is 
the union of  k subforests i f  and only if, for every non-empty finite subset X 
of  V(G), the number of  edges of  G which have both end-vertices in X is 
less than or equal to k(l X [ -- 1). 

A proof  of  Theorem B for finite graphs was given in [22], and the truth 
of the theorem for enumerable graphs can be deduced from its truth for 
finite graphs precisely as in the proof  of the 5-color theorem for enumerable 
planar graphs in Section 3. However, this is a case in which we need 
not confine ourselves to finite and enumerable graphs. Using Theorem A, 
one can show that G is the union of k subforests if each of its finite 
subgraphs is the union of k subforests (k being still finite): the proof  
follows much the same lines as that of  Erd6s and de Bruijn's theorem 
in Section 3, but Y has now to be taken to be E(G). This makes it easy 
to deduce the truth of  Theorem B for general infinite graphs f rom its 
truth for finite graphs. 

In the theory of finite graphs, the following theorem of Tutte [42, 19] 
is closely related to Theorem B (indeed Theorem B for finite graphs and 
Theorem C are contained as special cases in a single more general 
theorem). 
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THEOREM C. Let G be a finite graph and k be a positive integer. Then 
G has k edge-disjoint spanning subtrees if and only if, for every partition 
of V(G), the number of edges of  G which join vertices in different members 
of ~3 is greater than or equal to k(I ~3 ] - -1) .  

(By a partition of V(G), we mean a set of disjoint non-empty subsets 
of V(G) whose union is V(G).) 

There would seem to be a very good chance that the following extension 
of Theorem C to countable graphs may be true: 

CONJECTURE A. Let G be a countable graph and k be a positive integer. 
Then G has k edge-disjoint spanning subtrees i f  and only if, for every finite 
partition ~3 of V(G), the number of edges of G which join vertices in different 
members of ~ is greater than or equal to k([ ~3 [ -- 1). 

However, if we tried to prove this straightforwardly by using KSnig's 
lemma as in the proof of the 5-color theorem for enumerable planar 
graphs in Section 3, we should encounter the following two stumbling 
blocks: 

(i) It is not true that, if G satisfies the above condition involving 
partitions of V(G), then so does every finite subgraph of G. (In Section 3, 
it was true that every finite subgraph of an enumerable planar graph was 
planar.) 

(ii) It is not true that, if Gn C Gn+l, a set of k edge-disjoint spanning 
subtrees of G~+I "induces" a set of k edge-disjoint spanning subtrees of G, 
(so that it is not clear how we can satisfy Condition (1) of K~Snig's lemma). 

As far as I am aware, Conjecture A remains unsettled at the present 
time. It might, however, be worth mentioning that the theory of matroids 
has recently proved very helpful in throwing additional light, as far as 
finite graphs are concerned, on Theorems B and C [3, 4, 5, 26], and some 
approach on these lines might be a good way o f  attempting to prove 
Conjecture A. 

A slightly different extension of Theorem C to locally finite graphs was, 
however, obtained by Tutte [42]. Let ~(F) denote the set of components 
of a graph F. Define a spanning semisubtree of a graph G to be a spanning 
subforest F of G such that, for every non-empty proper subset ~ of  ~(F), 
infinitely many edges of G have one end-vertex in a member of ~ and 
the other in a member of ~(F) -- ~. Evidently a spanning semisubtree 
of a finite graph is the same thing as a spanning subtree of the graph. 
Tutte proved 

THEOREM D. Let G be a locally finite graph and k be a positive integer. 
Then G has k edge-disjoint spanning semisubtrees if and only if, for every 
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finite partition ~ of V(G), the number of  edges of  G which join vertices 
belonging to different members of ~3 is greater than or equal to k(I ~ I -- 1). 

Once again, if one tries to deduce Theorem D from Theorem C by 
applying KOnig's lemma precisely as in Section 3, one runs into difficulties 
of the kind already observed: nevertheless, Tutte's proof  consisted 
essentially in applying K6nig's lemma in a somewhat different way. 
Thus Theorem D illustrates two general points regarding the theory of 
infinite graphs: 

(i) even where K6nig's lemma cannot be applied quite as straight- 
forwardly as in Section 3, it may sometimes happen that KOnig's lemma 
plus a little ingenuity will extend a theorem from finite to countable graphs; 

(ii) there may be more than one generalization to infinite graphs of 
a given theorem concerning finite graphs. (Both Conjecture A and 
Theorem D reduce to Theorem C when applied to finite graphs.) 

The second of these points will be illustrated again by our discussion 
of Menger's Theorem in Section 5. 

As far as I am aware, no extension of  Theorem C to uncountable 
graphs, or of Theorem B or Theorem C to infinite values of  k, has been 
published. (For countable graphs and k = ~to, Theorem B extends 
trivially.) 

Added in Proof I understand that Professors P. ErdOs and A. Hajnal 
have recently obtained a necessary and sufficient condition for a graph to 
be the union of k subforests when k is infinite. 

5. MENGER'S THEOREM 

If A, B are disjoint subsets of V(G), an AB-walk is a walk starting at a 
vertex in A and ending at a vertex in B, and a set S of vertices or edges 
of G will be said to separate A from B if every AB-walk includes an element 
of S. 

STATEMENT OF MENGER'S THEOREM. Let G be a finite graph, k be a 
positive integer and A, B be disjoint subsets of V(G). Then there exists a 
set of k disjoint AB-paths in G if and only if no set of less than k vertices 
separates A from B. 

To extend this theorem to infinite graphs and to infinite values of k is 
(as is well known) not difficult. However, Erd/Ss [37, p. 159] has observed 
that Menger's Theorem can be restated in a different form. For, if G is 
finite and A, B are disjoint subsets of V(G), we can select a subset X 
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of V(G) such that X separates A from B but n o  set of less than I X I 
vertices of G does so. Then, according to Menger's Theorem, there exists 
a set of I X I disjoint AB-paths, and obviously each vertex in X must lie 
on exactly one of these paths. Thus we arrive at the following 

RESTATEMENT OF MENGER'S THEOREM. Let G be finite and A, B be 
disjoint subsets of  V(G). Then there exists a subset X of V(G) which 
separates A from B and a set of  disjoint AB-paths such that each vertex 
in X lies on exactly one of these paths. 

Erd~s has suggested the problem of  determining whether this version 
of Menger's Theorem extends to infinite graphs. I personally would predict 
that this problem should not be excessively difficult to settle. 

A question of a somewhat similar type was asked by Dirac [37, pp. 158- 
159]. Let A, B be disjoint subsets of V(G) and k be an infinite cardinal 
number such that no set of less than k edges of G separates A from B. 
It is well known tha t  in these circumstances there exists a set of k 
edge-disjoint AB-paths, and Dirac asked whether these paths can always 
be so chosen that, whenever two of them have vertices in common, 
these vertices occur in the same order on each path. That this is true 
when k is finite is easily seen from Theorem C of [1]. However, in a 
lecture at the 1966 Colloquium on Graph Theory organized by the 
Bolyai Jfinos Mathematical Society of  Hungary, B. Zelinka announced 
a proof that, perhaps somewhat unexpectedly, the answer to Dirac's 
question concerning infinite values of k is in the negative, (The proceedings 
of this Colloquium are scheduled to be published in due course,) 

It should be added that a theorem similar to Menger's concerning 
one-way infinite paths in a locally finite graph appears in [8]; and various 
related matters are dealt with in other papers by the same author. 

o 

0 . . . . . . .  6 
FIGURE I 
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6. FACTORS 

A 1-factor (or perfect matching) of G is a subset F of  E(G) such that 
each vertex of G is incident with exactly one edge in F. (In Figure 1, the 
edges indicated by broken lines constitute a 1-factor of  the graph.) 
Tutte [38] proved 

THEOREM E. A finite graph G has a 1-factor i f  and only if, for every 
subset S of V(G), the number of components of G -- S which have an odd 
number of vertices is less than or equal to ] S I. 

(G --  S denotes the graph obtained f rom G by deleting all vertices in S 
and all edges incident with them.) 

I f  we try to extend this theorem to countable graphs by applying 
K~Snig's lemma simple-mindedly as in Section 3, we run into the same kind 
of difficulties as are encountered in extending Theorem C; but this is 
another case in which K6nig's lemma plus a little ingenuity achieves an 
extension of the theorem. In fact, Tutte [39] proved by this method 

THEOREM F. A locally finite graph G has a 1-factor i f  and only iJ; 
for every finite subset S of V(G), the number of components of  G -- S which 
have an odd finite number of vertices is less than or equal to I S 1. 

It  does not appear to be known whether anything at all closely related 
to Tutte 's condition is necessary and sufficient for the existence of a 
1-factor in a graph which is not locally finite. Although Kaluza [ll]  
gives a condition on a general finite or infinite graph which is equivalent 
to its possessing a 1-factor, this condition is of  an entirely different kind 
from Tutte's. 

I f f  is a cardinal-number-valued function on the vertices of  a graph G, 
an f-factor of G is a subset F of E(G) such that every v E V(G) is incident 
with exactly f(v) elements of F. Tutte has established a necessary and 
sufficient condition on G, f for G to possess an f-factor, provided that G 
is locally finite. His first proof  [40] was a complicated one based on the 
use of "alternating paths," but subsequently [41] he noticed that a locally 
finite graph G has an f-factor if and only if a graph l"(G,f)  constructed 
from G and f in a certain manner has a 1-factor, and he used this to give 
a short proof  of the f-factor theorem for locally finite graphs. (In fact, 
Tutte confines attention to finite graphs in [41]; but his argument with 
very minor adjustments appears to work for infinite locally finite graphs 
as well.) Nothing much appears to be known ~about f-factors in graphs 
which are not locally finite: one  can only observe that, in the case in 
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which f (v)  is finite for every vertex v of the graph, this problem can be 
reduced to a 1-factor problem by a slight variant of Tutte's construction 
of/'(G,f). 

7. INFINITE TREES 

A very difficult unsolved problem in graph theory is to prove or disprove 

KELLY'S CONJECTURE. If G, G' are graphs with at least three vertices 
and there exists a one-to-one function r f rom V(G) onto V(G') such that 
G -- v is isomorphic to G' 6(v) for  every v E V(G), then G is isomorphic 
to G'. 

(G v denotes the graph obtained from G by deleting v and all edges 
incident with it.) 

Kelly [12] proved this for finite trees. It might be interesting to try to 
prove it for infinite trees. Kelly's proof  for finite trees depends heavily 
on having some notion of the "center" of a finite tree, and, since this 
notion does not apply to infinite trees, it seems likely that some quite 
different technique of proof  might have to be devised. 

Kruskal [14] proved that, if T1, T2 .... is an infinite sequence of finite 
trees, then there exist i and j such that i < j and T, is homeomorphic 
to a subtree of T~. (A subsequent but independent proof  of this result 
was obtained by Tarkowski and briefly announced in [36].) The proofs 
discovered by Kruskal and Tarkowski were complicated ones, but a 
shorter proof was given by the present author in [21]. Finally, the theorem 
was extended to infinite trees in [23], by a very lengthy and complicated 
argument. However, it seems worth noting that, in the case of this 
particular problem, it is the passage from finite to infinite trees which is 
mainly responsible for the increase in difficulty, and the degree of this 
difficulty does not seem to be very much reduced by restricting attention 
to enumerable, or to locally finite, infinite trees. This may be contrasted 
with the situation in the next problem, which is very easy for countable 
graphs but undergoes a sharp rise in difficulty when uncountable graphs 
are considered. 

8. TRAIL AND PATH PROBLEMS 

In considering various problems about trails in infinite graphs, the 
problem strongly suggests itself of characterizing those graphs which are 
decomposable into dosed trails (in the sense defined in Section 2). I t i s  
easy to "conjecture what the answer might be. For  each X C V(G), the 
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set of those edges of G which join vertices in X to vertices in V(G) - -  X 

is called a cincture of G. The order of this cincture is the number of  edges 
in it, and a cincture of odd finite order is an odd cincture. Since a closed 
trail crosses over between any subset .Y of V(G) and the complementary 
subset V(G) - -  X an even number  of times, it includes an even number 
of the edges in any cincture of  G, and thus, if G is decomposable into 
closed trails, every cincture of  G can be partitioned into finite subsets 
of even order and so G has no odd cincture. This suggests the conjecture 
that a graph is decomposable into closed trails i f  and only i f  it has no 
odd cincture. What  remains to be proved is that, if G has no odd cincture, 
then it is decomposable into closed trails. I f  [ E(G~] is finite, this turns 
out to be an immediate consequence of t h e  classical and elementary 
Euler trail theorem [13, Chapter II]. I f  [ E(G)[ = 1r the proof  is very 
easy. For it is easy to show that, in a graph with no odd cincture, every 
edge belongs to at least one closed trail. Thus we  can certainly select a 
closed trail C1 in G. Since G has no odd cincture and C a includes an 
even number of  the edges in each cincture of G, it follows that G --  E(C1) 

(the graph obtained by deleting from G the edges in C1) also has no odd 
cincture. Repeating the argument, we can select a closed trail C2 in 
G --  E(C1) and then a closed trail Ca in G - -  E ( C x )  - -  E(C2) and so forth. 
I f  we enumerate the edges of  G as A1, )~2 .... and impose on our choices 
the additional condition that Cn must include As whenever An is not 
already in one of C 1 ..... C ,_I ,  it is easy to see how we get a decomposition 
of G into closed trails. 

The difficulty in the case [ E(G)[ ~ n 0 can perhaps be indicated by 
considering what would happen if we tried to carry out a procedure like 
the above by choosing a transfinite sequence 

C1, C2, C3 ..... Coj, C~a+l , Cr . . . . .  Coj$ ,... 

of  closed trails f rom G. There is no difficulty about choosing the C, 
(n < r but, once we have chosen all  of these, we might find that the 
graph 

- U E(C.) 
n<r 

with which we are left has an odd cincture (and so is not decomposable 
into closed trails), since, although each C, (n < w) uses up an even 
number of  the edges in each cincture of G, there might be a cincture of 
infinite order in G from which the Cn (n < o~) have between them extracted 
an infinite number of  edges leaving an odd finite number behind. A 
solution of this problem for the case ] E(G)[ > ~r has in fact been obtained 
[17]; but, in view of the difficulties just mentioned, it is a much more 
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complicated argument involving a careful examination of the structure 
of the graph. (An analogous theorem characterizing those directed graphs 
which are decomposable into closed directed trails can be proved in a 
similar manner.) It is thought that techniques like those used in this 
argument of [17] might prove useful in solving various other problems 
concerning uncountable graphs: conceivably, even, one might be able to 
arrive in this way at some sort of "master theorem" which simultaneously 
extends a whole class of theorems from countable to uncountable graphs. 

Necessary and sufficient conditions for a finite graph to have an Eulerian 
trail are well known and easily proved: this is one of the oldest theorems 
of graph theory. The corresponding problem for infinite graphs is a 
little more difficult and complicated, but was solved in 1936 by Erd~Ss, 
Gallai, and V~izsonyi (see [6]). They established 

(i) necessary and sufficient conditions for an enumerable graph to 
possess a one-way infinite Eulerian trail and 

(ii) necessary and sufficient conditions for an enumerable graph to 
possess a two-way infinite Eulerian trail. 

To illustrate the ideas involved, let us look briefly at (ii). It is perhaps 
illuminating to embed this in the following more general problem: if k 
is a positive integer, what are necessary and sufficient conditions for a 
graph to be decomposable into k but not fewer two-way infinite trails ? 
(If we answer this question, our answer when k = 1 will solve (ii).) To 
this end, let us call a graph Eulerian if it has no vertices of odd degree 
(i.e., if the degree of every vertex is even or infinite). Let us call a graph G 
l-limited (where l is a non-negative integer) if G is the union of l disjoint 
infinite subgraphs and a finite subgraph and is not the union of l q- 1 
disjoint infinite subgraphs and a finite subgraph. Call G limited if it is 
/-limited for some non-negative integer l. An/-limited graph looks rather 
like something with l infinite "wings" branching out of a finite "center": 
Figure 2 attempts to illustrate this symbolically for l = 5. Moreover a 
"wing" /4 /of  a limited Eulerian graph can be classified as even or odd 
according to whether we sever an even or odd number of edges when 
we make a slash across the graph which, roughly speaking, separates I4/ 
from the rest of the graph (as indicated by the broken line in Figure 2). 
If k is a positive integer, a graph G is decomposable into k but not fewer 
two-way infinite trails if and only if G is enumerable, Eulerian, and 
limited and has no finite component and �89 + we = k,  where wo denotes 
the number of odd wings of  G and we denotes the number of even wings. 
A precise statement and a proof  of this theorem are given in [20]. 

An analogous result for directed graphs is stated in [24], which also 
contains a treatment of the Euler trail problem for infinite directed 
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FIGURE 2 

graphs. Attention may also be drawn to [32], which treats some further 
problems concerning decomposition of infinite graphs into trails. 

Relatively little is known about the very difficult problem of character- 
izing finite graphs which possess Hamiltonian paths or circuits or infinite 
graphs which possess one-way infinite or two-way infinite Hamiltonian 
paths. One particular case may be worth mentioning. Define the 
n-dimensional lattice-graph Ln to be a graph whose vertices are the integer 
points of Euclidean n-dimensional space and in which two of these vertices 
are adjacent if and only i f  the Euclidean distance between them is 1, 
each pair of 'adjacent vertices being joined by one edge only, If  n ~> 2, 
a simple but ingenious argument of V~izSonyi [43, 16], involving induction 
on n, shows that L,~ has both a one-way infinite and a two-way infinite 
Hamiltonian path, A more complicated problem is to prove that Ln is 
decomposable into n two-way infinite Hamiltonian paths of itself: this 
was proved by Ringel [31] for the case where n is a power of 2 and by 
the author [18] for general values of n. 

V~izsonyi [43] also proved that, for n ~ 2, the vertices of  Ln can be 
traced out in both a one-way infinite and a two-way infinite sequence 
of knight's moves so that (in each case) each vertex is visited once  and 
only once. The author [16] generalized this result by showing that a knight 

582]3/3-7 
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can for the purposes of this theorem be replaced by any "chess piece" 
whose set of allowable moves satisfies the following two conditions: 

(i) every vertex of L ,  can be reached from the origin in a finite sequence 
of moves by the piece, 

(ii) whenever v is an allowable move of the piece, so is --v. (We are 
here representing moves by vectors in an obvious way,) 

The proof  of this theorem is not unduly difficult, since it depends 
essentially on elementary properties of Abelian groups. (V(L,~) can, after 
all, be regarded as a free Abelian group of  rank n.) The question of what 
happens when we drop condition (ii) appears to be much more difficult, 
and I have not made any significant progress with it. 

A theorem of P6sa [29, 25] concerning Hamiltonian circuits in finite 
graphs suggests by analogy that  it might be interesting (although perhaps 
difficult) to attempt to determine whether a locally finite l-limited graph 
in which no edge'joins a vertex to itself and no two edges join the same 
pair of vertices must necessarily have a one-way and/or a two-way infinite 
Hamiltonian path if, for every positive integer k, the number of vertices 
of the graph with degree ~<k is less than k (or if some such condition 
on the degrees of the vertices is satisfied). Mention may also b e  made 
of the work of Sekanina [33, 34] concerning the problem: if k is an integer 
~ 3 ,  which infinite graphs have the property that their vertices can be 
arranged (without repetitions) in an infinite sequence such that the 
distance between successive vertices in the sequence is always ~<k? 

9. INFINITE GRAPHS AND PROBABILITY THEORY 

Some interesting probabilistic questions arise i n  connection with 
infinite graphs. For instance, suppose that G is a locally finite connected 
graph: Let a particle start at a vertex v and perform an infinite sequence 
o f  steps, each step being from a vertex to an adjacent one. On the first 
step; the particle moves with equal probability to any of  the vertices 
adjacent to v. If  the vertex to which j t  in fact moves is v', then the next 
step takes it with equal probability to any of the vertices adjacent to v'; 
and so for th .  Let p(v, G) denote the probability that the particle revisits v 
at .some time during its motion. It is an easy exercise to show that either 
p(v, G) = 1 for every v ~ V(G) or p(v, G) < 1 for every v ~ V(G): in the 
former case, we call G recurrent. P61ya [28] proved that Ln is recurrent 
for n = 1, 2 and non-recurrent for n ~> 3. This suggests the problem of 
distinguishing in general between recurrent and non-recurrent locally 
finite connected graphs. Intuition (reinforced by P61ya's result) suggests 
that a graph is likely to be recurrent if and only if "it does not widen out 
too rapidly as it goes o f f  to infinity," and, in [15], this idea is embodied 
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in a precise theorem. It might  be interesting to find some extension of 
this theorem to the more general problem of a particle moving in a 
locally finite connected directed graph in which the number of outgoing 
edges from any vertex is equal to the number of edges incoming to that 
vertex, the particle performing a random walk as before except that, 
when it is at any vertex, its next step takes it with equal probability along 
any of the outgoing edges from that vertex. However, I have been unable 
to make any progress toward such a generalization of the theorem of [15]. 

As a second example, let G be a countable graph and f be a function 
from E(G) into the closed interval [0, 1]. Imagine each edge of G to be 
a light controlled by an electric circuit so that, when a switch is depressed, 
all the edges of G shouM light up. However, since all the circuits are 
defective, any edge e in fact only lights up with probability f(e). Since 
the edges are all on independent circuits, the lighting up or not lighting 
up of some edges does not in any way affect the probabilities of other 
edges lighting up. In these circumstances, one may consider the probability 
that the subgraph S formed by the edges which light up (and their end- 
vertices) has an infinite component. According to the zero-one law 
[2~ p. 102], this probability must be 0 or 1, and this suggests the problem 
of distinguishing between those pairs (G, f )  for which the probability is 0 
and those for which it is 1. Once again, one would intuitively expect the 
probability to be zero if and only if G (with each edge e weighted in 
some way according to the value off(e))  "does not widen out too quickly 
as it goes off to infinity." However, it appears to be extremely difficult 
to embody this idea in any general theorem, and even special cases of 
the problem appear to present severe difficulty. For  instance, if we 
consider the special case in which f(e) -- p for every e ~ E(G), then there 
will be a P0 ~ [0, 1 ] such that probability of S having an infinite component 
is 1 whenever p > P0 and 0 whenever p < P0 (G being for the present 
fixed). We call P0 the critical probability for the graph G. The critical 
probability for L2 is of some interest to applied mathematicians, and 
some years ago it was conjectured to be �89 Hammersley [9] proved that 
this critical probability is ~<0.646790 and Harris [10] proved that it is 
>~�89 The exact evaluation of this critical probability remained apparently 
very intractable for some while, and although a mathematically non- 
rigorous argument in [35] arrives at the value �89 for the critical probability 
for L~ (and also at values for the critical probabilities for certain other 
graphs forming regular patterns in the plane), I understand that this 
result has still not been proved in the mathematical sense. 1 There is a 

1 I canno t  claim expert  familiari ty with this topic, and  have  based  some  of  these 
observat ions  on  discussions with Mr.  J. M. Hammers l ey  and  a communica t ion  f rom 
Dr. M. F. Sykes, for both of which I am indebted. 
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fairly extensive literature on critical probability problems of this type, 
and we do not attempt to give a full bibliography here. 
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