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1. Introduction

Various polynomial systems {r(x)};;_, are associated with n by n Hessenberg matrices H via

ro(x) = Ag, Tk(X) = Agr1...Adet(xI — Hgxr), k=1,...,n. (1.1)
The relation (1.1) establishes a bijection [5] if Ay = 1/hk+1k and Ao, A, are two given parameters:
{rc®)}izo <— {H, X0, An} (1.2)

1.1. From Hessenberg to five-diagonal matrices. Two examples

It is widely known that Szeg6 polynomials {qﬁff (%) }§_o orthogonal on the unit circle are connected
via (1.1) to a certain (almost!) unitary Hessenberg matrix

—pg P1 —Pffl*tmz —,067*&1,&2,03 tee —/Oékl*huzm' **Mn—1Pn
"1 —P102 —P1 K203 s —P1H2M43" - - HUn—1Pn
M=| 0O M2 —P5P3 e —P3M3Hn-1Pn | (1.3)
0 c 0 Mn—1 —Pn_1Pn

where py, are reflection coefficients® and (1;, are complementary parameters. The details on this relation
can be found in [23,25,4,34,2,10,29,27,3,28]. Matrix M has rather dense structure in comparison with
the tridiagonal Jacobi matrix [1,11,22] for orthogonal polynomials on the real line. However, the bijec-
tion (1.2) implies that for a given system of Szeg6 polynomials there are no matrices other than M. The
situation is much different if we do not restrict the matrix to the class of strictly upper Hessenberg
matrices.

It was found first by Kimura [24] and independently by Cantero et al. [ 13-15] that Szegd polynomials
are also related via (1.1) (with Ay = 1/u) to the following five-diagonal “CMV matrix”:

—PoP1 PO 0
—[1p2  —pIP2  —H203  H2M3
M2 PT2  —P3p3 P33 0
K= 0 —[304  —pP3P4  —HapPs  [Lalds . (1.4)

M3 4 P34 —pips  pPiis O

The initials CMV honor the paper [13] that triggered deep interest in the orthogonal polynomials
community. This matrix is reputed to be better than unitary Hessenberg in studying properties of
polynomials orthogonal on the unit circle (mostly because of its banded structure).

Shortly after the discovery of the CMV matrix it was noticed that this is not the only example of its
kind. Consider the companion matrix

—ap —a2 - —0p—1  —Op
1 0 0 0

c=]| 0 1 0 0 1. (1.5)
0 0 1 0

Characteristic polynomials py(x) of its leading submatrices are so-called Horner polynomials. It was
shown by Fiedler [35] that the five-diagonal matrix

1 Throughout the paper, matrices referred to as unitary Hessenberg are almost unitary, differing from unitary in the length of
the last column. Specifically, M = UD for a unitary matrix U and diagonal matrix D = diag{1, ..., 1, pn}-
2 Reflection coefficients are also known in various contexts as Schur parameters [30] and Verblunsky coefficients [31].
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—ap —ay 1
1 0 0 0
0 —da3 0 —day4 1
F= 1 0 0 0 0 (1.6)
0 —as 0 —dg 1

is also related to the same set of Horner polynomials.
1.2. Quasi-separable approach. Twist transformation

In a recent paper we used the theory of quasi-separable matrices to derive a number of new results
on five-diagonal matrices. In particular, we gave a unified proof of the fact that CMV and Fiedler
matrices share systems of characteristic polynomials with unitary Hessenberg and companion matrices
correspondingly. Let us outline the idea of the proof.

Following [17,19] we define the class of (1, 1)-qs matrices:

Definition 1.1 (Generator definition of (1,1)-qs matrices). A matrix A is called (1, 1)-gs if it can be
represented in the form

r dy gihy gi1bah3 e e giby ... bp_1hy7]
P2q1 d &h3 e e &bz ... .by_1hy
P3a2q1 D342 ds e e g3bs ... by_1hy
. . : : dn—1 8n—1hn
LPnGn—1...02q1 Pnlp—1...0342  Ppln—1...04G3 -+  PnGn—1 dy i

The parameters {q, ax, Pk, dk, Ek, bk, hi} are called generators of A.

It turns out that all the matrices described in the previous subsection (unitary Hessenberg, CMV,
companion and Fiedler) are (1, 1)-qs matrices. We prove this by specifying generators of these matrices
in Table 1.

One of many useful properties of (1, 1)-qs matrices is the existence of two-term recurrence relations
for polynomials related to them via (1.1).

Theorem 1.2 [20]. Let {r(x) };_, be a system of polynomials related to a (1, 1)-qs matrix A via (1.1). Then
they satisfy two-term recurrence relations

o] =L L] =" ™ 28] [R06] 0

where ¢, = dyagby — qrprbx — grhiak.

Table 1
Generators of unitary Hessenberg, CMV, companion and Fiedler matrices.
Matrix k d ak by i 8k Dk hy
(1.3) Any —Pr_1 Pk 0 Mk Mk —Pie—1 Mk 1 Pk
(1.4) 0dd —Pp_1Pk 0 Mk Mk — P Ik 1 Pk
Even —Pr_1Pk Mk 0 — D1k Mk Pk 1
(1.5) 1 —aq - - 1 1 - -
>1 0 0 1 1 0 1 —ay
(1.6) 1 —a - - 1 1 - -
> 1, 0dd 0 1 0 1 —ay 1
Even 0 0 1 1 0 1 —ay
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What one can get immediately from this theorem is that the interchange of lower and upper
generators:

ag <> by, pr <—> hp, q <— g (1.8)

for some k does not change the recurrence relations (1.7) and, hence, does not change the polynomials
{ri(x)}}_o- We propose to call operation (1.8) a twist transformation.

Comparing generators given in Table 1, each CMV matrix is obtained from unitary Hessenberg via
twist transformations for even indices. Similarly, each Fiedler matrix is obtained from companion via
twist transformations for odd indices k > 1. This explains why unitary Hessenberg and CMV as well
as companion and Fiedler matrices share the same systems of characteristic polynomials.

1.3. Main results

Let us consider two important aspects as follows.

A. Factorizations. Both CMV matrix K and Fiedler matrix F admit factorizations into block diagonal
matrices with 2 by 2 blocks. Note the shift in block positions between even and odd k.

K=|[Iol»...]-[InI3...], F=]A1A3...]-[A)A4...], (1.9)
where
i Ik—1
Po } _ —Ok Mk _ |:In71 ]
Iy = , I = , Im =
0 |: Iy k Mk p’><|< " —Pn
In—k—l
and
Ik—l
—a 1 In—
A = 1k 0 , An=|:n1 _an].
In—g—1

We refer to [24,35] for details. Factorization (1.9) implies a number of results for CMV matrices
and greatly simplifies proofs, see, for instance, [12,26,32,33]. The recent paper [9] considered a class
of so-called twisted (H, 1)-gs matrices generalizing CMV and Fiedler. Unfortunately, twisted (H, 1)-qs
matrices, in general, may not have a factorization similar to (1.9) which tells us that this class is just
too wide.

B. Laurent polynomials. CMV matrices are often associated with Laurent polynomials on the unit
circle. Actually the CMV matrix is just the representation of the multiplication operator in this “Laurent”
basis [13,33].

In the present paper we identify a subclass of twisted (H, 1)-qs matrices (called twisted Green'’s
matrices) that is crucial in addressing these two problems A and B. In Section 3 we provide sev-
eral descriptions of this class (entrywise characterization, generator characterization, polynomial
characterization).

Furthermore, in Section 4 we observe that the class is exactly the one admitting factorization, of
which (1.9) is the special case.

Finally in Section 5, we specify the twist transformation of [9] to Green’s case (introducing an
additional new Green’s twist transformation), and apply the new theory to study twisted (H, 1)-qs
Green’s matrices. Specifically, we use it to identify the related Laurent polynomials (general enough
to include those of [13] as a special case) and show that a twisted (H, 1)-qs Green’s matrix serves as
an operator of multiplication in the basis of Laurent polynomials.

In the last Section 6 we apply the results of [ 18] to derive efficient algorithms for inversion of Green’s
matrices.
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2. Preliminaries. Twist transformation and twisted (H, 1)-qs matrices
2.1. Twist transformation

A system of polynomials can be related to many distinct (1, 1)-qs matrices (Definition 1.1). For
instance, a nonsymmetric (1, 1)-gs matrix and its transpose share the same system of polynomials.
In this subsection we show how for a given (1, 1)-qs matrix one can obtain other (1, 1)-qs matrices
related to the same system of polynomials as the original one.

Definition 2.1 (Twist transformation). We say that a (1, 1)-qs matrix A having generators {Px, Gk, Gk,
Sk, hy, by, di} is obtained via twist transformation from another (1, 1)-gs matrix A with generators
{pk» k> k> &k, i, by, di} if there is k between 1 and n such that

G1=g, &=q, di=d ifk=1,
Pn=hy, hy=py d,=d, if k =n,
Pk =hk, G =8k ax=br _

he =pe, 8 =dk, bk =ar, di =dy

(2.1)
otherwise

and all other generators of Aand A are equal.

In other words, A is obtained from A via the interchange of lower and upper generators:
ag <> by, px <— hk, qk <— &k

for some k. This is why we propose to call (2.1) twist transformation.

The significant feature of the twist transformation is that it transforms one (1, 1)-gs matrix into an-
other preserving the coefficients of the recurrence relations (1.7) and, thus, characteristic polynomials
of all their submatrices. The next theorem exploits this fact.

Theorem 2.2. Let {r(x)};_, be a system of polynomials related to a (1, 1)-qs matrix A. Then it is invariant
under any combination of twist transformations (2.1) for different indices k.

Proof. It is enough to prove the proposition for only one twist transformation for index k. Let A be the
matrix obtained from A via (2.1) and {7 (x)}}_, be the system of polynomials related to A. Considering
the recurrence relations (1.7) for polynomials related to (1, 1)-qs matrices and noticing that

Gxbr = agbr, Brhk = prhk, di = d,
di@xbr — QrPrbk — Exhix = diagbr — qeprbr — gkhiak.

we conclude that both systems of polynomials {r(x)};_, and {7x(x)};_, satisfy the same recurrence
relations and, hence, coincide. [J

Corollary 2.3. One can see from Table 1 that CMV (1.4) and Fiedler (1.6) matrices are obtained via twist
transformations from unitary Hessenberg (1.3) and companion (1.5) matrices. Hence, unitary Hessenberg
and CMV as well as companion and Fiedler matrices share the same systems of characteristic polynomials.

Corollary 2.4. Foranarbitrary (1, 1)-gs matrix A of size n specified by its generators, there exist 2" (possibly

not distinct) matrices obtained from A via twist transformations for different indices k and related to the
same system of polynomials.

2.2. Twisted (H, 1)-qs matrices

Following [6-8] we define the class of matrices which are both strictly®> upper Hessenberg and
(1,1)-gs:

3 i.e. having nonzero elements along the first subdiagonal.
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Definition 2.5 (Generator definition of (H, 1)-qs matrices). A matrix A is called (H, 1)-qs (i.e., Hessenberg
Order-One-Quasi-separable) if it can be represented in the form

rdi  gihy gibahs - <o+ giba ... byqhyT
g d g2h3 e <o+ gbz...by_1hy
0 g ds e «+o g3bg...by—1hy
A= : . . - . : , (2.2)
. . . Gn—2 dn_1 n—1hn
LO ce T 0 an—1 dn _

where the parameters {qx # 0, dx, gk, bk, hx} are called generators of A.

Remark 2.6. Comparing Definitions 1.1 and 2.5 one can easily see that a (1, 1)-qs matrix is (H, 1)-qs
if and only if it has a choice of generators such that ay = 0, py = 1, qx # O for all k.

There exists an alternative definition of (H, 1)-qs matrices in terms of ranks of their submatrices
which reveals the idea behind the Definition 2.5:

Definition 2.7 (Rank definition for (H, 1)-qs matrices). Amatrix A is called (H, 1)-gs if maxq < <p—1 rank
A(l:ii+1:n) =1.

It is easy to check that both unitary Hessenberg and companion matrices are (H, 1)-qs. As we
have seen CMV and Fiedler matrices can be obtained from them via twist transformations. In order
to generalize these results we define next the entire class of matrices which can be obtained from
(H, 1)-gs matrices via twist transformations.

Definition 2.8 (Twisted (H, 1)-gqs matrices). A (1, 1)-gs matrix A is called twisted (H, 1)-gs if it can be
obtained from an (H, 1)-gs matrix via twist transformations.

Performing the twist transformation of the matrix (2.2) explicitly, one can give the following
alternative definition in terms of generators:

Definition 2.9 (Generator definition of twisted (H, 1)-qs matrices). A (1, 1)-qs matrix A is twisted (H, 1)-
gs if and only if it has a choice of generators {px, g, ak, &k, hx, bk, di} such that

@1 #0 or g #0,

ar=0,qr#0,pr=1 or by=0,8+0 =1 k=2...n—1,

pn=1 or h,=1.

For an arbitrary (H, 1)-gs matrix A with given generators according to the Corollary 2.4 there are
2™ (possibly not distinct) twisted— (H, 1)-gs matrices related to the same polynomial system as A. But
it is always feasible to distinguish them using the pattern defined next as the set of “twisted indices”.

Definition 2.10 (Pattern of twisted (H, 1)-qs matrices). For an arbitrary twisted (H, 1)-qs matrix A, the

sequence of binary digits (i1, iy, . . ., iy) is its pattern if A can be transformed to some (H, 1)-qs matrix
H applying the twist transformations for all k such that i, = 1. Or, equivalently (i1, i2, . . .,1,) is the
pattern of A if there exist generators of A satisfying

q1#0 ifi; =0,

g #0 if iy = 1,

a=0,qc#0,p=1 ifix=0,
bk=0,g1<7':0, hk=1 ifi]<=1,
=1 ifip, =0,
hy = 1 if ip = 1.

(2.3)
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Under these conditions we write A = H(iy, i3, .. .,ip).
Example 2.11. Any (H, 1)-qs matrix H of size nis H(0,0, ..., 0) and its transpose is H(1, 1, ..., 1).

Example 2.12. Comparing generators of unitary Hessenberg and CMV matrices in Table 1, a CMV
matrix has pattern (0,1,0,1,...) and a Fiedler matrix has pattern (1,0,1,0,1,...).

Remark 2.13. Let H be an (H, 1)-qs matrix specified by its generators {qy, dk, k. bk, hx}. Then H(0, 1,
0,1,0,...)and H(1,0,1,0,1,...) are five-diagonal. In particular,
di & 0
qihy  dy  qahs  gabs

@by g ds3 g3 0
H(0,1,0,1,0,...) = 0 qshs ds qshs qabs

qsbs g4 ds g5 0

andH(1,0,1,0,1,...)isits transpose. Thus for every (H, 1)-qs matrix there exist five-diagonal twisted
(H, 1)-gs matrices having the same system of characteristic polynomials.

2.3. The lack of factorization of general twisted (H, 1)-qs matrices

It is well-known that unitary Hessenberg matrix (1.3) can be written as the product M = Iy}
I ... I of Givens rotations (so-called Schur representation):

I—1

_ | Po _ —Pk Mk _ [T
%—[ MJ'”_ Hk Py ’m_[ wJ (2:4)

In—k—1

The companion matrix (1.5) admits similar factorization C = A1A; ... A;:

Te—1

—a 1 In—
Ap = 1k0 ,mzpl ﬂJ. (2.5)

In—k—1

However, general twisted (H, 1)-gs matrices do not admit a factorization similar to (2.4) and (2.5).
It is proved by the following easy example:

Example 2.14 (Non-factorizable twisted (H, 1)-qs matrix). Consider the 3 x 3 twisted (H, 1)-qs matrix

M 1 0]
A=1[1 0 1
0 1 1]
Assume that it has a factorization
fa b 01 0 O a bf bg
A=|c d 0||0 e fl=]|c df dg]|. (2.6)
10 0 1]|0 g h 0 h e

Then coefficients {b, d, f, g} must obey the inconsistent system of equations

bg = df =0,
bf =dg = 1.
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It is also possible to find a non-Hessenberg non-factorizable twisted (H, 1)-qs matrix. Since CMV
and Fiedler matrices are factorizable (1.9), we conclude that there must exist a proper subclass of
twisted (H, 1)-qs matrices admitting a factorization similar to (1.9), (2.4), (2.5). The next two sections
are devoted to this problem.

3. Twisted (H, 1)-qs Green’s matrices and polynomials
We start by defining Green’s (H, 1)-qs matrices which are a proper subclass of (H, 1)-qs matrices.

Definition 3.1 (Rank definition of Green’s matrices). A strictly upper Hessenberg matrix G is called Green'’s
(H, 1)-gs (or simply Green’s matrix) if
max rank G(1:i,i:n) =1.

1<i<n

The difference between (H, 1)-qs matrices and Green’s matrices is as follows. Submatrices A(1 :
i,i+ 1 : n) in Definition 2.7 do not include the diagonal while submatrices G(1 : i,i : n) do.

G(1:i,i:n)

Since every Green's matrix G is (H, 1)-gs, it has a generator description as in Definition 2.5. It is
more convenient, however, to define generators of Green’s matrices in a different way because their
rank-one submatrices capture the diagonal. These new generators are given next.

Definition 3.2 (Generator definition of Green’s matrices). A strictly upper Hessenberg matrix G is Green'’s
(H, 1)-gs if it can be represented in the form

ToT1 To01T2 190102713 cee e T001 ... On_1Tn]
01 112 710273 T102 ...0p—-1Tp
0 [op) 773 7203 ...07-1Tp
GC= : (31)
. On—2 Tn—2Tn—1 Tn—20n—1Tn
L o 0 Got To1T,

where {oy, Tk, 0k % 0, T} are called generators of G.

Remark 3.3. Table 2 gives the conversion formulas from Green’s generators to quasi-separable gener-
ators.

Example 3.4. Unitary Hessenberg (1.3) and companion (1.5) matrices in fact belong to the class of
Green’s matrices. We prove this statement by specifying explicitly in Table 3 their generators as in
Definition 3.2.
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Table 2

(H, 1)-gs generators via Green’s generators.
i d 8k by hy
Ok Th—1Tk Tk—10k Ok Tk

Table 3

Green'’s generators of unitary Hessenberg and companion matrices.
Matrix k ok T Ok T
(13) Any Mk Pk M —05
(1.5) 0 _ _ B 1

>0 1 —ay 1 0

Green’s matrices are Hessenberg, therefore there is bijection (1.2) between them and polynomial
systems. Theorem 3.5 characterizes the polynomial systems related to Green’s matrices via (1.1) in
terms of recurrence relations satisfied by them.

Theorem 3.5 (Recurrence relations for Green’s polynomials). Let G be an n x n Green’s matrix (3.1) hav-
ing generators {oy, Tk, Gk, Tk} and {Ag, An} — nonzero parameters. Then a system of polynomials {r.(x) };_,
isrelated to G via (1.1)with A, = 1/6% ifand only if polynomials ry (x) satisfy two-term recurrence relations

ol =15 [l =0 &[] 62
with 8 = Ag.

Proof (Necessity). Let {ry(x)}}_, satisfy recurrence relations (3.3). Then for every k

{Tk(x) = 8kX - Tk—1(%) + Vifie—1 (%),
fe®) = Brx - r—1(%) + atgfi—1 ().
Using the first equation in (3.3) we can get the expression for x - r,_1(x) and substitute it into the
second equation:

(3.3)

Ag
fex) = %rk(x) + T’fkfl (%), (34)
k k

where Ay = oSk — Br Vi
Eq. (3.4) for different indices k can be used to eliminate recursively fi-terms in the first equation in
(3.3). The final result is

_ A _ Ak—1...A
re(x) = <3kx + ykﬁkl) M1 (x) + Mrk,z(x) +t ykkl—l'BOro(X)'
Sk—1 Sk—16k—2 Sk—1.-.80

(3.5)

These are the unique n-term recurrence relations for the system of polynomials r (x) and, hence, there
is a unique strictly upper Hessenberg matrix

[ Bovi _ Podiyva  _ Podidays L _ BoArAnayn ]
8061 500162 80016203 80...0n
1 __Bira _ B4y _ B1drAnivn
5 518, 515203 519
= 1 _Bys - :
G = 0 5 508 . : (3.6)
... 1 _Bnoarn
L 0 0 6n—l 8n—18n .
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Table 4
Conversion formulas: Green’s two-term r.1. coefficients <> Green’s generators.
Green's generators Green’s r.1. coefficients
Ok Tk Ok Tk (o7 Bk Yk 3k
adk—Pryk % 1 B Okok =TT Te % 1
Ok ke 3k ke Ok Ok Ok Ok

related to system of polynomials {ry(x)};_, via (1.1) with A, = 8. By comparing (3.6) and (3.1) it is
easy to see that this matrix is Green’s.

(Sufficiency). Let A have generator representation {oy, Tk, 0k, Tk} as in the Definition 3.2. Since it is also
(H, 1)-gs, its quasi-separable generators (2.5) can be chosen as in Table 2. It was proved in [7] that
polynomials related to (H, 1)-qs matrices satisfy EGO-type recurrence relations

Fo(x)] _ 170 Fe(x)] _ 1 [qepebe  —aqrer| [Fe—1(x)
= , = . (3.7)
ro(x) |~ go L1 )]~ g L pehe % — di] [Tk—1(X)
Substituting Green'’s generators from Table 2 into (3.7) we reach the two-term recurrence relations
Fox)]_ 170 F(x)] _ 1 [Grox  —OkTk—10k] [Fr—1(x)
= = , = = ~ . (3.8)
roX) ] &y L1 )] G L ko X — Tk—1Tk ] [Tk—1(%)

We define
-1 7 . _ -1 7
Xk = [ 0 ]k} with X, ' = [ 0 1"].

Using X and Xk_1 we can transform recurrence relations (3.8) into
Fk(X)] < 1 [5k01< _6k'?k—10ki| —1 ) |:Fk—1 (X)]
X = (Xk=— =~ X Xi— . 3.9
k [rk(X) Gl o x—Tem] 1) g (0 (39)
After matrix multiplications, (3.9) is equivalent to

[fk(x)] 1 [3k0k — Tk Tk ?k] [ fe—1(x) ]

)] = —Tk 1] % 1)

_ (3.10)
Ok

where fi (x) = Tyri(x) — Fe(x). Hence, the system of polynomials {r(x)};_ satisfies recurrence rela-
tions (3.2). U

Remark 3.6. There are also conversion formulas (Table 4) between Green’s generators and recurrence
relations (r.r.) coefficients in (3.2).

Example 3.7 (Recurrence relations for Szego polynomials). The well-known two-term recurrence rela-
tions for polynomials {¢>,ﬁ’E (%) }—o orthogonal on the unit circle [21]

B 1 5], [4%9)] - 1 [ ][ ®) G
P50 woL 11 Lefeo] T e lmoe 1 | x-df 0 '
are a special case of Green’s recurrence relations (3.3).
Example 3.8 (Recurrence relations for Horner polynomials). Horner polynomials {px(x)}}_, associated
with the companion matrix (1.5) satisfy

pk(x) = x - pr—1(x) + a. (3.12)

Since every companion matrix is Green’s (see Example 3.4) there must exist two-term recurrence
relations (3.3) for Horner polynomials. Indeed, one can easily derive them from (3.12):
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] ] ] P | P 313
where fi(x) = 1 for all k.

Since unitary Hessenberg and companion matrices are in Green'’s class, CMV and Fiedler matrices
belong to the class of matrices obtained from Green’s via twist transformations. We suggest to call
such matrices twisted Green’s.

Definition 3.9 (Twisted Green’s matrices). A (1, 1)-qs matrix G is called twisted Green’s (H, 1)-gs if it
can be transformed into some Green’s matrix via twist transformations.

If a matrix G is Green’s defined by its generators {oy, Tk, Ok, Tk} as in Definition 3.2, then twisted
matrix of pattern (0,1,0,1,...) obtained from G via twist transformations is five-diagonal:

_?()T] ‘?()O'] 0

0172 T1T2 | 02730203

810‘2 f]O'z f5\2‘1,'3 ?20‘3 0
G(0,1,0,1,...) = 0 53727314 | Oats 5405 (3.14)

330’4?3(74 f4‘L’5 ?40’5 0

This structure yields a simple lemma:

Lemma 3.10. A five-diagonal matrix A is twisted Green’s of pattern (0,1,0, 1,0,...) if and only if it is

block bidiagonal
*  * 0
*x x * Kk
’ * * * * 0
o e o (3.15)

with rank-one 2 x 2 blocks.

Proof. Necessity is obvious because the 2 x 2 blocks in (3.14) are of rank one. To prove sufficiency
notice that if the 2 x 2 blocks in (3.15) are of rank one, then there exist generators {oy, Tk, Ok, Tk} such
that A coincides with (3.14) and is, in fact, twisted Green’s. [

Theorem 3.5 and Lemma 3.10 yield the following theorem.
Theorem 3.11. A system of polynomials R = {r(x)};_, satisfies Green's two-term recurrence relations
(3.3)ifand only if it is related to a matrix A of zero pattern (3.15) with rank one 2 x 2 submatrices via (1.1)
with A, = .
4. Factorization of Green’s matrices

In this section we show that twisted Green’s matrices are exactly the ones admitting a factorization
similar to (1.9), (2.4), (2.5) valid for unitary Hessenberg, companion, CMV and Fiedler matrices. We

start with proving that Green’s matrices admit such a factorization.

Theorem 4.1. Let G be an arbitrary Green’s matrix specified by its generators as in Definition 3.2. Then the
following decomposition holds:
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GC=0OyO1---On_106y,, (4.1)
where
I—1
7o Tk Ok In—1
@ — y @ = —~ o~ y @ = . 42
0 [ In—1i| k Ok Tk 8 |: tﬂ:| (42)
In—k—1

Proof. It is easy to see by performing matrix multiplications that the product on the right in (4.1) is
equal to the Green matrix G defined in (3.1). [

Example 4.2. Taking Green'’s generators (Table 3) of a unitary Hessenberg matrix M and substituting
them into (4.2) we get the Schur representation

M= Ipl15... Iy,
I—1

_ ,OS _ —Pk Mk _ [Ih—1
o= [ﬁ] le= Wk P > o= [ —Pn (43)

In—g—1

as the consequence of Theorem 4.1.
Similarly, substituting generators (Table 3) of a companion matrix C into (4.2) we get the factoriza-
tion

C=AAy... A,
Ix—1
—a 1 In— 44
Ak: .lk 0 ) An=|:n1 _an]. ( )
In—g—1

Kimura [24] and Fiedler [35] proved that CMV and Fiedler matrices admit factorizations into products
of the same matrices I'y (4.3) and Ay (4.4) but with interchanged order of terms:

K=I[Ip»..] [I1T3...] (4.5)
F=1[A1A3...] - [A2A4...] (4.6)
Both matrices K and F are twisted Green’s obtained via twist transformations from Hessenberg matrices

M (1.3) and C (1.5) correspondingly. Hence, there should be a relation between the order of terms in
factorizations and twist transformations. The next theorem shows that this is indeed the case.

Theorem 4.3. Let G be a twisted Green’s matrix of pattern (iy, iz, . . ., in) with generators {oy, Tk, Ok, Tk}-
Then it can be constructed by the following procedure:

_ _ |Gk—16x  ifi=0, | _
Go = 0Og, G = {@kTGk—l ifi, =1, k=1,...n, and G = Gy, (4.7)

where @y, are matrices from (4.2).

Proof. We know from Theorem 4.1 that the assertion holds in the case iy = 0 for all k. Hence, we only
need to prove that

(i) the matrix G from (4.7) is (1, 1)-gs;
(ii) the operation Gy_1® —> @,Z Gk—1 is equivalent to a twist transformation for every k.
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First, note that

7071 To0 . ToT o e
G1=[91 OAl] ifi; =0, G1=[A01 Al} ifip = 1.
o1 T To01 T

Both matrices are (1, 1)-qs with generators:
{81 = Too1, g1 = 51, p2 = hp = 1} and {q1 = To01, g1 = 61, p2 = hp = 1}.

Thus one is obtained from the other by a twist transformation.
Suppose the same is true for all indices up to k — 1. Consider the last two rows of the matrix Gy_1 ®y:

giby...bg—1 O g1by ... .bg—1Tk  g1ba...bg—10%
... 0 P .. ..
8k—1 0 [ak ?k] = 8k—1Tk 8k—10k
di 0 k k dy dyoy
0 1 Ok Tk

One can easily see that Gy_1 @y is (1, 1)-gs with generators

{qk = Gk, ax = 0, px = 1, g = dkOk, by = o, hk = T} .
Similarly, by observing the last two rows of the matrix @)[ Gy—1 one can check that it is also (1,1)-gs
with generators

{qk = dxox, ax = ok, pxk = Tk, 8 = Ok, bk = 0, hy = 1}.

Hence, (~)kTGk_1 is obtained from Gj,_1 @y via twist transformation and the assertion of the theorem
holds by induction. [l

Corollary 4.4. For every Green’s matrix G of size n having decomposition (4.1) there are 2" (possibly not
distinct) twisted Green’s matrices obtained via the procedure (4.7) and related to the same system of
polynomials as G.

The next two examples apply Theorem 4.3 to CMV and Fiedler matrices.

Example 4.5 (Factorization of a CMV matrix). CMV matrix (1.4) is twisted Green’s matrix of pat-
tern (0,1,0,1,0...) obtained from the Green’s (unitary Hessenberg) matrix (1.3) via twist trans-
formations. It admits factorization (4.7) with ©®) coinciding with I, from (4.3). Note that all I}, are
symmetric and I71j = I;I; if |i — j| > 1. Hence the factorization (4.7) coincides with the known
factorization (4.5):

K=1Iyl5...Ih1I3...=BC
06 —P1 M
-2 M2 mr - pf
M2 P53 —p3 13
= —P4 M4 U3 3 ’
M4 P —ps

(4.8)

where B and C are products of even and odd I;'s. Formula (4.8) is exactly the well-known tridiagonal
factorization of CMV matrices.

Example 4.6 (Factorization of a Fiedler matrix). Fiedler matrix (1.6) is twisted Green’s matrix of pattern
(0,0,1,0,1,...) obtained from the Green's (companion) matrix (1.5) via twist transformations. It
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admits the factorization (4.7) with @ coinciding with A, from (4.4) (and Ag = I,;). By the same
reasoning as in the previous example this factorization (4.7) coincides with (4.6) derived by Fiedler
[35]:

F=AAs...A)As... =BC
—aq 1 1
1 0 —a; 1
—das 1 1 0
= 1 0 —ag 1 . (4.9)

—as 1 0

Example 4.7 (Factorization of the Daubechies wavelet matrix). The seminal paper [16] of Ingrid
Daubechies constructed the first orthogonal wavelets beyond the simple average-difference pair due
to Haar in 1910. The decompostion of a signal into low and high frequencies is executed by a pair of
filters, each with four coefficients:

Lowpass filter coefficients: 1+ V3, 34+ 43, 3—-43,1-43
Highpass filter coefficients: 1 — \/5 -3+ \/§ 3+ ﬁ 1— «/5

These are typical rows (with a normalization factor 1/8 for unit row sums) of the “wavelet matrix”
W that multiplies a signal. Normally these rows are shifted by two columns and repeated, to produce
a shift-invariant (block Toeplitz) matrix. Shift-invariance allows Fourier methods to apply - we note
below that the Green’s matrix factorization allows a simple construction of “time-varying” wavelets,
which has been a difficult obstacle in previous constructions.

The relations between the eight Daubechies coefficients produce exactly a bidiagonal matrix in
CMV form, with 2 x 2 blocks W; and W5, of rank one.

Wi = [Hﬁ 3+ﬁ}
A [;:ﬁ ‘ffjf}
R LTV B

Now we introduce the factorization (which may be new to wavelet theory). The factors are 2 x 2
block diagonal. We show columns of B and rows of C:

cf

|:[b1 b, ] :| |:CT:|

B = [b1 by] , C= 2
[b1 b2]

W =

e
The shift between B blocks and C blocks makes BC block bidiagonal, with blocks W; = blcg and
Wy = bzclT of rank one. To match the numbers in W, we take

mor=[ 25 0 E] 3= 17 4]

May we add three comments on possible extensions of this factorization of one particular filter
bank, which is associated with the first of the Daubechies wavelets.

1. Itis natural to ask about factorizations (with suitable block sizes) of other important filter banks.
Conceivably, the wavelet transform can be executed using the factors directly at each level. The
inverse wavelet transform is evident from C~! and B~! separately, as in the lifting scheme.
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2. The shift-invariant matrix W is normally modified, for example by “symmetric reflection”, in
its boundary rows and columns. Early wavelet papers required complicated constructions to
preserve good properties, in this step from infinite-length to finite-length signals. B and C offer
a new approach to the boundary rows, still to be developed.

3. The factorization immediately suggests that W can become time-varying (instead of block
Toeplitz) by making B and C vary block by block.

It remains to use the generators, and the quasi-separable property and the twist transformations,
of wavelet matrices.

Though matrices ', and Ag in the above examples are symmetric, it turns out that matrices ®y
in Theorem 4.3 can be moved from right to left without transposition and this operation does not
change characteristic polynomials. This additional symmetry of twisted Green’s matrices is proved in
Theorem 4.8.

Theorem 4.8. Let G be a Green’s matrix of size n described by generators {oy, Tk, Ok, Tk} and let (j1,j2, - - - ,jn)
be an arbitrary sequence of binary digits. Then all 2™ matrices G(j1,jo, . . .,jn) constructed from @y in
(4.2) by

G106,  ifiy =0,

Go = O, Gk = {@ka—1 ifip =1,

k=1,....n, G(1,j2, - - - ,jn) = Gn, (4.10)
share the same system of characteristic polynomials.

Proof. From Theorem 3.5 we know that characteristic polynomials {r(x)}};_, of principal submatrices
of G satisfy two-term recurrence relations:

] R e | v )

T} - T—1(X)

@kT is obtained from ©)j via the interchange of o} and &}, and the recurrence relations (4.11) are
symmetric with respect to this operation. Hence, changing (-),f to O in the assertion of Theorem 4.3
does not change the polynomials ri(x). [

Though matrices G(ji,ja, . . . ,jn) in (4.10) share the same system of characteristic polynomials, they
cannot be obtained from the original matrix G via twist transformations. Therefore, the definition of
pattern for twisted (H, 1)-qs matrices is not applicable to them. In order to distinguish among the
matrices (4.10), we define an alternative pattern.

Definition 4.9 (Alternative pattern of twisted Green’s matrices). A sequence of binary digits (j1,j2, . . . ,jn)
is the pattern of a twisted Green’s matrix G(ji,ja, . . . ,jn) if it is obtained from some Green’s matrix G
having decomposition (4.1) via procedure (4.10).

Matrices defined by (4.10) are found to be extremely important in connection with Laurent poly-
nomials. It will be shown in the next section that they serve as multiplication operators in bases of
Laurent polynomials.

4.1. Pentadiagonal Green’s matrices and some generalizations of the results due Fiedler [35]

In this subsection we will study properties of pentadiagonal (block diagonal) twisted Green's
matrices. To be more concrete we will consider matrices with pattern (1,0,1,0...). Applying twist
transformations for corresponding indices to the general Green’s matrix (3.1) it is easy to see that a
pentadiagonal twisted Green’s matrix of pattern (1,0,1,0...) has the following form:
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[Tot1 0112 G102

?()O’l fl‘L’z ﬂO’z 0
0 821’3 ‘/5\2‘113 6‘\3‘54 6‘\30‘4
G = 0203 703 13‘[4 E§U4 AO R (412)
0 04T5 T4T5 OsTg 0503

640'5 f405 ?51’6 ‘?506 0

Remark 4.10. The matrix G in (4.12) can be transformed by the odd-even permutation similarity to
the block form

[Xu X12i|
X1 X2’

where
[ToT1 0102 0112 T
?21'3 63(74 621'3 63‘[4
Xn = T4Ts 0506 , X12 = 04Ts Os5Tg ,
[T001 T102 1T 7
T,03 T304 0203 1374
X = ?40'5 ‘?50‘6 , X2 = 6'\40‘5 ?51'6

According to Theorem 4.3 this matrix can be decomposed into the product of matrices @ from
(4.2) in the following way:

GC=0]0,0)...000,04... =G, - G, (413)
—_—
odd indices even indices

where the product of matrices @y with odd and even indices is

~

~ To
1 01
~ T2 02
o1 T b P
3 O 2 0
G, = 3073 . Ge = T4 04

04 T4

This generalizes the tridiagonal decompositions (4.8) and (4.9) of CMV and Fiedler matrices. Let us
note that if {ry};_, is the polynomial system related to matrix G, then matrices G, and G, depends
only on odd and even coefficients of the recurrence relations (4.11) correspondingly.

As in [5], the new pentadiagonal matrix (4.12) can be used to estimation the eigenvalues in (3.1).
Since

det(xI — GoGe) = det(xG, ' — G,) = det(xG, ' — G,),
for non-singular G, or G,, we obtain

Theorem 4.11. Let P(x) be a characteristic polynomial of the Green’s matrix (3.1). Then the roots of P(x) =
0 coincide with the roots of (4.14) in which the n x n matrix is tridiagonal:
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O _ = _x01
X5 Glto . X5
_Xg Xa ) f_O‘z 5
— O B _ 7 —y393
0> X5 — D X5, =0 (4.14)
03 2]

and 8, = 14Tk — oxO. The case det(xGe_l — Go) = 0is rather similar.

5. Laurent polynomials and multiplication operators

Let M be an infinite-dimensional unitary Hessenberg matrix and {qb,f(x)}bo be the infinite se-
quence of polynomials orthogonal on the unit circle related to M via (1.1). It is widely known that M
represents multiplication by x in the basis {(,zbfft ®x)}:

[¢6 ) o0 ¢ 0 |M =x[gf 0 ¢ (%) pF 0] (51)
If M,, is of size n and A is a root of polynomial ¢ﬁ’ (x), then we have a left eigenvector of M;:
[0 0 o ) -di_ ) [ Mo = 1[0 1) & 1)- -, (0] (5.2)

For Szegd polynomials {¢,’f (%)} > o define right Laurent polynomials as follows:

X0, k=2l

xTlofx), k=20+1, (5:3)

Xk(x) = {
where ¢y (x) are auxiliary polynomials from (3.11). It was shown in [13] that the right Laurent poly-
nomials {xx(x)}k> o are orthogonal in the same inner product as {¢f(x)}k> o- Therefore, they can be
obtained using the Gram-Schmidt procedure starting with the ordered set {1,x,x~',x%,x72,...}.

It is known due to [13] that an infinite CMV matrix K plays the same role for Laurent polynomials
{xx(®)}k >0 as unitary Hessenberg does for Szeg6 polynomials:

[Xo®) x1(X) x2(%)-- 1K =x[xo(x) x1(x) x2()---]. (5.4)

Similarly to (5.2) if A is an eigenvalue of an n x n CMV matrix K, then

[Xo) x1 (M) xn—1 (W] Kn = A[xo(A) x1(A)- - xn—1(A)]. (5.5)

The proofs of (5.1), (5.2) and (5.4), (5.5) are based on the orthogonality of polynomials {qb,f(x)} and
{xk(x)}. We are to show that all the above results can be generalized to twisted Green’s matrices and
associated Laurent polynomials (and our proof does not require orthogonallity).

As shown in Theorem 4.1 every infinite Green’s matrix G defined by generators {oy, Tk, Gk, Tx} has
the following factorization:

R I—1
 O.0.a o _ | To o, Tk Ok
G= Oo()] ()2 ..., Where Oo = [ Ii| , Ok = ak :’:\k . (5.6)
I
The polynomials {r(x)}x> o related to G via (1.1) with A, = alk satisfy Green’s two-term recurrence
relations (Theorem 3.5):
fe(x) _ l Okok — TkTk Tk fe—1(%)
= — . (5.7)
)|~ & —Tk 1] [x-me—1()
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Let 7 = (j1,j2,J3, - - .) be an infinite sequence of binary digits. We define twisted Green’s matrices G 7
by the recursion

Gk-10y ifjx =0,

Go =00, Gk = {@ka—1 ifjp =1,

G = Goo, (5.8)

Matrices G 7 are related to the same polynomials {r (x)};_, via (1.1) with A; = al,( as G (Theorem 4.8).
For every 7 we also define a sequence of Laurent polynomials {1/, (x)}x>o:

X~ Zntnp(x) if jigq =0,

o (5.9)
X~ Zm=timf(x) if jepr = 1,

Y(x) = ’

where fi(x) are the auxiliary polynomials from (5.7). The next theorem shows that matrices G
represent multiplication operators in the frame of Laurent polynomials (5.9).

Theorem 5.1. Let G 7 be a twisted Green’s matrix of alternative pattern 7 = (j1,jo,j3 - . .) defined by (5.8)
and {Yx(x)}k > o be Laurent polynomials (5.9). Then

(o) ¥1(0) ¥2(x)---1G7 = x[o(x) ¥1(x) Y2(x)---]. (5.10)

Proof. Solving (5.7) with respect to x - r,—1(x) and f we get

. — Tk Ok
[ re—1  fi] = [fie1 7] [ak ?k] . (5.11)
Denote ¥, = [Yo(x) ¥1(x) ... Yr—1(x)]. We will show by induction that

[npk; X Zﬁ:lfmrk] Ge(l:k+1,1:k+1) = [xq/k; X Zﬁ:lfmfk], (5.12)

where Gy are matrices from (5.8).
This holds for k = 0 because Go(1 : 1,1:1) = Og(1:1,1:1) =[19]and[ro ][0 ] = [fo ]
Assume (5.12) holds for some k, and consider two cases:

jk+1 = 0. Padding rows in (5.12) with x™ St k41 and noticing that Gy (1 : k+2,1: k+2) =
diag (Gy(1 : k+1,1:k+1),1) we get

— okt _ykH
[llfk; X~ E=m=tm [ rk+1]] Ge(1:k+2,1:k+2)= [xdfk; X~ Em=tm{f s T ]]-
Multiply by @ from the right and use (5.11):
k+1 . k+1 5
[Wk+1 ;X Zm:l]mrlc+1i| Grr1(1:k+2,1:k+2) = |:Xl1/k+1 P X Z’”:”’"fkﬂ].

k .
where Gy+1 = GyOy+1 and Y (x) = x~ Zmﬂ”"‘rk.
Jjk+1 = 1. Using (5.11) one can easily see that

k+1
[0 xS0 s ]| O (k42,1 1k +2)

. k41 .
= [ll/k; x™ Emering ; x Zmi”"‘fkﬂ].
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Multiply by Gx(1 : k + 2,1 : k 4 2) from the right and use (5.12):
—yka —yk
[‘I’k+1 ;X m=””‘fk+1] Ger1(1:k+2,1:k+2)= |:Xl1/k+1 ;X "‘=”mfk+1]

where G 1 = Op1Gy and Y (x) = x~ Zn-tnf,
Finally, letting k — o0 in (5.12) we obtain (5.10). [

We next apply Theorem 5.1 to CMV and Fiedler matrices.
Example 5.2 (CMV matrix and Laurent polynomials). Each infinite-dimensional unitary Hessenberg
matrix M is Green’s having the factorization
M=TIynh..., (5.13)

where matrices I are defined in (2.4). Hence, M has the alternative pattern (0, 0,0, . . .) and in accor-
dance with Theorem 5.1 represents the multiplication operator (5.1) in the basis of Szegd polynomials

{zj)}fe (%) }k > o satisfying (3.11).
Each infinite CMV matrix K has the factorization

K=[Ioy...]-[I1135...]
and hence it is twisted Green’s of alternative pattern 7 = (0,1,0, 1, .. .). Hence, from (5.9) we get

k+1 —1 4 #
[ k=2 _JxTef ) k=2l
E Jm = {l k=2l—1 and Y (x) = x”qbk(x) k=20—1. (5.14)
m=1

Theorem 5.1 says that matrix K represents the multiplication operator in the basis of polynomials
{¥rk (%) }k > 0 which, in fact, coincides with (5.4) because v (x) = xi(x) from (5.3).

Example 5.3 (Fiedler matrix and Laurent polynomials). Each infinite companion matrix C admits the
factorization
C = A1A2A3A, ... (5.15)

with matrices Ay defined in (2.5). Hence, C is twisted Green'’s of alternative pattern (0,0,0,0,...).
According to Theorem 5.1 C represents the multiplication operator in the basis of Horner polynomials
(3.12):

[Po(®) p1(x) p2(%)...]C = X[po(x) p1(X) p2(x)...].

This result is well-known in contrast to the similar result for Fiedler matrix F presented next.
Fiedler matrix (1.6) admits the factorization

F = [AiAs...] - [AAs. . ]

and, hence, it is twisted Green'’s of alternative pattern 7 = (1,0, 1,0,. . .). Laurent polynomials asso-
ciated with it are as follows

x~ 1 if k =21,

Vi) = [x—’—l Pe(x) ifk=21+1. (516)

This is a direct consequence of (3.13) and (5.9), and F is the multiplication operator in this basis:
[T T pi0 s X7 x P ps (0. F=x X (05 177 x P ps ().

The major remark that has to be made is that Laurent polynomials {1/ (x)} in (5.10) do not neces-
sarily form a basis. In fact, they can be linearly dependent, as we illustrate.
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Example 5.4. Consider the infinite Green’s matrix
GC=0010,...,

where

- O
—

0 0 l—1
Og=I =1 1 , O = 0 , k>=2. (5.17)
I

According to (5.7) the polynomials related to G via (1.1) satisfy
o] =[] (6ol = Lo )] = ]
R]=0 L] =[] w2

Now take a twisted Green’s matrix G of alternative pattern 7 = {0, 1,0, 0,0, .. .}. Then the Laurent
polynomials {{(x)}k> o in (5.9) are:

[Wo(): ¥1(0; Y2005 Y3005 Ya () ¥s(); 1 =[1; 156525 %5 ]

The identity (5.10) still holds while {1/ (x)}r >0 is not a basis, because the first two polynomials are
linearly dependent.

In order to guarantee that Laurent polynomials in (5.10) form a basis we need to impose a restriction
on the related Green’s matrix. This limitation is expressed as a necessary and sufficient condition in
the next theorem.

Theorem 5.5. Let G be a Green’s matrix defined by the factorization (5.6) and let kg be first index such
that ®y, is singular. Then for any alternative pattern 7 = (j1,j2.j3 - . .) with jix = 0 for k > ko Laurent
polynomials {{x (x) }k> o defined in (5.9) are linearly independent.
Proof. For all indices k < kg, the matrices ®y, are invertible and

& =To #0, |O] = Tktk — Gkox # 0.

Hence, it follows directly from the recurrence relations (5.7) that the free coefficient of an auxiliary
polynomial fi (x) for every k < kg is not zero:

(6101 — T111)- - -(OkOk — Tk Tk ||O1] - -|Ox
( i A) E 4 4 ) — (_1)k%. (5.]8)
0001 - Ok 0001 - Ok

After shifting polynomial fi(x) to the left in (5.9) this free coefficient becomes leading on the left.
Therefore, every new polynomial v (x) in (5.9) for jx+1 = 1 and k + 1 <k is independent from the
previous ones, because its leftmost term is not in their span.

Now observe that polynomials r (x) in (5.9) are always of increasing degrees. Hence, v (x) in (5.9)
for jx+1 = 0 is not in the span of the previous Laurent polynomials. Since jy = 0 for all k > ko, all
polynomials ¥ (x) in (5.9) are linearly independent.

Conversely, suppose that k is the first index greater than kg such that j, = 0, then the leading
coefficient on the left of the Laurent polynomial v (k) is zero because it is equal to (5.18), where
|®k,| = 0. Note that all the Laurent polynomials v, (x) for m < k are linearly independent (the same
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justification as was given above). Hence, 1 (x) is in the span of {l/fm(x)}’,‘n_:]o. This completes the
proof. [

Remark 5.6. Let us note that both infinite unitary Hessenberg and companion matrices satisfy the
condition of Theorem 5.5 because all the matrices in factorizations (5.13) and (5.15) are invertible.
Therefore, polynomials (5.14) and (5.16) for CMV and Fiedler matrices are bases in the space of Laurent
polynomials.

In the finite-dimensional case Theorem 5.1 gives the way to describe eigenvectors of twisted Green’s
matrices under the assumption that is made in Theorem 5.5. This motivates us to introduce a new
slightly narrower class of matrices for which we will find the eigenvectors.

5.1. Eigenvectors for the non-degenerate case

Definition 5.7. Let G; be an n x n twisted Green’s matrix of alternative pattern .7 = (j1,j2, - - - ,Jjn)
defined via the factorization

G110, ifjr =0,

G=en G={ga% It = (519)
where
Ik—1
Dy — ?0 _ Tk Ok _ In_1
O = [4‘?] , O = 8k ?k , Op = |: Tnj| . (5-20)
In—k—l

If ko is the first index for which ©y is singular and j, = 0 for all k > ko, then G is called semi-non-
degenerate, otherwise it is called semi-degenerate*.

Remark 5.8. Being semi-degenerate is not the same as being singular. Consider a twisted Green’s
matrix G defined via the factorization (5.19). If there is a singular term ®y, in this factorization, matrix
G is singular. But if all the singular terms are multiplied from the right in (5.19), matrix G is semi-non-
degenerate.

We now state the theorem which describes the structure of eigenvectors of semi-non-degenerate
twisted Green’s matrices.

Theorem 5.9. Let G ; be a semi-non-degenerate twisted Green’s matrix of alternative pattern 7 = (j1, j2,
. .,Jjn). Then for every eigenvalue A of G ; of multiplicity m, the eigenvector is ¥ © (A) and the generalized
eigenvectors are ¥ D (L) to w M=V ()

vOQ) -G, =1-vO0),

D) -Gy =1V +vO0), (5.21)
MDY .Gy = A wMTDO) g m=2 (),

w0 (x) = xie=tJk . [Vo(x) ¥r1(x)- - -Y¥p—q1(x)] and @& (L) denotes the kth derivative oflI/(O) (x) eval-

uated at A, where \;(x) are the Laurent polynomials defined in (5.9).

Proof. To prove (5.21) let us note that (5.11) implies

X Th—1 = Tpfu—1 + Ontns

4 We reserve the term degenerate to another class of matrices defined further in the text.
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which can be used to eliminate the last elements in the rows of (5.12) to get

jn=0.
~11:n1:n) jp=1.

[Wa] Gy = x[Wa] — X~ Zh=19G,[0. .. 0 ry(X)] - {’G”
n

Multiplying this identity by xZk=1Jk we have
O - Gr=x-¢Ox) +1[0...0 ()] - A (5.22)
where A is a constant matrix and ¥ © (x) consists of polynomials which form a basis in the span of

{1,x,x%,...,x"~1} (apply Theorem 5.5).
Since A has multiplicity m, it is a root of r,,(x) in (5.22) with

R =r0)=r0)=...=r™D3) =0
Differentiating (5.22) with respect to x m — 1 times and substituting A for x we get the desired result
(5.21), where vectors v (©) ), ..., g (m=1) (A) are linearly independent due to linear independence of

polynomials which form ¥ @ (x). O

Corollary 5.10 (Eigenvectors of CMV matrices). The eigenvector of K which corresponds to A is given by
[Xo(A) x1(A) x2(A)- - xn—1(M)],

where

—1 4 #
_ X op (x), k=2l
Xx) =x {xlqbi(x), k=20—1.

Corollary 5.11 (Eigenvectors of Fiedler matrices). The eigenvector of F which corresponds to A is given by

[Yo(A) Y1 (X)) Y2 (A)- - Y1 (A)],

where

n —I=1 i =
W) = ™51 {X ifk =2,

x o) ifk =214 1.

Let G be a Green’'s matrix, G = @yO1...0, with @ invertible for k < n. It follows from Defini-
tion 5.7 of that all possible twisted Green’s matrices obtained from G are semi-non-degenerate and,
therefore, satisfy the conditions of Theorem 5.9. This motivates us to name this class of matrices.

Definition 5.12. Let G ; be a twisted Green’s matrix of alternative pattern obtained from some Hessen-
berg Green’s matrix G = @y 1. . .0 If O are invertible for k < n then G is called non-degenerate,
otherwise it is degenerate.

Remark 5.13. CMV and Fiedler matrices are always non-degenerate.

A degenerate twisted Green’s matrix is always singular but the converse is not true. For instance,
a companion matrix is always non-degenerate (Remark 5.6) although it can be singular. Actually, a
non-degenerate Green'’s matrix of size n is singular if and only if it has a choice of generators such that
T, = 0.

Degenerate Hessenberg Green’s matrices have a very transparent description via the condition on
ranks of their submatrices:

Jk € [1,n — 1] such thatrank G(1 : k+ 1,k : n) = 1. (5.23)
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The difference between rank definitions of general Green’s and degenerate Green’s matrices is illus-
trated in the picture below.

Vi Jk
(1:i,i:n) (1:k+1,k:n)
rank one rank one
* *
*
Green'’s degenerate Green'’s

5.2. Five-diagonal twisted Green’s matrices and Laurent polynomials

Consider general five-diagonal twisted Green’s matrix G, of the alternative pattern 7 = (0,1,
0,1,...):

[ToT1 1001 0 T

0172 T172 | 02730203

3]32 ?132 fz‘L’3 ?20’3 0
Gy = 0 03741374 | 04T5 0405 (5.24)

6384?364 ?4‘1,'5 ?40'5 0

This matrix is the multiplication operator (Theorem 5.1):
(Vo) ¥1(x) Y2(x)...1F = x[Po(x) Y1(x) ¥2(x)...]
in the basis of Laurent polynomials

Xfi k=2,

Vi) = {x’rk(x) k=21+1,

where fi(x) and r(x) are defined by the recurrence relations (3.3). Directly from the structure (5.24)
of G; we get the recurrence relations for Laurent polynomials {v () }k > o:

<[] = A [ Vot ] B [ ).

Z[kakﬂ fkfk+1] B
OkOk+1  TkOk+1]  ~°

~ -~ (5.25)
_ [kak+1 0k0k+1]
TkTk+1  TkOk+1] "

These relations generalize the ones for Laurent polynomials x(x) in (5.3) derived, in [13].
6. Inversion of Green’s matrices

Theorem 6.1. Let G be a twisted Green’s matrix of alternative pattern J = (j1,j2.j3,...) given by its

generators {oy, Tk, Gk, Tk}. Then its inverse G~ is also twisted Green's with the reversed alternative pattern

~ Y Y T . o T o T . ~ ~
J = (2.3, )k = 1 — ji, and generators {— 7, 3¢, —7¢, e} with Ay = 1Tk — 010
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