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Our goal is to identify and understand matrices A that share es-

sential properties of the unitary Hessenberg matrices M that are

fundamental for Szegö’s orthogonal polynomials. Those properties

include: (i) Recurrence relations connect characteristic polyno-

mials {rk(x)} of principal minors of A. (ii) A is determined by

generators (parameters generalizing reflection coefficients of uni-

tary Hessenberg theory). (iii) Polynomials {rk(x)} correspond not

only to A but also to a certain “CMV-like" five-diagonal matrix.

(iv) The five-diagonal matrix factors into a product BC of block

diagonal matrices with 2× 2 blocks. (v) Submatrices above and

below the main diagonal of A have rank 1. (vi) A is a multiplica-

tion operator in the appropriate basis of Laurent polynomials. (vii)

Eigenvectors of A can be expressed in terms of those polynomials.

Condition (v) connects our analysis to the study of quasi-separ-

able matrices. But the factorization requirement (iv) narrows it to

the subclass of “Green’s matrices" that share Properties (i)–(vii).

The key tool is “twist transformations" that provide 2n matri-

ces all sharing characteristic polynomials of principal minors with

A. One such twist transformation connects unitary Hessenberg to

CMV.Another twist transformation explainsfindings of Fiedlerwho

noticed that companionmatrices give examples outside the unitary

Hessenberg framework. Wemention briefly the further example of

a Daubechies wavelet matrix. Infinite matrices are included.
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1. Introduction

Various polynomial systems {rk(x)}nk=0 are associated with n by n Hessenberg matrices H via

r0(x) = λ0, rk(x) = λ0λ1 . . . λk det(xI − Hk×k), k = 1, . . . , n. (1.1)

The relation (1.1) establishes a bijection [5] if λk = 1/hk+1,k and λ0, λn are two given parameters:

{rk(x)}nk=0←→ {H, λ0, λn} (1.2)

1.1. From Hessenberg to five-diagonal matrices. Two examples

It is widely known that Szegö polynomials {φ#
k (x)}nk=0 orthogonal on the unit circle are connected

via (1.1) to a certain (almost1) unitary Hessenberg matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎣
−ρ∗0ρ1 −ρ∗0μ1ρ2 −ρ∗0μ1μ2ρ3 · · · −ρ∗0μ1μ2μ3· · ·μn−1ρn
μ1 −ρ∗1ρ2 −ρ∗1μ2ρ3 · · · −ρ∗1μ2μ3· · ·μn−1ρn
0 μ2 −ρ∗2ρ3 · · · −ρ∗2μ3· · ·μn−1ρn
...

. . .
. . .

. . .
...

0 · · · 0 μn−1 −ρ∗n−1ρn

⎤⎥⎥⎥⎥⎥⎥⎦ , (1.3)

where ρk are reflection coefficients2 andμk are complementary parameters. The details on this relation

can be found in [23,25,4,34,2,10,29,27,3,28]. MatrixM has rather dense structure in comparison with

the tridiagonal Jacobi matrix [1,11,22] for orthogonal polynomials on the real line. However, the bijec-

tion (1.2) implies that for a given system of Szegö polynomials there are nomatrices other thanM. The

situation is much different if we do not restrict the matrix to the class of strictly upper Hessenberg

matrices.

Itwas foundfirst byKimura [24] and independently byCantero et al. [13–15] that Szegöpolynomials

are also related via (1.1) (with λk = 1/μk) to the following five-diagonal “CMV matrix”:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ∗0ρ1 ρ∗0μ1 0

−μ1ρ2 −ρ∗1ρ2 −μ2ρ3 μ2μ3

μ1μ2 ρ∗1μ2 −ρ∗2ρ3 ρ∗2μ3 0

0 −μ3ρ4 −ρ∗3ρ4 −μ4ρ5 μ4μ5

μ3μ4 ρ∗3μ4 −ρ∗4ρ5 ρ∗4μ5 0

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (1.4)

The initials CMV honor the paper [13] that triggered deep interest in the orthogonal polynomials

community. This matrix is reputed to be better than unitary Hessenberg in studying properties of

polynomials orthogonal on the unit circle (mostly because of its banded structure).

Shortly after the discovery of the CMVmatrix it was noticed that this is not the only example of its

kind. Consider the companion matrix

C =

⎡⎢⎢⎢⎢⎣
−a1 −a2 · · · −an−1 −an
1 0 · · · 0 0

0 1 · · · 0 0

· · · · ·
0 0 · · · 1 0

⎤⎥⎥⎥⎥⎦ . (1.5)

Characteristic polynomials pk(x) of its leading submatrices are so-called Horner polynomials. It was

shown by Fiedler [35] that the five-diagonal matrix

1 Throughout the paper, matrices referred to as unitary Hessenberg are almost unitary, differing from unitary in the length of

the last column. Specifically,M = UD for a unitary matrix U and diagonal matrix D = diag{1, . . . , 1, ρn}.
2 Reflection coefficients are also known in various contexts as Schur parameters [30] and Verblunsky coefficients [31].
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F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 −a2 1

1 0 0 0

0 −a3 0 −a4 1

1 0 0 0 0

0 −a5 0 −a6 1

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1.6)

is also related to the same set of Horner polynomials.

1.2. Quasi-separable approach. Twist transformation

In a recent paper we used the theory of quasi-separable matrices to derive a number of new results

on five-diagonal matrices. In particular, we gave a unified proof of the fact that CMV and Fiedler

matrices share systemsof characteristicpolynomialswithunitaryHessenbergandcompanionmatrices

correspondingly. Let us outline the idea of the proof.

Following [17,19] we define the class of (1, 1)-qs matrices:

Definition 1.1 (Generator definition of (1, 1)-qs matrices). A matrix A is called (1, 1)-qs if it can be

represented in the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1h2 g1b2h3 · · · · · · g1b2 . . . bn−1hn
p2q1 d2 g2h3 · · · · · · g2b3 . . . bn−1hn

p3a2q1 p3q2 d3 · · · · · · g3b4 . . . bn−1hn
...

...
...

. . .
. . .

...
...

...
...

. . . dn−1 gn−1hn
pnan−1 . . . a2q1 pnan−1 . . . a3q2 pnan−1 . . . a4q3 · · · pnqn−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The parameters {qk , ak , pk , dk , gk , bk , hk} are called generators of A.

It turns out that all the matrices described in the previous subsection (unitary Hessenberg, CMV,

companion andFiedler) are (1, 1)-qsmatrices.Weprove this by specifying generators of thesematrices

in Table 1.

Oneofmanyuseful properties of (1, 1)-qsmatrices is the existenceof two-termrecurrence relations

for polynomials related to them via (1.1).

Theorem 1.2 [20]. Let {rk(x)}nk=0 be a system of polynomials related to a (1, 1)-qs matrix A via (1.1). Then
they satisfy two-term recurrence relations[

F0(x)
r0(x)

]
=

[
0

λ0

]
,

[
Fk(x)
rk(x)

]
= λk

[
akbkx − ck −qkgk

pkhk x − dk

] [
Fk−1(x)
rk−1(x)

]
, (1.7)

where ck = dkakbk − qkpkbk − gkhkak.

Table 1

Generators of unitary Hessenberg, CMV, companion and Fiedler matrices.

Matrix k dk ak bk qk gk pk hk

(1.3) Any −ρ∗k−1 ρk 0 μk μk −ρ∗k−1μk 1 ρk
(1.4) Odd −ρ∗k−1ρk 0 μk μk −ρ∗k−1μk 1 ρk

Even −ρ∗k−1ρk μk 0 −ρ∗k−1μk μk ρk 1

(1.5) 1 −a1 – – 1 1 – –

> 1 0 0 1 1 0 1 −ak
(1.6) 1 −a1 – – 1 1 – –

> 1, odd 0 1 0 0 1 −ak 1

Even 0 0 1 1 0 1 −ak
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What one can get immediately from this theorem is that the interchange of lower and upper

generators:

ak ←→ bk , pk ←→ hk , qk ←→ gk (1.8)

for some k does not change the recurrence relations (1.7) and, hence, does not change the polynomials

{rk(x)}nk=0. We propose to call operation (1.8) a twist transformation.

Comparing generators given in Table 1, each CMV matrix is obtained from unitary Hessenberg via

twist transformations for even indices. Similarly, each Fiedler matrix is obtained from companion via

twist transformations for odd indices k > 1. This explains why unitary Hessenberg and CMV as well

as companion and Fiedler matrices share the same systems of characteristic polynomials.

1.3. Main results

Let us consider two important aspects as follows.

A. Factorizations. Both CMVmatrix K and Fiedlermatrix F admit factorizations into block diagonal

matrices with 2 by 2 blocks. Note the shift in block positions between even and odd k.

K = [Γ0Γ2 . . .] · [Γ1Γ3 . . .] , F = [A1A3 . . .] · [A2A4 . . .] , (1.9)

where

Γ0 =
[
ρ∗0

In−1

]
, Γk =

⎡⎢⎢⎣
Ik−1

−ρk μk

μk ρ∗k
In−k−1

⎤⎥⎥⎦ , Γn =
[
In−1

−ρn
]

and

Ak =
⎡⎢⎢⎣
Ik−1

−ak 1

1 0

In−k−1

⎤⎥⎥⎦ , An =
[
In−1

−an
]
.

We refer to [24,35] for details. Factorization (1.9) implies a number of results for CMV matrices

and greatly simplifies proofs, see, for instance, [12,26,32,33]. The recent paper [9] considered a class

of so-called twisted (H, 1)-qs matrices generalizing CMV and Fiedler. Unfortunately, twisted (H, 1)-qs
matrices, in general, may not have a factorization similar to (1.9) which tells us that this class is just

too wide.

B. Laurent polynomials. CMVmatrices are often associated with Laurent polynomials on the unit

circle. Actually theCMVmatrix is just the representationof themultiplicationoperator in this “Laurent”

basis [13,33].

In the present paper we identify a subclass of twisted (H, 1)-qs matrices (called twisted Green’s

matrices) that is crucial in addressing these two problems A and B. In Section 3 we provide sev-

eral descriptions of this class (entrywise characterization, generator characterization, polynomial

characterization).

Furthermore, in Section 4 we observe that the class is exactly the one admitting factorization, of

which (1.9) is the special case.

Finally in Section 5, we specify the twist transformation of [9] to Green’s case (introducing an

additional new Green’s twist transformation), and apply the new theory to study twisted (H, 1)-qs
Green’s matrices. Specifically, we use it to identify the related Laurent polynomials (general enough

to include those of [13] as a special case) and show that a twisted (H, 1)-qs Green’s matrix serves as

an operator of multiplication in the basis of Laurent polynomials.

In the last Section 6weapply the results of [18] to derive efficient algorithms for inversion ofGreen’s

matrices.
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2. Preliminaries. Twist transformation and twisted (H, 1)-qs matrices

2.1. Twist transformation

A system of polynomials can be related to many distinct (1, 1)-qs matrices (Definition 1.1). For

instance, a nonsymmetric (1, 1)-qs matrix and its transpose share the same system of polynomials.

In this subsection we show how for a given (1, 1)-qs matrix one can obtain other (1, 1)-qs matrices

related to the same system of polynomials as the original one.

Definition 2.1 (Twist transformation). We say that a (1, 1)-qs matrix Ã having generators {̃pk , q̃k , ãk ,
g̃k , h̃k , b̃k , d̃k} is obtained via twist transformation from another (1, 1)-qs matrix A with generators

{pk , qk , ak , gk , hk , bk , dk} if there is k between 1 and n such that⎧⎪⎪⎪⎨⎪⎪⎪⎩
q̃1 = g1, g̃1 = q1, d̃1 = d1 if k = 1,

p̃n = hn, h̃n = pn, d̃n = dn if k = n,

p̃k = hk , q̃k = gk , ãk = bk ,

h̃k = pk , g̃k = qk , b̃k = ak , d̃k = dk
otherwise

(2.1)

and all other generators of Ã and A are equal.

In other words, Ã is obtained from A via the interchange of lower and upper generators:

ak ←→ bk , pk ←→ hk , qk ←→ gk

for some k. This is why we propose to call (2.1) twist transformation.

The significant feature of the twist transformation is that it transforms one (1, 1)-qsmatrix into an-

other preserving the coefficients of the recurrence relations (1.7) and, thus, characteristic polynomials

of all their submatrices. The next theorem exploits this fact.

Theorem 2.2. Let {rk(x)}nk=0 be a system of polynomials related to a (1, 1)-qsmatrix A. Then it is invariant

under any combination of twist transformations (2.1) for different indices k.

Proof. It is enough to prove the proposition for only one twist transformation for index k. Let Ã be the

matrix obtained from A via (2.1) and {̃rk(x)}nk=0 be the system of polynomials related to Ã. Considering

the recurrence relations (1.7) for polynomials related to (1, 1)-qs matrices and noticing that

ãkb̃k = akbk , p̃kh̃k = pkhk , d̃k = dk ,

d̃kãkb̃k − q̃kp̃kb̃k − g̃kh̃kãk = dkakbk − qkpkbk − gkhkak.

we conclude that both systems of polynomials {rk(x)}nk=0 and {̃rk(x)}nk=0 satisfy the same recurrence

relations and, hence, coincide. �

Corollary 2.3. One can see from Table 1 that CMV (1.4) and Fiedler (1.6) matrices are obtained via twist

transformations from unitary Hessenberg (1.3) and companion (1.5) matrices. Hence, unitary Hessenberg

and CMV as well as companion and Fiedler matrices share the same systems of characteristic polynomials.

Corollary 2.4. For anarbitrary (1, 1)-qsmatrixAof sizen specifiedby its generators, there exist2n (possibly
not distinct) matrices obtained from A via twist transformations for different indices k and related to the

same system of polynomials.

2.2. Twisted (H, 1)-qs matrices

Following [6–8] we define the class of matrices which are both strictly3 upper Hessenberg and

(1, 1)-qs:

3 i.e. having nonzero elements along the first subdiagonal.
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Definition 2.5 (Generator definition of (H, 1)-qs matrices). Amatrix A is called (H, 1)-qs (i.e.,Hessenberg
Order-One-Quasi-separable) if it can be represented in the form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1h2 g1b2h3 · · · · · · g1b2 . . . bn−1hn
q1 d2 g2h3 · · · · · · g2b3 . . . bn−1hn
0 q2 d3 · · · · · · g3b4 . . . bn−1hn
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . qn−2 dn−1 gn−1hn

0 · · · · · · 0 qn−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.2)

where the parameters {qk /= 0, dk , gk , bk , hk} are called generators of A.

Remark 2.6. Comparing Definitions 1.1 and 2.5 one can easily see that a (1, 1)-qs matrix is (H, 1)-qs
if and only if it has a choice of generators such that ak = 0, pk = 1, qk /= 0 for all k.

There exists an alternative definition of (H, 1)-qs matrices in terms of ranks of their submatrices

which reveals the idea behind the Definition 2.5:

Definition 2.7 (Rank definition for (H, 1)-qsmatrices). Amatrix A is called (H, 1)-qs ifmax1� i � n−1 rank
A(1 : i, i+ 1 : n) = 1.

It is easy to check that both unitary Hessenberg and companion matrices are (H, 1)-qs. As we

have seen CMV and Fiedler matrices can be obtained from them via twist transformations. In order

to generalize these results we define next the entire class of matrices which can be obtained from

(H, 1)-qs matrices via twist transformations.

Definition 2.8 (Twisted (H, 1)-qs matrices). A (1, 1)-qs matrix A is called twisted (H, 1)-qs if it can be

obtained from an (H, 1)-qs matrix via twist transformations.

Performing the twist transformation of the matrix (2.2) explicitly, one can give the following

alternative definition in terms of generators:

Definition 2.9 (Generator definition of twisted (H, 1)-qs matrices). A (1, 1)-qsmatrix A is twisted (H, 1)-
qs if and only if it has a choice of generators {pk , qk , ak , gk , hk , bk , dk} such that⎧⎨⎩

q1 /= 0 or g1 /= 0,

ak = 0, qk /= 0, pk = 1 or bk = 0, gk /= 0, hk = 1, k = 2 . . . n− 1,

pn = 1 or hn = 1.

For an arbitrary (H, 1)-qs matrix A with given generators according to the Corollary 2.4 there are

2n (possibly not distinct) twisted−(H, 1)-qs matrices related to the same polynomial system as A. But

it is always feasible to distinguish them using the pattern defined next as the set of “twisted indices”.

Definition 2.10 (Pattern of twisted (H, 1)-qs matrices). For an arbitrary twisted (H, 1)-qs matrix A, the

sequence of binary digits (i1, i2, . . . , in) is its pattern if A can be transformed to some (H, 1)-qs matrix

H applying the twist transformations for all k such that ik = 1. Or, equivalently (i1, i2, . . . , in) is the

pattern of A if there exist generators of A satisfying⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

q1 /= 0 if i1 = 0,

g1 /= 0 if i1 = 1,

ak = 0, qk /= 0, pk = 1 if ik = 0,

bk = 0, gk /= 0, hk = 1 if ik = 1,

pn = 1 if in = 0,

hn = 1 if in = 1.

(2.3)
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Under these conditions we write A = H(i1, i2, . . . , in).

Example 2.11. Any (H, 1)-qs matrix H of size n is H(0, 0, . . . , 0) and its transpose is H(1, 1, . . . , 1).

Example 2.12. Comparing generators of unitary Hessenberg and CMV matrices in Table 1, a CMV

matrix has pattern (0, 1, 0, 1, . . .) and a Fiedler matrix has pattern (1, 0, 1, 0, 1, . . .).

Remark 2.13. Let H be an (H, 1)-qs matrix specified by its generators {qk , dk , gk , bk , hk}. Then H(0, 1,
0, 1, 0, . . .) and H(1, 0, 1, 0, 1, . . .) are five-diagonal. In particular,

H(0, 1, 0, 1, 0, . . .) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 g1 0

q1h2 d2 q2h3 q2b3
q1b2 g2 d3 g3 0

0 q3h4 d4 q4h5 q4b5
q3b4 g4 d5 g5 0

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
andH(1, 0, 1, 0, 1, . . .) is its transpose. Thus for every (H, 1)-qsmatrix there exist five-diagonal twisted

(H, 1)-qs matrices having the same system of characteristic polynomials.

2.3. The lack of factorization of general twisted (H, 1)-qs matrices

It is well-known that unitary Hessenberg matrix (1.3) can be written as the product M = Γ0Γ1

Γ2 . . . Γn of Givens rotations (so-called Schur representation):

Γ0 =
[
ρ∗0

In−1

]
, Γk =

⎡⎢⎢⎣
Ik−1

−ρk μk

μk ρ∗k
In−k−1

⎤⎥⎥⎦ , Γn =
[
In−1

−ρn
]

(2.4)

The companion matrix (1.5) admits similar factorization C = A1A2 . . . An:

Ak =
⎡⎢⎢⎣
Ik−1

−ak 1

1 0

In−k−1

⎤⎥⎥⎦ , An =
[
In−1

−an
]
. (2.5)

However, general twisted (H, 1)-qs matrices do not admit a factorization similar to (2.4) and (2.5).

It is proved by the following easy example:

Example 2.14 (Non-factorizable twisted (H, 1)-qs matrix). Consider the 3× 3 twisted (H, 1)-qs matrix

A =
⎡⎣1 1 0

1 0 1

0 1 1

⎤⎦ .
Assume that it has a factorization

A =
⎡⎣a b 0

c d 0

0 0 1

⎤⎦ ⎡⎣1 0 0

0 e f

0 g h

⎤⎦ =
⎡⎣a bf bg

c df dg

0 h e

⎤⎦ . (2.6)

Then coefficients {b, d, f , g}must obey the inconsistent system of equations{
bg = df = 0,

bf = dg = 1.
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It is also possible to find a non-Hessenberg non-factorizable twisted (H, 1)-qs matrix. Since CMV

and Fiedler matrices are factorizable (1.9), we conclude that there must exist a proper subclass of

twisted (H, 1)-qs matrices admitting a factorization similar to (1.9), (2.4), (2.5). The next two sections

are devoted to this problem.

3. Twisted (H, 1)-qs Green’s matrices and polynomials

We start by defining Green’s (H, 1)-qs matrices which are a proper subclass of (H, 1)-qs matrices.

Definition3.1 (RankdefinitionofGreen’smatrices). A strictlyupperHessenbergmatrixG is calledGreen’s

(H, 1)-qs (or simply Green’s matrix) if

max
1� i � n

rank G(1 : i, i : n) = 1.

The difference between (H, 1)-qs matrices and Green’s matrices is as follows. Submatrices A(1 :
i, i+ 1 : n) in Definition 2.7 do not include the diagonal while submatrices G(1 : i, i : n) do.

�
�
�
�
�
�
�
�
�
��

�
�

�
��

�
�
�
��

�

G(1 : i, i : n)

Since every Green’s matrix G is (H, 1)-qs, it has a generator description as in Definition 2.5. It is

more convenient, however, to define generators of Green’s matrices in a different way because their

rank-one submatrices capture the diagonal. These new generators are given next.

Definition 3.2 (Generator definition of Green’s matrices). A strictly upper HessenbergmatrixG is Green’s

(H, 1)-qs if it can be represented in the form

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ̂0τ1 τ̂0σ1τ2 τ̂0σ1σ2τ3 · · · · · · τ̂0σ1 . . . σn−1τn
σ̂1 τ̂1τ2 τ̂1σ2τ3 · · · · · · τ̂1σ2 . . . σn−1τn
0 σ̂2 τ̂2τ3 · · · · · · τ̂2σ3 . . . σn−1τn
...

. . .
. . .

. . .
. . .

...
...

. . .
. . . σ̂n−2 τ̂n−2τn−1 τ̂n−2σn−1τn

0 · · · · · · 0 σ̂n−1 τ̂n−1τn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.1)

where {σk , τk , σ̂k /= 0, τ̂k} are called generators of G.

Remark 3.3. Table 2 gives the conversion formulas from Green’s generators to quasi-separable gener-

ators.

Example 3.4. Unitary Hessenberg (1.3) and companion (1.5) matrices in fact belong to the class of

Green’s matrices. We prove this statement by specifying explicitly in Table 3 their generators as in

Definition 3.2.
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Table 2

(H, 1)-qs generators via Green’s generators.

qk dk gk bk hk

σ̂k τ̂k−1τk τ̂k−1σk σk τk

Table 3

Green’s generators of unitary Hessenberg and companion matrices.

Matrix k σk τk σ̂k τ̂k

(1.3) Any μk ρk μk −ρ∗k
(1.5) 0 – – – 1

> 0 1 −ak 1 0

Green’s matrices are Hessenberg, therefore there is bijection (1.2) between them and polynomial

systems. Theorem 3.5 characterizes the polynomial systems related to Green’s matrices via (1.1) in

terms of recurrence relations satisfied by them.

Theorem3.5 (Recurrence relations for Green’s polynomials). Let G be an n× n Green’s matrix (3.1) hav-

ing generators {σk , τk , σ̂k , τ̂k} and {λ0, λn} – nonzero parameters. Then a system of polynomials {rk(x)}nk=0
is related toG via (1.1)withλk = 1/σ̂k if andonly if polynomials rk(x) satisfy two-term recurrence relations[

f0(x)
r0(x)

]
=

[
β0
δ0

]
,

[
fk(x)
rk(x)

]
=

[
αk βk
γk δk

] [
fk−1(x)

x · rk−1(x)
]
, (3.2)

with δk = λk.
Proof (Necessity). Let {rk(x)}nk=0 satisfy recurrence relations (3.3). Then for every k{

rk(x) = δkx · rk−1(x)+ γkfk−1(x),
fk(x) = βkx · rk−1(x)+ αkfk−1(x). (3.3)

Using the first equation in (3.3) we can get the expression for x · rk−1(x) and substitute it into the

second equation:

fk(x) = βk

δk
rk(x)+ Δk

δk
fk−1(x), (3.4)

whereΔk = αkδk − βkγk .
Eq. (3.4) for different indices k can be used to eliminate recursively fk-terms in the first equation in

(3.3). The final result is

rk(x) =
(
δkx + γkβk−1

δk−1

)
rk−1(x)+ γkΔk−1βk−2

δk−1δk−2
rk−2(x)+ · · · + γkΔk−1 . . . Δ1β0

δk−1 . . . δ0
r0(x).

(3.5)

These are the unique n-term recurrence relations for the system of polynomials rk(x) and, hence, there
is a unique strictly upper Hessenberg matrix

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−β0γ1
δ0δ1

−β0Δ1γ2
δ0δ1δ2

−β0Δ1Δ2γ3
δ0δ1δ2δ3

· · · −β0Δ1···Δn−1γn
δ0...δn

1
δ1

−β1γ2
δ1δ2

−β1Δ2γ3
δ1δ2δ3

· · · −β1Δ2···Δn−1γn
δ1...δn

0 1
δ2

−β2γ3
δ2δ3

. . .
...

...
. . .

. . .
. . .

...

0 · · · 0 1
δn−1 −βn−1γn

δn−1δn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)
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Table 4

Conversion formulas: Green’s two-term r.r. coefficients⇐⇒ Green’s generators.

Green’s generators Green’s r.r. coefficients

σk τk σ̂k τ̂k αk βk γk δk

αkδk−βkγk
δk

− γk
δk

1
δk

βk
δk

σ̂kσk−τ̂kτk
σ̂k

τ̂k
σ̂k

− τk
σ̂k

1
σ̂k

related to system of polynomials {rk(x)}nk=0 via (1.1) with λk = δk . By comparing (3.6) and (3.1) it is

easy to see that this matrix is Green’s.

(Sufficiency). Let A have generator representation {σk , τk , σ̂k , τ̂k} as in the Definition 3.2. Since it is also

(H, 1)-qs, its quasi-separable generators (2.5) can be chosen as in Table 2. It was proved in [7] that

polynomials related to (H, 1)-qs matrices satisfy EGO-type recurrence relations[
F0(x)
r0(x)

]
= 1

q0

[
0

1

]
,

[
Fk(x)
rk(x)

]
= 1

qk

[
qkpkbk −qkgk
pkhk x − dk

] [
Fk−1(x)
rk−1(x)

]
. (3.7)

Substituting Green’s generators from Table 2 into (3.7) we reach the two-term recurrence relations[
F0(x)
r0(x)

]
= 1

σ̂0

[
0

1

]
,

[
Fk(x)
rk(x)

]
= 1

σ̂k

[
σ̂kσk −σ̂kτ̂k−1σk
τk x − τ̂k−1τk

] [
Fk−1(x)
rk−1(x)

]
. (3.8)

We define

Xk =
[−1 τ̂k

0 1

]
with X

−1
k =

[−1 τ̂k
0 1

]
.

Using Xk and X
−1
k we can transform recurrence relations (3.8) into

Xk

[
Fk(x)
rk(x)

]
=

(
Xk

1

σ̂k

[
σ̂kσk −σ̂kτ̂k−1σk
τk x − τ̂k−1τk

]
X
−1
k−1

)
Xk−1

[
Fk−1(x)
rk−1(x)

]
. (3.9)

After matrix multiplications, (3.9) is equivalent to[
fk(x)
rk(x)

]
= 1

σ̂k

[
σ̂kσk − τ̂kτk τ̂k−τk 1

] [
fk−1(x)

x · rk−1(x)
]
, (3.10)

where fk(x) = τ̂krk(x)− Fk(x). Hence, the system of polynomials {rk(x)}nk=0 satisfies recurrence rela-
tions (3.2). �

Remark 3.6. There are also conversion formulas (Table 4) between Green’s generators and recurrence

relations (r.r.) coefficients in (3.2).

Example 3.7 (Recurrence relations for Szegö polynomials). The well-known two-term recurrence rela-

tions for polynomials {φ#
k (x)}nk=0 orthogonal on the unit circle [21][

φ0(x)

φ#
0 (x)

]
= 1

μ0

[−ρ∗0
1

]
,

[
φk(x)

φ#
k (x)

]
= 1

μk

[
1 −ρ∗k−ρk 1

] [
φk−1(x)

x · φ#
k−1(x)

]
(3.11)

are a special case of Green’s recurrence relations (3.3).

Example 3.8 (Recurrence relations for Horner polynomials). Horner polynomials {pk(x)}nk=0 associated

with the companion matrix (1.5) satisfy

pk(x) = x · pk−1(x)+ ak. (3.12)

Since every companion matrix is Green’s (see Example 3.4) there must exist two-term recurrence

relations (3.3) for Horner polynomials. Indeed, one can easily derive them from (3.12):
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[
f0(x)
p0(x)

]
=

[
1

1

]
,

[
fk(x)
pk(x)

]
=

[
1 0

ak 1

] [
fk−1(x)

x · pk−1(x)
]
, (3.13)

where fk(x) = 1 for all k.

Since unitary Hessenberg and companion matrices are in Green’s class, CMV and Fiedler matrices

belong to the class of matrices obtained from Green’s via twist transformations. We suggest to call

such matrices twisted Green’s.

Definition 3.9 (Twisted Green’s matrices). A (1, 1)-qs matrix G is called twisted Green’s (H, 1)-qs if it
can be transformed into some Green’s matrix via twist transformations.

If a matrix G is Green’s defined by its generators {σk , τk , σ̂k , τ̂k} as in Definition 3.2, then twisted

matrix of pattern (0, 1, 0, 1, . . .) obtained from G via twist transformations is five-diagonal:

G(0, 1, 0, 1, . . .) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ̂0τ1 τ̂0σ1 0

σ̂1τ2 τ̂1τ2 σ̂2τ3 σ̂2σ3

σ̂1σ2 τ̂1σ2 τ̂2τ3 τ̂2σ3 0

0 σ̂3τ4 τ̂3τ4 σ̂4τ5 σ̂4σ5

σ̂3σ4τ̂3σ4 τ̂4τ5 τ̂4σ5 0

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.14)

This structure yields a simple lemma:

Lemma 3.10. A five-diagonal matrix A is twisted Green’s of pattern (0, 1, 0, 1, 0, . . .) if and only if it is

block bidiagonal⎡⎢⎢⎢⎣
� � 0
� � � �

� � � � 0
0 � � � �

� � � � 0

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

⎤⎥⎥⎥⎦ (3.15)

with rank-one 2× 2 blocks.

Proof. Necessity is obvious because the 2× 2 blocks in (3.14) are of rank one. To prove sufficiency

notice that if the 2× 2 blocks in (3.15) are of rank one, then there exist generators {σk , τk , σ̂k , τ̂k} such
that A coincides with (3.14) and is, in fact, twisted Green’s. �

Theorem 3.5 and Lemma 3.10 yield the following theorem.

Theorem 3.11. A system of polynomials R = {rk(x)}nk=0 satisfies Green’s two-term recurrence relations

(3.3) if and only if it is related to a matrix A of zero pattern (3.15)with rank one 2× 2 submatrices via (1.1)

with λk = δk.

4. Factorization of Green’s matrices

In this sectionwe show that twisted Green’smatrices are exactly the ones admitting a factorization

similar to (1.9), (2.4), (2.5) valid for unitary Hessenberg, companion, CMV and Fiedler matrices. We

start with proving that Green’s matrices admit such a factorization.

Theorem 4.1. Let G be an arbitrary Green’s matrix specified by its generators as in Definition 3.2. Then the

following decomposition holds:
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G = Θ0Θ1· · ·Θn−1Θn, (4.1)

where

Θ0 =
[
τ̂0

In−1

]
, Θk =

⎡⎢⎢⎣
Ik−1

τk σk
σ̂k τ̂k

In−k−1

⎤⎥⎥⎦ , Θn =
[
In−1

τn

]
. (4.2)

Proof. It is easy to see by performing matrix multiplications that the product on the right in (4.1) is

equal to the Green matrix G defined in (3.1). �

Example 4.2. Taking Green’s generators (Table 3) of a unitary Hessenberg matrix M and substituting

them into (4.2) we get the Schur representation

M = Γ0Γ1Γ2 . . . Γn,

Γ0 =
[
ρ∗0

In−1

]
, Γk =

⎡⎢⎢⎣
Ik−1

−ρk μk

μk ρ∗k
In−k−1

⎤⎥⎥⎦ , Γn =
[
In−1

−ρn
]

(4.3)

as the consequence of Theorem 4.1.

Similarly, substituting generators (Table 3) of a companionmatrix C into (4.2) we get the factoriza-

tion

C = A1A2 . . . An,

Ak =
⎡⎢⎢⎣
Ik−1

−ak 1

1 0

In−k−1

⎤⎥⎥⎦ , An =
[
In−1

−an
]
.

(4.4)

Kimura [24] and Fiedler [35] proved that CMV and Fiedler matrices admit factorizations into products

of the same matrices Γk (4.3) and Ak (4.4) but with interchanged order of terms:

K = [Γ0Γ2 . . .] · [Γ1Γ3 . . .] (4.5)

F = [A1A3 . . .] · [A2A4 . . .] (4.6)

BothmatricesK andF are twistedGreen’sobtainedvia twist transformations fromHessenbergmatrices

M (1.3) and C (1.5) correspondingly. Hence, there should be a relation between the order of terms in

factorizations and twist transformations. The next theorem shows that this is indeed the case.

Theorem 4.3. Let G be a twisted Green’s matrix of pattern (i1, i2, . . . , in) with generators {σk , τk , σ̂k , τ̂k}.
Then it can be constructed by the following procedure:

G0 = Θ0, Gk =
{
Gk−1Θk if ik = 0,

ΘT
k Gk−1 if ik = 1,

k = 1, . . . n, and G = Gn, (4.7)

whereΘk are matrices from (4.2).

Proof. We know from Theorem 4.1 that the assertion holds in the case ik = 0 for all k. Hence, we only

need to prove that

(i) the matrix G from (4.7) is (1, 1)-qs;
(ii) the operation Gk−1Θk −→ ΘT

k Gk−1 is equivalent to a twist transformation for every k.
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First, note that

G1 =
[
τ̂0τ1 τ̂0σ1
σ̂1 τ̂1

]
if i1 = 0, G1 =

[
τ̂0τ1 σ̂1
τ̂0σ1 τ̂1

]
if i1 = 1.

Both matrices are (1, 1)-qs with generators:

{g1 = τ̂0σ1, q1 = σ̂1, p2 = h2 = 1} and {q1 = τ̂0σ1, g1 = σ̂1, p2 = h2 = 1} .
Thus one is obtained from the other by a twist transformation.

Suppose the same is true for all indicesup to k − 1. Consider the last two rowsof thematrixGk−1Θk:⎡⎢⎢⎢⎢⎣
g1b2 . . . bk−1 0

· · · · · ·
gk−1 0

dk 0

0 1

⎤⎥⎥⎥⎥⎦
[
τk σk
σ̂k τ̂k

]
=

⎡⎢⎢⎢⎢⎣
g1b2 . . . bk−1τk g1b2 . . . bk−1σk· · · · · ·

gk−1τk gk−1σk
dkτk dkσk
σ̂k τ̂k

⎤⎥⎥⎥⎥⎦ .
One can easily see that Gk−1Θk is (1, 1)-qs with generators

{qk = σ̂k , ak = 0, pk = 1, gk = dkσk , bk = σk , hk = τk} .
Similarly, by observing the last two rows of the matrix ΘT

k Gk−1 one can check that it is also (1, 1)-qs
with generators

{qk = dkσk , ak = σk , pk = τk , gk = σ̂k , bk = 0, hk = 1} .
Hence, ΘT

k Gk−1 is obtained from Gk−1Θk via twist transformation and the assertion of the theorem

holds by induction. �

Corollary 4.4. For every Green’s matrix G of size n having decomposition (4.1) there are 2n (possibly not

distinct) twisted Green’s matrices obtained via the procedure (4.7) and related to the same system of

polynomials as G.

The next two examples apply Theorem 4.3 to CMV and Fiedler matrices.

Example 4.5 (Factorization of a CMV matrix). CMV matrix (1.4) is twisted Green’s matrix of pat-

tern (0, 1, 0, 1, 0 . . .) obtained from the Green’s (unitary Hessenberg) matrix (1.3) via twist trans-

formations. It admits factorization (4.7) with Θk coinciding with Γk from (4.3). Note that all Γk are

symmetric and ΓiΓj = ΓjΓi if |i− j| > 1. Hence the factorization (4.7) coincides with the known

factorization (4.5):

K = Γ0Γ2 . . . Γ1Γ3. . . = BC

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗0 −ρ2 μ2

μ2 ρ∗2 −ρ4 μ4

μ4 ρ∗4
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ρ1 μ1

μ1 ρ∗1 −ρ3 μ3

μ3 ρ∗3 −ρ5
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(4.8)

where B and C are products of even and odd Γi’s. Formula (4.8) is exactly the well-known tridiagonal

factorization of CMV matrices.

Example 4.6 (Factorization of a Fiedler matrix). Fiedler matrix (1.6) is twisted Green’s matrix of pattern

(0, 0, 1, 0, 1, . . .) obtained from the Green’s (companion) matrix (1.5) via twist transformations. It
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admits the factorization (4.7) with Θk coinciding with Ak from (4.4) (and A0 = In). By the same

reasoning as in the previous example this factorization (4.7) coincides with (4.6) derived by Fiedler

[35]:

F = A1A3 . . . A2A4. . . = BC

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a1 1

1 0

−a3 1

1 0

−a5
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−a2 1

1 0

−a4 1

1 0

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.9)

Example 4.7 (Factorization of the Daubechies wavelet matrix). The seminal paper [16] of Ingrid

Daubechies constructed the first orthogonal wavelets beyond the simple average-difference pair due

to Haar in 1910. The decompostion of a signal into low and high frequencies is executed by a pair of

filters, each with four coefficients:

Lowpass filter coefficients: 1+√3, 3+√3, 3−√3, 1−√3

Highpass filter coefficients: 1−√3, −3+√3, 3+√3, 1−√3

These are typical rows (with a normalization factor 1/8 for unit row sums) of the “wavelet matrix”

W that multiplies a signal. Normally these rows are shifted by two columns and repeated, to produce

a shift-invariant (block Toeplitz) matrix. Shift-invariance allows Fourier methods to apply – we note

below that the Green’s matrix factorization allows a simple construction of “time-varying” wavelets,

which has been a difficult obstacle in previous constructions.

The relations between the eight Daubechies coefficients produce exactly a bidiagonal matrix in

CMV form, with 2× 2 blocks W1 andW2 of rank one.

W =
⎡⎢⎢⎣
. . .
W1 W2

W1 W2

. . .

⎤⎥⎥⎦
W1 =

[
1+√3 3+√3

1−√3 −3+√3

]

W2 =
[
3−√3 1−√3

3+√3 −1−√3

]
Now we introduce the factorization (which may be new to wavelet theory). The factors are 2× 2

block diagonal. We show columns of B and rows of C:

B =
⎡⎣[b1 b2] [b1 b2] [b1 b2]

⎤⎦ , C =

⎡⎢⎢⎢⎢⎢⎣

[
cT1

cT2

]
[
cT1

cT2

]
⎤⎥⎥⎥⎥⎥⎦.

The shift between B blocks and C blocks makes BC block bidiagonal, with blocks W1 = b1c
T
2 and

W2 = b2c
T
1 of rank one. To match the numbers in W , we take

[b1 b2] =
[
1+√3 −1+√3

1−√3 1+√3

] [
cT1

cT2

]
=

[√
3 −1

1
√

3

]
May we add three comments on possible extensions of this factorization of one particular filter

bank, which is associated with the first of the Daubechies wavelets.

1. It is natural to ask about factorizations (with suitable block sizes) of other important filter banks.

Conceivably, the wavelet transform can be executed using the factors directly at each level. The

inverse wavelet transform is evident from C−1 and B−1 separately, as in the lifting scheme.
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2. The shift-invariant matrix W is normally modified, for example by “symmetric reflection”, in

its boundary rows and columns. Early wavelet papers required complicated constructions to

preserve good properties, in this step from infinite-length to finite-length signals. B and C offer

a new approach to the boundary rows, still to be developed.

3. The factorization immediately suggests that W can become time-varying (instead of block

Toeplitz) by making B and C vary block by block.

It remains to use the generators, and the quasi-separable property and the twist transformations,

of wavelet matrices.

Though matrices Γk and Ak in the above examples are symmetric, it turns out that matrices Θk

in Theorem 4.3 can be moved from right to left without transposition and this operation does not

change characteristic polynomials. This additional symmetry of twisted Green’s matrices is proved in

Theorem 4.8.

Theorem 4.8. LetGbeaGreen’smatrixof sizendescribedbygenerators {σk , τk , σ̂k , τ̂k}and let (j1, j2, . . . , jn)
be an arbitrary sequence of binary digits. Then all 2n matrices G(j1, j2, . . . , jn) constructed from Θk in

(4.2) by

G0 = Θ0, Gk =
{
Gk−1Θk if ik = 0,

ΘkGk−1 if ik = 1,
k = 1, . . . , n, G(j1, j2, . . . , jn) = Gn, (4.10)

share the same system of characteristic polynomials.

Proof. FromTheorem3.5we know that characteristic polynomials {rk(x)}nk=0 of principal submatrices

of G satisfy two-term recurrence relations:[
Gk(x)
rk(x)

]
=

[
σ̂kσk − τ̂kτk τ̂k

τk 1

] [
Gk−1(x)

x · rk−1(x)
]
. (4.11)

ΘT
k is obtained from Θk via the interchange of σk and σ̂k , and the recurrence relations (4.11) are

symmetric with respect to this operation. Hence, changing ΘT
k to Θk in the assertion of Theorem 4.3

does not change the polynomials rk(x). �

ThoughmatricesG(j1, j2, . . . , jn) in (4.10) share the same system of characteristic polynomials, they

cannot be obtained from the original matrix G via twist transformations. Therefore, the definition of

pattern for twisted (H, 1)-qs matrices is not applicable to them. In order to distinguish among the

matrices (4.10), we define an alternative pattern.

Definition4.9 (Alternative pattern of twistedGreen’smatrices). A sequence of binary digits (j1, j2, . . . , jn)
is the pattern of a twisted Green’s matrix G(j1, j2, . . . , jn) if it is obtained from some Green’s matrix G

having decomposition (4.1) via procedure (4.10).

Matrices defined by (4.10) are found to be extremely important in connection with Laurent poly-

nomials. It will be shown in the next section that they serve as multiplication operators in bases of

Laurent polynomials.

4.1. Pentadiagonal Green’s matrices and some generalizations of the results due Fiedler [35]

In this subsection we will study properties of pentadiagonal (block diagonal) twisted Green‘s

matrices. To be more concrete we will consider matrices with pattern (1, 0, 1, 0 . . .). Applying twist

transformations for corresponding indices to the general Green’s matrix (3.1) it is easy to see that a

pentadiagonal twisted Green’s matrix of pattern (1, 0, 1, 0 . . .) has the following form:
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G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ̂0τ1 σ̂1τ2 σ̂1σ2
τ̂0σ1 τ̂1τ2 τ̂1σ2 0

0 σ̂2τ3 τ̂2τ3 σ̂3τ4 σ̂3σ4
σ̂2σ3 τ̂2σ3 τ̂3τ4 τ̂3σ4 0

0 σ̂4τ5 τ̂4τ5 σ̂5τ6 σ̂5σ6
σ̂4σ5 τ̂4σ5 τ̂5τ6 τ̂5σ6 0

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.12)

Remark 4.10. The matrix G in (4.12) can be transformed by the odd-even permutation similarity to

the block form[
X11 X12

X21 X22

]
,

where

X11 =

⎡⎢⎢⎢⎣
τ̂0τ1 σ̂1σ2

τ̂2τ3 σ̂3σ4
τ̂4τ5 σ̂5σ6

. . .
. . .

⎤⎥⎥⎥⎦ , X12 =

⎡⎢⎢⎢⎣
σ̂1τ2
σ̂2τ3 σ̂3τ4

σ̂4τ5 σ̂5τ6
. . .

. . .

⎤⎥⎥⎥⎦ ,

X21 =

⎡⎢⎢⎢⎣
τ̂0σ1 τ̂1σ2

τ̂2σ3 τ̂3σ4
τ̂4σ5 τ̂5σ6

. . .
. . .

⎤⎥⎥⎥⎦ , X22 =

⎡⎢⎢⎢⎣
τ̂1τ2
σ̂2σ3 τ̂3τ4

σ̂4σ5 τ̂5τ6
. . .

. . .

⎤⎥⎥⎥⎦ .

According to Theorem 4.3 this matrix can be decomposed into the product of matrices Θk from

(4.2) in the following way:

G = ΘT
1Θ

T
3Θ

T
5 . . .︸ ︷︷ ︸

odd indices

Θ0Θ2Θ4 . . .︸ ︷︷ ︸
even indices

= Go · Ge, (4.13)

where the product of matricesΘk with odd and even indices is

Go =

⎡⎢⎢⎢⎢⎢⎢⎣
τ1 σ̂1
σ1 τ̂1

τ3 σ̂3
σ3 τ̂3

. . .

⎤⎥⎥⎥⎥⎥⎥⎦ , Ge =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ̂0
τ2 σ2
σ̂2 τ̂2

τ4 σ4
σ̂4 τ̂4

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This generalizes the tridiagonal decompositions (4.8) and (4.9) of CMV and Fiedler matrices. Let us

note that if {rk}nk=0 is the polynomial system related to matrix G, then matrices Go and Ge depends

only on odd and even coefficients of the recurrence relations (4.11) correspondingly.

As in [5], the new pentadiagonal matrix (4.12) can be used to estimation the eigenvalues in (3.1).

Since

det(xI − GoGe) = det(xG−1o − Ge) = det(xG−1e − Go),

for non-singular Go or Ge, we obtain

Theorem 4.11. Let P(x) be a characteristic polynomial of the Green’s matrix (3.1). Then the roots of P(x) =
0 coincide with the roots of (4.14) in which the n× n matrix is tridiagonal:
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∣∣∣∣∣∣∣∣∣∣∣∣∣

x
τ̂1
δ1
− τ̂0 −x σ̂1

δ1−x σ1
δ1

x
τ1
δ1
− τ2 −σ2
−σ̂2 x

τ̂3
δ3
− τ̂2 −x σ̂3

δ3−x σ3
δ3

x
τ3
δ3
− τ4 −σ4
. . .

. . .
. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.14)

and δk = τkτ̂k − σkσ̂k. The case det(xG−1e − Go) = 0 is rather similar.

5. Laurent polynomials and multiplication operators

Let M be an infinite-dimensional unitary Hessenberg matrix and {φ#
k (x)}k � 0 be the infinite se-

quence of polynomials orthogonal on the unit circle related to M via (1.1). It is widely known that M

represents multiplication by x in the basis {φ#
k (x)}:[

φ#
0 (x) φ

#
1 (x) φ

#
2 (x)· · ·

]
M = x

[
φ#
0 (x) φ

#
1 (x) φ

#
2 (x)· · ·

]
. (5.1)

If Mn is of size n and λ is a root of polynomial φ#
n (x), then we have a left eigenvector of Mn:[

φ#
0 (λ) φ

#
1 (λ)· · ·φ#

n−1(λ)
]
Mn = λ

[
φ#
0 (λ) φ

#
1 (λ)· · ·φ#

n−1(λ)
]

(5.2)

For Szegö polynomials {φ#
k (x)}k � 0 define right Laurent polynomials as follows:

χk(x) =
{
x−lφk(x), k = 2l,

x−lφ#
k (x), k = 2l + 1,

(5.3)

where φk(x) are auxiliary polynomials from (3.11). It was shown in [13] that the right Laurent poly-

nomials {χk(x)}k � 0 are orthogonal in the same inner product as {φ#
k (x)}k � 0. Therefore, they can be

obtained using the Gram–Schmidt procedure starting with the ordered set {1, x, x−1, x2, x−2, . . .}.
It is known due to [13] that an infinite CMV matrix K plays the same role for Laurent polynomials

{χk(x)}k � 0 as unitary Hessenberg does for Szegö polynomials:

[χ0(x) χ1(x) χ2(x)· · ·] K = x [χ0(x) χ1(x) χ2(x)· · ·] . (5.4)

Similarly to (5.2) if λ is an eigenvalue of an n× n CMV matrix Kn, then

[χ0(λ) χ1(λ)· · ·χn−1(λ)] Kn = λ [χ0(λ) χ1(λ)· · ·χn−1(λ)] . (5.5)

The proofs of (5.1), (5.2) and (5.4), (5.5) are based on the orthogonality of polynomials {φ#
k (x)} and{χk(x)}. We are to show that all the above results can be generalized to twisted Green’s matrices and

associated Laurent polynomials (and our proof does not require orthogonallity).

As shown in Theorem 4.1 every infinite Green’s matrix G defined by generators {σk , τk , σ̂k , τ̂k} has
the following factorization:

G = Θ0Θ1Θ2 . . . , whereΘ0 =
[
τ̂0

I

]
, Θk =

⎡⎢⎢⎣
Ik−1

τk σk
σ̂k τ̂k

I

⎤⎥⎥⎦ . (5.6)

The polynomials {rk(x)}k � 0 related to G via (1.1) with λk = 1
σ̂k

satisfy Green’s two-term recurrence

relations (Theorem 3.5):[
fk(x)
rk(x)

]
= 1

σ̂k

[
σ̂kσk − τ̂kτk τ̂k−τk 1

] [
fk−1(x)

x · rk−1(x)
]
. (5.7)
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Let J = (j1, j2, j3, . . .) be an infinite sequence of binary digits. We define twisted Green’s matrices GJ
by the recursion

G0 = Θ0, Gk =
{
Gk−1Θk if jk = 0,

ΘkGk−1 if jk = 1,
GJ = G∞, (5.8)

Matrices GJ are related to the same polynomials {rk(x)}nk=0 via (1.1) with λk = 1
σ̂k

as G (Theorem 4.8).

For every J we also define a sequence of Laurent polynomials {ψk(x)}k � 0:

ψk(x) =
⎧⎨⎩x−

∑k+1
m=1 jm rk(x) if jk+1 = 0,

x−
∑k+1

m=1 jm fk(x) if jk+1 = 1,
(5.9)

where fk(x) are the auxiliary polynomials from (5.7). The next theorem shows that matrices GJ
represent multiplication operators in the frame of Laurent polynomials (5.9).

Theorem 5.1. Let GJ be a twisted Green’s matrix of alternative patternJ = (j1, j2, j3 . . .) defined by (5.8)
and {ψk(x)}k � 0 be Laurent polynomials (5.9). Then

[ψ0(x) ψ1(x) ψ2(x)· · ·] GJ = x [ψ0(x) ψ1(x) ψ2(x)· · ·] . (5.10)

Proof. Solving (5.7) with respect to x · rk−1(x) and fk we get

[
x · rk−1 fk

] = [
fk−1 rk

] [
τk σk
σ̂k τ̂k

]
. (5.11)

Denote Ψk = [ψ0(x) ψ1(x) . . . ψk−1(x)]. We will show by induction that[
Ψk ; x−

∑k
m=1 jm rk

]
Gk(1 : k+ 1, 1 : k+ 1) =

[
xΨk ; x−

∑k
m=1 jm fk

]
, (5.12)

where Gk are matrices from (5.8).

This holds for k = 0 because G0(1 : 1, 1 : 1) = Θ0(1 : 1, 1 : 1) = [ τ0 ] and [ r0 ][ τ0 ] = [f0 ].
Assume (5.12) holds for some k, and consider two cases:

jk+1 = 0. Padding rows in (5.12) with x−
∑k+1

m=1 jm rk+1 and noticing that Gk(1 : k+ 2, 1 : k+ 2) =
diag (Gk(1 : k+ 1, 1 : k+ 1), 1)we get

[
Ψk ; x−

∑k+1
m=1 jm [rk ; rk+1]

]
Gk(1 : k+ 2, 1 : k+ 2) =

[
xΨk ; x−

∑k+1
m=1 jm [fk ; rk+1]

]
.

Multiply byΘk+1 from the right and use (5.11):[
Ψk+1 ; x−

∑k+1
m=1 jm rk+1

]
Gk+1(1 : k+ 2, 1 : k+ 2) =

[
xΨk+1 ; x−

∑k+1
m=1 jm fk+1

]
,

where Gk+1 = GkΘk+1 andψk(x) = x−
∑k+1

m=1 jm rk .

jk+1 = 1. Using (5.11) one can easily see that

[
Ψk ; x−

∑k+1
m=1 jm [fk ; rk+1]

]
Θk+1(1 : k+ 2, 1 : k+ 2)

=
[
Ψk ; x−

∑k
m=1 jm rk ; x−

∑k+1
m=1 jm fk+1

]
.
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Multiply by Gk(1 : k+ 2, 1 : k+ 2) from the right and use (5.12):[
Ψk+1 ; x−

∑k+1
m=1 jm rk+1

]
Gk+1(1 : k+ 2, 1 : k+ 2) =

[
xΨk+1 ; x−

∑k+1
m=1 jm fk+1

]
,

where Gk+1 = Θk+1Gk andψk(x) = x−
∑k+1

m=1 jm fk .

Finally, letting k→∞ in (5.12) we obtain (5.10). �

We next apply Theorem 5.1 to CMV and Fiedler matrices.

Example 5.2 (CMV matrix and Laurent polynomials). Each infinite-dimensional unitary Hessenberg

matrixM is Green’s having the factorization

M = Γ0Γ1Γ2 . . . , (5.13)

where matrices Γk are defined in (2.4). Hence,M has the alternative pattern (0, 0, 0, . . .) and in accor-

dance with Theorem 5.1 represents the multiplication operator (5.1) in the basis of Szegö polynomials

{φ#
k (x)}k � 0 satisfying (3.11).

Each infinite CMV matrix K has the factorization

K = [Γ0Γ2 . . .] · [Γ1Γ3 . . .]

and hence it is twisted Green’s of alternative pattern J = (0, 1, 0, 1, . . .). Hence, from (5.9) we get

k+1∑
m=1

jm =
{
l k = 2l

l k = 2l − 1
and ψk(x) =

{
x−lφ#

k (x) k = 2l,

x−lφk(x) k = 2l − 1.
(5.14)

Theorem 5.1 says that matrix K represents the multiplication operator in the basis of polynomials

{ψk(x)}k � 0 which, in fact, coincides with (5.4) becauseψk(x) ≡ χk(x) from (5.3).

Example 5.3 (Fiedler matrix and Laurent polynomials). Each infinite companion matrix C admits the

factorization

C = A1A2A3A4, . . . (5.15)

with matrices Ak defined in (2.5). Hence, C is twisted Green’s of alternative pattern (0, 0, 0, 0, . . .).
According to Theorem 5.1 C represents the multiplication operator in the basis of Horner polynomials

(3.12):

[p0(x) p1(x) p2(x). . .] C = x [p0(x) p1(x) p2(x). . .] .

This result is well-known in contrast to the similar result for Fiedler matrix F presented next.

Fiedler matrix (1.6) admits the factorization

F = [A1A3. . .] · [A2A4. . .]

and, hence, it is twisted Green’s of alternative pattern J = (1, 0, 1, 0, . . .). Laurent polynomials asso-

ciated with it are as follows

ψk(x) =
[
x−l−1 if k = 2l,

x−l−1pk(x) if k = 2l + 1.
(5.16)

This is a direct consequence of (3.13) and (5.9), and F is the multiplication operator in this basis:[
x−1 ; x−1p1(x) ; x−2 ; x−2p3(x). . .

]
F = x

[
x−1 ; x−1p1(x) ; x−2 ; x−2p3(x). . .

]
.

The major remark that has to be made is that Laurent polynomials {ψk(x)} in (5.10) do not neces-

sarily form a basis. In fact, they can be linearly dependent, as we illustrate.
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Example 5.4. Consider the infinite Green’s matrix

G = Θ0Θ1Θ2 . . . ,

where

Θ0 = I, Θ1 =
⎡⎣0 0

1 1

I

⎤⎦ , Θk =
⎡⎢⎢⎣
Ik−1

0 1

1 0

I

⎤⎥⎥⎦ , k � 2. (5.17)

According to (5.7) the polynomials related to G via (1.1) satisfy[
f0(x)
r0(x)

]
=

[
1

1

]
,

[
f1(x)
r1(x)

]
=

[
0 1

0 1

] [
f0(x)

x · r0(x)
]
≡

[
x

x

]
,[

fk(x)
rk(x)

]
=

[
1 0

0 1

] [
fk−1(x)

x · rk−1(x)
]
≡

[
x

xk

]
, k � 2.

Now take a twisted Green’s matrix GJ of alternative pattern J = {0, 1, 0, 0, 0, . . .}. Then the Laurent

polynomials {ψk(x)}k � 0 in (5.9) are:

[ψ0(x) ; ψ1(x) ; ψ2(x) ; ψ3(x) ; ψ4(x) ; ψ5(x) ; . . .] =
[
1 ; 1 ; x ; x2 ; x3 ; . . .

]
.

The identity (5.10) still holds while {ψk(x)}k � 0 is not a basis, because the first two polynomials are

linearly dependent.

In order to guarantee that Laurent polynomials in (5.10) forma basisweneed to impose a restriction

on the related Green’s matrix. This limitation is expressed as a necessary and sufficient condition in

the next theorem.

Theorem 5.5. Let G be a Green’s matrix defined by the factorization (5.6) and let k0 be first index such

that Θk0 is singular. Then for any alternative pattern J = (j1, j2, j3 . . .) with jk = 0 for k > k0 Laurent

polynomials {ψk(x)}k � 0 defined in (5.9) are linearly independent.

Proof. For all indices k < k0, the matricesΘk are invertible and

|Θ0| = τ̂0 /= 0, |Θk| = τ̂kτk − σ̂kσk /= 0.

Hence, it follows directly from the recurrence relations (5.7) that the free coefficient of an auxiliary

polynomial fk(x) for every k < k0 is not zero:

τ̂0(σ̂1σ1 − τ̂1τ1)· · ·(σ̂kσk − τ̂kτk)
σ̂0σ̂1· · ·σ̂k = (−1)k |Θ0||Θ1|· · ·|Θk|

σ̂0σ̂1· · ·σ̂k . (5.18)

After shifting polynomial fk(x) to the left in (5.9) this free coefficient becomes leading on the left.

Therefore, every new polynomial ψk(x) in (5.9) for jk+1 = 1 and k + 1� k0 is independent from the

previous ones, because its leftmost term is not in their span.

Now observe that polynomials rk(x) in (5.9) are always of increasing degrees. Hence,ψk(x) in (5.9)

for jk+1 = 0 is not in the span of the previous Laurent polynomials. Since jk = 0 for all k > k0, all

polynomialsψk(x) in (5.9) are linearly independent.

Conversely, suppose that k is the first index greater than k0 such that jk = 0, then the leading

coefficient on the left of the Laurent polynomial ψk(k) is zero because it is equal to (5.18), where

|Θk0 | = 0. Note that all the Laurent polynomialsψm(x) form < k are linearly independent (the same
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justification as was given above). Hence, ψk(x) is in the span of {ψm(x)}k−1m=0. This completes the

proof. �

Remark 5.6. Let us note that both infinite unitary Hessenberg and companion matrices satisfy the

condition of Theorem 5.5 because all the matrices in factorizations (5.13) and (5.15) are invertible.

Therefore, polynomials (5.14) and (5.16) for CMV and Fiedlermatrices are bases in the space of Laurent

polynomials.

In thefinite-dimensional case Theorem5.1 gives theway todescribe eigenvectors of twistedGreen’s

matrices under the assumption that is made in Theorem 5.5. This motivates us to introduce a new

slightly narrower class of matrices for which we will find the eigenvectors.

5.1. Eigenvectors for the non-degenerate case

Definition 5.7. Let GJ be an n× n twisted Green’s matrix of alternative pattern J = (j1, j2, . . . , jn)
defined via the factorization

G0 = Θ0, Gk =
{
Gk−1Θk if jk = 0,

ΘkGk−1 if jk = 1,
GJ = Gn, (5.19)

where

Θ0 =
[
τ̂0

In−1

]
, Θk =

⎡⎢⎢⎣
Ik−1

τk σk
σ̂k τ̂k

In−k−1

⎤⎥⎥⎦ , Θn =
[
In−1

τn

]
. (5.20)

If k0 is the first index for which Θ0 is singular and jk = 0 for all k > k0, then GJ is called semi-non-

degenerate, otherwise it is called semi-degenerate4.

Remark 5.8. Being semi-degenerate is not the same as being singular. Consider a twisted Green’s

matrix G defined via the factorization (5.19). If there is a singular termΘk in this factorization, matrix

G is singular. But if all the singular terms are multiplied from the right in (5.19), matrix G is semi-non-

degenerate.

We now state the theorem which describes the structure of eigenvectors of semi-non-degenerate

twisted Green’s matrices.

Theorem 5.9. Let GJ be a semi-non-degenerate twisted Green’s matrix of alternative pattern J = (j1, j2,
. . . , jn). Then for every eigenvalueλ of GJ of multiplicity m, the eigenvector isΨ (0)(λ) and the generalized

eigenvectors are Ψ (1)(λ) to Ψ (m−1)(λ) :
Ψ (0)(λ) · GJ = λ · Ψ (0)(λ),
Ψ (1)(λ) · GJ = λ · Ψ (1)(λ)+ Ψ (0)(λ),· · · · · · · · ·
Ψ (m−1)(λ) · GJ = λ · Ψ (m−1)(λ)+ Ψ (m−2)(λ).

(5.21)

Ψ (0)(x) = x
∑n

k=1 jk · [ψ0(x) ψ1(x)· · ·ψn−1(x)] and Ψ (k)(λ) denotes the kth derivative of Ψ (0)(x) eval-
uated at λ, whereψi(x) are the Laurent polynomials defined in (5.9).

Proof. To prove (5.21) let us note that (5.11) implies

x · rn−1 = τnfn−1 + σ̂nrn,
4 We reserve the term degenerate to another class of matrices defined further in the text.
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which can be used to eliminate the last elements in the rows of (5.12) to get

[Ψn] GJ = x [Ψn]− x−
∑n

k=1 jk σ̂n[0 . . . 0 rn(x)] ·
{
In jn = 0,

Gn−1(1 : n, 1 : n) jn = 1.

Multiplying this identity by x
∑n

k=1 jk we have

Ψ (0)(x) · GJ = x · Ψ (0)(x)+ [0. . .0 rn(x)] · A, (5.22)

where A is a constant matrix and Ψ (0)(x) consists of polynomials which form a basis in the span of

{1, x, x2, . . ., xn−1} (apply Theorem 5.5).

Since λ has multiplicity m, it is a root of rn(x) in (5.22) with

rn(λ) = r′n(λ) = r
′′
n(λ) = . . . = r(m−1)n (λ) = 0.

Differentiating (5.22) with respect to x m− 1 times and substituting λ for x we get the desired result

(5.21), where vectorsΨ (0)(λ), . . .,Ψ (m−1)(λ) are linearly independent due to linear independence of

polynomials which form Ψ (0)(x). �

Corollary 5.10 (Eigenvectors of CMV matrices). The eigenvector of K which corresponds to λ is given by

[χ0(λ) χ1(λ) χ2(λ)· · ·χn−1(λ)] ,
where

χk(x) = x[
n
2
]
{
x−lφ#

k (x), k = 2l,

x−lφk(x), k = 2l − 1.

Corollary 5.11 (Eigenvectors of Fiedler matrices). The eigenvector of F which corresponds to λ is given by

[ψ0(λ) ψ1(λ) ψ2(λ)· · ·ψn−1(λ)] ,
where

ψk(x) = x[
n+1
2
]
{
x−l−1 if k = 2l,

x−l−1pk(x) if k = 2l + 1.

Let G be a Green’s matrix, G = Θ0Θ1. . .Θn with Θk invertible for k < n. It follows from Defini-

tion 5.7 of that all possible twisted Green’s matrices obtained from G are semi–non–degenerate and,

therefore, satisfy the conditions of Theorem 5.9. This motivates us to name this class of matrices.

Definition 5.12. LetGJ be a twistedGreen’smatrix of alternative pattern obtained from someHessen-

berg Green’s matrix G = Θ0Θ1. . .Θn. IfΘk are invertible for k < n then GJ is called non-degenerate,

otherwise it is degenerate.

Remark 5.13. CMV and Fiedler matrices are always non-degenerate.

A degenerate twisted Green’s matrix is always singular but the converse is not true. For instance,

a companion matrix is always non-degenerate (Remark 5.6) although it can be singular. Actually, a

non-degenerate Green’s matrix of size n is singular if and only if it has a choice of generators such that

τn = 0.

Degenerate Hessenberg Green’s matrices have a very transparent description via the condition on

ranks of their submatrices:

∃k ∈ [1, n− 1] such that rank G(1 : k+ 1, k : n) = 1. (5.23)
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The difference between rank definitions of general Green’s and degenerate Green’s matrices is illus-

trated in the picture below.
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�

∃k
(1 : k+ 1, k : n)

rank one

degenerate Green’s

5.2. Five-diagonal twisted Green’s matrices and Laurent polynomials

Consider general five-diagonal twisted Green’s matrix GJ of the alternative pattern J = (0, 1,
0, 1, . . .):

GJ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ̂0τ1 τ̂0σ1 0

σ̂1τ2 τ̂1τ2 σ2τ3σ2σ3

σ̂1σ̂2 τ̂1σ̂2 τ̂2τ3 τ̂2σ3 0

0 σ̂3τ4 τ̂3τ4 σ4τ5 σ4σ5
σ̂3σ̂4τ̂3σ̂4 τ̂4τ5 τ̂4σ5 0

. . .
. . .

. . .
. . .

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.24)

This matrix is the multiplication operator (Theorem 5.1):

[ψ0(x) ψ1(x) ψ2(x). . .] F = x [ψ0(x) ψ1(x) ψ2(x). . .]

in the basis of Laurent polynomials

ψk(x) =
{
x−lfk(x) k = 2l,

x−lrk(x) k = 2l + 1,

where fk(x) and rk(x) are defined by the recurrence relations (3.3). Directly from the structure (5.24)

of GJ we get the recurrence relations for Laurent polynomials {ψk(x)}k � 0:

x

[
ψ2n(x)
ψ2n+1(x)

]
= A2n

[
ψ2n−1(x)
ψ2n(x)

]
+ B2n+1

[
ψ2n+1(x)
ψ2n+2(x)

]
,

Ak =
[
σkτ̂k+1 τ̂kτk+1
σkσk+1 τ̂kσk+1

]
, Bk =

[
σ̂kτk+1 σ̂kσ̂k+1
τ̂kτk+1 τ̂kσ̂k+1

]
.

(5.25)

These relations generalize the ones for Laurent polynomials χk(x) in (5.3) derived, in [13].

6. Inversion of Green’s matrices

Theorem 6.1. Let G be a twisted Green’s matrix of alternative pattern J = (j1, j2, j3, . . .) given by its

generators {σk , τk , σ̂k , τ̂k}. Then its inverse G−1 is also twisted Green’s with the reversed alternative pattern

J̃ = (̃j1, j̃2, j̃3, . . .), j̃k = 1− jk , and generators {− σk
Δk

,
τ̂k
Δk

,− σ̂k
Δk

,
τk
Δk
} withΔk = τkτ̂k − σkσ̂k.
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