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1. INTR~OUCTI~N 

Let S*(a) denote the class of functions S(r) analytic in D(r : IL) < 1 }, 
normalized so that S(0) = 0, S’(0) = 1, and such that for some a, 0 < a < 1, 

2& zS’(z) > a 
S(z) 

(z E D). 

Then S(z) maps D univalently on a domain d that is starlike with respect to 
the origin. This means that for all t, 0 < t < 1, and all z, z E D, tS(z) E A. In 
other words tS(z) is subordinate to S(z) in D. 

The function K(z) is said to be convex of order LI in D if, and only if, 
zK’(z) E S*(a) and K(0) = 0. In this case for any a, 0 < a < 1, K(D) is a 
convex domain. In particular K(z) E S*(1/2) [ 141. 

Although the class S*(a) has been explored extensively by many authors 
over a long period of time not much seems to be known about the class of 
analytic functions G(z) that map D onto domains A that are starlike with 
respect to a boundary point. This point may be taken to be G(1) where 
G(1) = lim,, G(r), 0 < r < 1, is assumed to exist and where G(0) = 1. In 
this situation the domain A has the property that tG(z) + (1 - t) G( 1) E A, 
0 < t < 1, z E D. An example of an analytic function of the class under 
discussion is 

G(z) = fi ( /ye:, )a*9 %Z 1, IEk( = 1, 6, > 0, 
k=l 

It will be shown later that G(D) lies in a half-plane with a boundary 
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consisting of a finite number of slits lying on rays from the origin which is 
the boundary point G(1). Two of these slits meet at the origin. 

Another interesting example comes from an observation of Egerviry [2] in 
connection with the Cesko partial sums of the geometric series 
z+z2+ a.- + zn + --. . Let 

s;‘(z) = + [nz + (n - 1) z2 + (n - 2) z3 + *‘a +zy, 

syyz> = n(n y 1) [(n + 1) nz + n(n - 1) z2 + (n - l)(n - 2) z3 + *a* + 2z”]. 

Egerviry [2] has shown that S!,“(z) is univalently starlike for (z( < 1 with 
respect to the point 5’:‘(l) = (n + 1)/2 and that, in effect, S:‘(z) E S*(l/2). 
Furthermore, 

Then G(O)= 1, G(l)=0 and G( z is starlike in D with respect to the origin ) 
which is the boundary point G( 1). In this example G(D) lies in the half-plane 
9% G(z) > 0 since for z E D 

L@i G(z) - 1 > -1 G(z) - 1) = & S;‘(l) = -1. 

We introduce at this point three closely-related classes of analytic 
functions. 

DEFINITION 1. Let Y* denote the class of functions G(z) analytic in 
D{z: ]z( ( 1 }, normalized so that G(0) = 1, G(1) = lim,.+, G(r) = 0, and such 
that for some real a& [e’“G(z)] > 0, z E D. In addition let G(z) map D 
univalently on a domain starlike with respect to G(1). Let the constant 
function 1 also belong to the class P*. 

Let Y* denote the subset of JY* for which G(z) is assumed to be analytic 
on [z] = 1 as well as for (z[ < 1. 

DEFINITION 2. Let .Y denote the class of functions 

G(z)=1 +d,z+d2z2+...+d,z”+... 

analytic and non-vanishing in D, normalized so that G(0) = 1 and such that 

SE? 2zG’(z) 

G(z) 
(z E 0). 
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The main purpose of this paper is to study the properties of the class .F. A 
primary objective will be to show that 

It is an open question whether the class g coincides with the class g*. This 
is suggested by the fact that the inner and outer classes F* and .5?* have a 
great deal in common. 

The class F is closely related to the class S*(1/2). We shall show that a 
necessary and sufftcient condition that G(z) E L% is that there exists an 
S(z) E S*(1/2) such that 

G(z) = (1 - z) F. 

When G(z) E ZF’ the coefficients d,, n = 1,2,..., may be arbitrarily small in 
absolute value. On the other hand the example 

G(z) = (1 - z)( 1 - 2z cos $ + z’)- I”, 0 < 9 < 272, d, =cos$- 1, 

shows that the inequality ) d,, 1 < n ) d, 1, known to be true for close-to-convex 
functions 191, cannot be improved for the class CF. Yet, when in the represen- 
tation 

zG(z) = (1 - z) S(z), S(z) E s*(l/q, 

one restricts S(z) to be convex in D, we have the somewhat surprising result 
that 

Id ( < (2n + 1) 
nl 3 141, n = 2, 3,..., 

and the factor (2n + 1)/3 cannot be replaced by a smaller one. Equivalently, 
if K(z) = z + CFzI c,z” is convex in D, we have the new inequalities 

lC,+* -C,lZp I1 - c,L n = 2, 3,... . 

The function 

K(z)= 7 ismn9z” 
- n sin $ tl=l 



330 M. S. ROBERTSON 

is convex in D since zK’(z) = z(1 - 22 cos 4 + z’)) ’ E S*(O), and K(z) has 

It is of interest to note that the inequalities (1.2) are stronger than the ine- 
qualities 

n = 3, 4,..., (1.3) 

that easily follow from (1.2) by addition of the inequalities and the triangular 
inequality (A + B( ,< (A ( + (B(. 

The inequalities (1.2) can be rewritten in terms of the coefficients a, = nc, 
for S(z)=z+~~~,a,z”ES*(O): 

a PI+1 --%,<AyL 
n+l n 12-%l3 n = 2, 3,... . 

We shall show that (1.4) also holds for S(z) univalent in D if all the coef- 
ficients are real, or indeed if S(z) is merely typically real in D. Moreover 
(1.4) is stronger than the known inequalities for S E S*(O) due to Hummel 

[31: 

n = 3, 4,..., (1.5) 

which (1.4) imply. In the typically real case (1.4) again implies (1.5). The 
inequalities (1.5) were established by Leeman [5] and later by Krzyi and 
Zlotkiewicz [4]. 

When S(z) E S*(O) is an odd function and S(z) = z + ujz3 + a5z5 + .a. + 
a*n+1z 

*n+1 + . . . we also have the new inequalities: 

Ia Zn+l-~2”-11~nll-~3l~ n = 2, 3,... . (l-6) 

For functions 

P(z)= 1 + F P”Z” 
nil 

that are analytic and have L% P(z) > 0 in D we also find that 

lPn+, -P,l<(2n+1)12-P,L n = 1, 2,.... 

Again, the factor (2n + 1) cannot be replaced by a smaller one. 
As an application that follows from our result that 

5% [G(z) e-‘argG(l)] > 0, z E D, G(z) E FF”, 

(1.7) 
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we are able to prove that whenever the function 

K(z) = z + f k,z” 
?I=2 

is analytic and convex of order l/2 in D then all the partial sums 

K,(z)=z+k,z*+-.+k,z”, n = 1, 2,..., (1.8) 

are univalent and close-to-convex with respect to the convex K(z). For any 
n > 1 and a < l/2 there exists K(z) convex of order a and a K,(z) that is not 
univalent in D. This result was obtained by Ruscheweyh and Sheil-Small 
[ 13 ] who used another method. 

A second application stems from inequalities we obtain for the differences 
of successive coefficients for the class S*(1/2) to be proven later in 
Corollary 2. If 

K(z)=z+ 5 cnzn 
II=2 

maps D onto a convex domain then for z E D we obtain for n = 2,3,... 

n-1 
K(z)-yk=,CkZk- Cnzn ~IOWmt lW+-+~, (1.9) 

m+l 

<n’. v n = 3 m = . . 
k:2 

11 -$I*, 2, ,..., 1, 2,.. (1.10) 

2. PRELIMINARY THEOREMS 

THEOREM 1. Let G(z) be analytic in D with G(0) = 1. Then G E F if, 
and only l$ there exists a function S(z) E S*(1/2) such that 

G(z)=(l -z)(S(z)/z). (2.1) 

Proof. Let G(z) satisfy (2.1) where S(z) E S*(1/2). Then G(z) is 
analytic and non-vanishing in D, G(0) = 1 and 

.a 
1 

ZzG’(z) l+z 

G(z) 
- =9e 

+ l-z I 1 

2zS’(z) 

S(J) 
-1 >o, 

I 
zE D. (2.2) 
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By,Definition 2 G(z) E .Y. Conversely, if G(z) E g and S(z) = zG(z)/( 1 - z ) 
then S(0) = 0, S’(0) = 1, and by (2.2) S(z) E S*( l/2). 

THEOREM 2. Let S(z) E S*(1/2). Then the function 

S(z)/( 1 - z) E s*(o). 

ProoJ Let f(z) = S(z)/( 1 - z), S(z) E S*( l/2) 
D and f(0) =f’(O) - 1 = 0. For z E D we have 

Then f(z) is analytic in 

S& zf’(z) f(z) =9&? [ 

zS’(z) z 1 - - S(z) + l-z 1 lz’ >o 
>l+lrl-- * 1 +IzI 

THEOREM 3. Let G(z) E F. Then either G(z) is univalent and close-to- 
convex in D or G(z) is the constant 1. 

ProoJ Let G(z) E g and assume that G(z) is not the constant G(0) = 1. 
Let S(z) = zG(z)/( 1 -z). Then S(z) E S*( l/2) by Theorem 1. With 
0 < p < 1 let G,(z) = (S@z)/pz)(l - z). Then G,(z) -+ G(z) as p -+ 1. Since 
S@z)/p E S*(1/2) it follows from Theorem 1 that G,(z) E 3”. We have 

-p( 1 - z) zG;(z) 
S(pz) 

(l-4’ PZS’@Z) _ (l -z-‘) 
=- z ’ S(pz) 

which is analytic for Iz( < 1. For z = eie we have 

where by Theorem 2 f,(z) = S@z)/p( 1 - z) E S*(O), Then for z E D, 
Si (zG’(z)/-f(z)} > 0 where G(z) = (S(z)/z)( 1 - z), f(z) = S(z)/( 1 - z). 
Since G(z) is not a constant we have 

5% {zG’(z)/-f(z)} > 0 (z E D). 

This means that G(z) is univalent and close-to-convex in D. G(z) s 1 only 
when S(z) = z/( 1 - z). 

THEOREM 4. Let G E .F and suppose that G(z) is not a constant. Then 
the function log G(z), log G(0) = 0, is univalent and close-to-convex in D 
with 

94 I (Lz)‘S (0 I (z E D). 
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Proof. Since G E 5? we may write 

2 z@(z) 
G(z) 

(ZED) 

where ar($) is an increasing function with a(2n) -a(O) = 1. For E = eim we 
have 

The function 

has .a W > 0 for z E D and for all E, IE 1 = 1. Since a(#) is an increasing 
function of (6 and G(z) is not a constant we have 

.G& 
I (z E D), 

or 

2e \  -(log G(z))’ > o 

I  (z/(1 - z))’ 1 - 

Hence log G(z) is close-to-convex relative to the convex function -z/(1 - z). 

3. PRIMARY THEOREMS 

THEOREM 5. Let G(z) E Y and be not a constant. Then G( 1) = 0 and 
G(z) maps D onto a domain that is starlike with respect to G( 1). 

Proof. Since G(z) E 59 we have zG(z) = S(z)(l - z) where S(z) = z + 
b,z2 + ... E S*( l/2). We may write 

S(z) 1 
-=exp - 

Z I j 
zw- 1 dt) 

20 t I 

where P(z) is analytic in D, P(0) = 1, and 9% P(z) > 0 for z E D. Then P(z) 
is the uniform limit on compacta in D of functions P,(z) of positive real part 
in D of the form 

P,(z) = F (9”) zl k (;‘$:;)v n = 1, 2,... 

where &“) > 0, xi=, 8:) = 1, Iep’I = 1. 
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Corresponding to each P,(z) we have the functions 

S,(z)=zexp + ‘[P,(t)-I]$ 
I J t 

=z+~:“‘z*+ *** E s*(1/2), 

Gn(z)dn(z)o=I+(b:l’-l)z+.... 
z 

By Theorem 1 G,(z) E ,Y?. By Theorem 3 G,(z) is either a constant or is 
univalent in D. The sequence. G,(z) converges uniformly to G(z) on all 
compact subsets of D. Explicitly we have 

Since G,(z) -+ G(z) and G(z) is assumed to be not a constant it follows that 
for n > n, G,(z) also cannot be independent of z. We conclude that G,(z) is 
univalent in D for n > n, since it is not a constant. 

Since G,(z) is not independent of z we must have EY) # 1 for at least one 
value of k. From the representation (3.1) we then have G,(l) = 0. G,(z) 
maps D onto a domain starlike with respect to G,( 1) = 0. The image domain 
G,(D) lies in a half-plane with a boundary consisting of a finite number of 
slits lying on rays from the origin two of which meet at the origin. This is 
readily seen by observing that each of the terms in the product defining 
G,(z) maps D on a slit-plane containing W= 1 and whose boundary passes 
through the origin, from which we deduce that G,(z) also has this property. 
This fact is made clear from the observation that whenever 

W= fi d”hasL,>O, + A, = 1, 98 einkwk > 0, ak 
k=l k:, 

real, then for a = Cz=, Akak, 5% eiu W > 0. Indeed, 

arg(e’“W) = + @,a, + 1, arg wk) = 
k:l 

+ lk arg(e’“w,), 
ke1 

(arg(e’“IV)( < $ f A, = + 
k?l 

since 5% (eiuwk) > 0. 

Thus 5% (eiaIV) > 0. 
Second, G,(z) is univalent for IzI < 1 and analytic for (z( ,< 1 except at the 

points z = tik”). For Izl= 1, z # $“’ we have 

-$ arg G,(e”) = 92 -@t(z) - 1 G,(Z) L ,eie 
= 0, 
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so that the boundary of G,(D) consists of slits on rays from the origin. Two 
of these slits meet at the origin since G,( 1) = 0. We conclude that G,(D) is 
starlike with respect to G,(l) = 0. 

By Carathiodory’s kernel theorem [7, pp. 28-311 G,(D) converges to the 
kernel G(D). Moreover, [7, Problem 3, p. 3 I], every compact subset of G(D) 
is contained in G,(D) for all large n and for every point c E aG(D) there 
exist points c, E aG,(D) with c, -+c (n --) co). We show now that G(D) is 
starlike with respect to the origin W = 0. 

Let W,, be an interior point of G(D) for which, if possible, there exists a 
point t W,, 0 < t < 1, t W, E aG(D). This leads to a contradiction. Consider 
the disk ] W - W,( <R which lies in G(D) if R is sufftciently small. Let d 
denote the closed domain comprised of all the rays from the origin to all 
points of the circle ( IV- WO] = R. The interior d of 2 lies in G,(D) for all 
n > iV, by the kernel theorem and because G,(D) is starlike with respect to 
the origin. In particular the point tW,, lies in A c G,(D) and the 
dist(tWO, aG,(D)) > tR > 0. Since tR is independent of n this contradicts the 
kernel theorem with c = t W,. We conclude that t W, E G(D) for 0 < t < 1 
when W,, E G(D). Hence G(D) is starlike with respect to the origin. Since 
G(z) # 0, z E D. the origin must be a boundary point of G(D). Since 
G(z) = (S(z)/z)( 1 - z) and ]S(z)/z 1 > l/2 for S(z) E S*( l/2) it follows that 
G(z,) --t 0 implies that z, -+ I as n -+ co. Conversely, by a recent result due to 
Cochrane and MacGregor ( 11 if S E S*( l/2) and S(z) # z/( 1 - XZ)(]X I= 1) 
then there is a 6 > 0 so that S(z) = O((1 - iz[)“-‘) so that G(z)-+0 as 
z + 1. Since G(z) is not a constant S(z) # z/( 1 - z) where x = 1. 

THEOREM 6. Let G(z) E F. Then 

.S& {G(z) eeiarpG”‘} > 0 (zED) 

where -n/2 < arg G( 1) = lim,+, arg G(p) < 7r/2. 

Proof: Let G(z) = (S(z)/z)( 1 -z) where S(z) E S*(l/2). For 0 < p < 1 
let G,(z) = (S@z)/pz)(l -z). Then G,,(O) = 1, G,(I) =0 and G,(z) is 
analytic for /z( < 1. Since S@z)/p E S*(1/2) Go(z) E .9’ by Theorem 1. The 
image domain G,(D) has a boundary r,, that is an analytic Jordan contour. 
The domain G,(D) is starlike with respect to the origin by Theorem 5. A 
calculation shows that at the point z = 1 

53% 1+ 
[ 

W’@) 
S@) 

-1 >o 
I 

which tells us that r, is locally convex at W = 0. We observe that r, is 
tangent at the origin to the line through the origin with inclination 
[arg(--izGb(z))],, , = 7r/2 + arg S@). Since G,(z) is analytic on jzl = 1, 
locally convex at W = 0 and since G,(z) is starlike with respect to the origin 
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we conclude that G,(D) lies entirely on one side of this tangent line, the side 
containing the point W = 1. Let p --$ 1. If G(z) is not a constant then G(D) 
lies in the half-plane 9% [ We-iargS(lJ] > 0 where arg S(1) = lim,+, arg So). 
This limit exists [8]. Since S(z)/z = [F(z)/z]“~ for some FE S*(O), and 
.Z& [F(z)/z] I” > 0 for z E D [6,14] we have ] arg S(z)/z ( < n/2. Then 
1 arg S(l)] < x/2, and, indeed, j arg S(l)] < n/2. This follows since W = I is 
an inner point of G(D) which would not be the case if G(D) were to lie in 
the half-plane 5% [We-‘“‘] > 0 when G(z) is not a constant. 

It is readily seen that 

aigG(l)=lmG@)=;marg _ [&-G”‘] 

= 9~ arg S@) = arg S( 1). 

The theorem is trivially true if G(z) is the constant 1. 
We have seen in Theorem 5 that if G(z) E 5? then G(D) is starlike with 

respect to the origin (a boundary point). The following is a converse 
theorem. 

THEOREM 7. Let G(z) E i%i. Then G(z) E i9’. 

Proof: If G(z) E .F* and is not a constant we have G(z) analytic on 
)z ( = 1, G( 1) = 0, G(0) = 1 and G(D) lies in a half-plane 9% [ Wei”] > 0. 
Hence G’(1) # 0 and z = 1 is a simple zero of G(z). Therefore G’(z)/G(z) 
has a simple pole with residue 1 at z = 1. Since G( 1) = 0 and G(z) is 
univalent and starlike for )z 1 < 1 we have G(z) # 0 for ) z ( & 1, z # 1. Then 
the function 

P(z) = 
2zG’(z) + 1 + z 

G(z) l-z 

is analytic for (z] < 1 with P(0) = 1. Since G(D) is starlike and G(z) is 
analytic on (z] = 1 we have 

WeconcludethatA3 P(z)>Ofor(z(=land9e P(z)>Ofor]z]<l.Then 
G(z) E CF. If G(z) is the constant 1 again G(z) E F. 

It is an open question whether the condition that G(z) be analytic on 
(z] = 1 in the proof of Theorem 7 may be removed. 
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4. COEFFICIENT INEQUALITIES 

In the proofs of Theorems 8 and 11 to follow we shall make use of the 
following lemma. 

LEMMA 1. Let p(z)= 1 +p,z+ a** be analytic in D and have 
.C& p(z) > Ofor IzI < 1. Let 

1 - z2 q(z) = - - 
z 

(1-z)’ . p(z) 
Z 

Then q(z) is analytic in D and 5% q(z) > 0 for jz) < 1 with equality only g 
p(z) = (1 + z)/( 1 - z). 

Proof. Choose p in the interval (0, 1) and let 

zq,(z) = (1 - z*> - (1 - z>* * p@z). 

Then q,(z) -+ q(z) as p + 1 and q,(z) is analytic for ]z ( < 1. For z = eie we 
have 

5% q,(z) = 2( 1 - cos l9) 2% p@z) 2 0. 

Since the minimum of a harmonic function occurs on the boundary we have 
.5Pe q,(z) > 0 for ]z 1 < 1. Letting p + 1 it follows that 5% q(z) > 0 for 
1 z) < 1. Equality occurs only when q(z) is identically zero. This the case only 
when p(z) = (1 + z)( 1 - z). 

THEOREM 8. Let K(Z) = z + CF& c,z” map D onto a convex domain. 
Then for n = 2, 3,... the following inequalities hold: 

(4.1) 

The factor (2n t I)/3 cannot be replaced by a smaller constant independent 
of W). 

Proof: Let S(z) = z t Czz2 a,z” E S*(O) and T(z) = (S(z)/z)(l - z)‘, 

T(z) = 1 t C;p=, t,z k. In Lemma 1 we take p(z) = zS’(z)/S(z) and q(z) = 
-zT’(z)/S(z). Then by Lemma 1 5% [zT’(z)/-S(z)] > 0 for (z] < 1 unless 
T’(z) 5 0. If T’(z) = 0 we have T(z) = 1 and S(z) = z/(1 - z)‘. We have 
now shown that either T(z) is a constant or T(z) is close-to-convex in D 131. 
It follows in either case [9] that (t, ( < n It, 1, n = 2,3 ,... . 
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Since S(z)/z = T(z)/(l - z)Z = (1 + f,Z + a** + t,z” + ..*)(l + 22 + 
3z2 + ***), 

a ,+,=n+l+nt,+(n-l)t,+***+2t,-,+t,, t, =a, - 2, 

a tI+1 a, 
n+l -n- 

-n(n~1)[t’+2t2+~~~+(n-l)t.-,+nt.l, 

a n+1 a, --- 
n+l n 

(n(~t~l)[12+22+...+n2]=q+~~. (4.2) 

If K(Z) = z + Ccz2 c,z” is convex in D, then S(z) = zK’(z) is starlike in D 
and nc, = a,. Thus 

IClI+l --CA < ?I1 -c2), n = 2, 3,... , (4.3) 

The example K(z) in the introduction, following (1.2), shows that the 
factor (2n + 1)/3 in Theorem 8 cannot be replaced by a smaller one. 

COROLLARY 1. Let G(z) = (1 - z) K(z)/z = 1 + Cr=, dkzk where K(z) 
is convex in D. Then G(z) E g and 

l4l G TM, n = 2, 3,... . (4.4) 

COROLLARY 2. Let S(z) = z + cg2 b,z” E S*(1/2). Then 

lb n+l-b,l~~nll-b21~ n = 2, 3,... . (4.5) 

Proof: Let G(z) = (S(z)/z)(l - z) = 1 + C,” r d,z” where S E S*( l/2). 
By Theorem 1 G E g’. By Theorem 3 G(z) is either close-to-convex in D or 
is a constant. In either case Id,,1 Qn Id,!, n =2, 3 ,,.., [9]. Since 
d, = b,, , -b,, n = I,2 ,..., b, = 1, the inequalities (4.5) follow. The example 
(1-z)(l-2zcos(+z*)- U2 for small 4, as indicated in the introduction, 
shows that the factor n is a best possible one. 

COROLLARY 3. Let S(z) = z + ajz3 + . . . + a,,, 1~2n+’ + ... be an odd 
function and S E S*(O). Then 

la 2n+l -a,,-, . l<n(1-a31, n = 2, 3,... . (4.6) 
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Proof. Let S(z) =I +a,z3 + ... +a,,+,~‘“+’ + ... be an odd function 
andSES*(0).LetC(z)=fiS(\/;)=z+ajzZ+....Then 

and C E S*( l/2). Corollary 3 now follows from Corollary 2. The function 
S(z)=z[l - 2z2cos(b +z4]-“* E S*(O) and shows for small $ that the 
factor n cannot be replaced by a smaller one. 

THEOREM 9. Let f(z) = z + CrZZ anzn be analytic and typically real in 
D. Then for n = 2,3,... 

a n+1 an --- < 
n+l n 

%(2-a,). 

n-a,< 
n(n’ - 1) 

6 (2 -a*). 

(4.7) 

(4.8) 

The factors (2n + 1)/6 and n(n’ - 1)/6 are the smallest constants 
independent off(z) that can appear here. 

In the proof of Theorem 9 we shall have need for the following lemma. 

LEMMA 2. For all q4 and n = 1, 2,... 

(it+ 1)%$-n 
sin(n + I)$ 

< 
n(n + 1)(2n + 1) 

sin d 6 (2-3. 

Proof Let d = 28; 

sin(2n + 1)e 
- 1 + 2 q- cos 2k8, 

sine - &=I 

d sin(2n + l)e sin 2kO 

de sin e 
=-4sin28. f7 k- 

&:I sin 28 

d sin(2n + 1)6 
a sin e 

< 4 lsin 28) ;’ k* = g n(n + 1)(2n + 
k=l 

1) ) sin 0 cos 81, 

sin(fL+s lje _ (zn + 1) cos(,20nsfg lJe / = /tan e$ ( ““‘~~~ lJe) / 

<+n(n+ 1)(2n+l).sin*8, 
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2 (n+l)~-n 
sin(n + l)# 

sin d 

= (2n + 2) $$f - 2n “‘$, :e2)’ 1 

sin(2n + I)8 = 
sin e -(2n+ 1) 

cos(2n + 1)0 
cod 

<+n(n+ 1)(2n+ l).sin’& 

(n+ l)$$-n 
sin(n + 1)) n(n + 1)(2n + 1) 

sin ) 
< 6 (2 -Z). (4.9) 

We now proceed with the proof of Theorem 9. Since f(z) is typically real 
in D it has the representation [ 1 l] 

fez) = j; 1 _ 2z ,‘,, g + z2 da(4) (4.10) 

where a($) is an increasing function with a(z) - a(0) = 1. Then 

a PI+1 a, -= 1 sin(n + 1)d 1 sin n) 
- - 

n+l-T- 0 J [ n+l sin d 
- -- da(#). 

n sin # 1 
By Lemma 2 we have 

The function f(z) = z( 1 - 22 cos ( + z*)- ’ E S*(O) has 

k~ I(+$-:)1 .(2-a,)-‘=?, 

and 

h(n-a,)d(2-a,)-‘= 
n(n’- 1) 

6 . 

The inequalities (4.8) were established in another way by Leeman [5] and 
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again later by Krzyi and Ztotkiewicz [4]. However, the inequalities (4.8) are 
implied by the stronger inequalities (4.7). From (4.7) 

- (2”,3)(2-++a,, 
n-2 

Addition gives 

-(2y2) [3+5+ *.*+(2n-l)]<?-1 

or 
n-a <n(n*-1) 

n\ 6 
(2 -al). (4.11) 

With only a slight modification of this proof of (4.11) one can show that 
the inequalities (4.2), which hold for S E S*(O), imply the inequalities 

In-a,,<w,2-a,(, n = 3, 4,... 

established by Hummel [3]. For a generalization of (4.12) to P-spiral-like 
functions see Robertson [ 121. 

A similar result for another class of functions is given in the following 
theorem. 

THEOREM 10. Let P(z)= 1 +C~=,P~Z” be analytic in D(z: \zj < l}, 
and let P(z) have a posirive real part in D. Then jp,,+ , - p,, ( < 
(2n + 1)12 -pII, n = 1,2 ,..., and IIp,+Il-lp,Ik(2n+ 1)(2-I~,l), 
n = 1, 2,... . The factor (2n + 1) cannot be replaced by a smaller one. 

Proof: We take p(z) = P(z) = 1 + Cz=, pnzn, as in Theorem 10, and let 

1 -z2 (1 -z)z 
q(z) = - - 

Z Z 
P(z) = (2 -p,) + q qnzn. 

nfz, 

By Lemma 1 q(z) is analytic and 5% q(z) > 0 in D. Then 

14nl<2~fi(2-P,), n = 1, 2,... . 

From the identity 
1 fz --___ 

Z 

(1 -z) p(z) = 4(z) 
Z l-z 
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we have 
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(1-z) 2-p, t -F p-Pnb-’ 
[ “C2 1 

=[1t~,z~][2-P,t~~~P,zn]. 

Pn-PI!+1 =thecoeffkient ofz”=2-p,+q,+... tq,,. 

IP n+l -Pnl<12-P*l+2n~(2-P,) 

<(2n + 1)12-P,l, n = 1, 2,... . (4.13) 

Since P(z) may be replaced by P(e’@z) for arbitrary real $ we have for 
p,e’@ > 0 

llPn+~l-lPnlI~lPn+,eiQ -pnl < (2n + 1))2 -p,eiol 

= (2n + 1x2 - I PI I). (4.14) 

The example P(z) = (1 - z’)(l - 22 cos d + z2)-’ has 9% P(z) > 0 in D and 
shows for small ( that the factor (2n + 1) in the theorem cannot be replaced 
by a smaller one. 

5. SOME APPLICATIONS 

The property of the class 55’ provided in Theorem 6 leads with the help of 
Theorem 1 to an application to functions convex of order l/2. 

THEOREM 11. Let K(z) = z + CcE2 k,z” be analytic and conuex of 
order l/2 in D{z: IzI < 1). Then all the partial sums K,(z) = 
z + k2z2 + ... + k,z”, n = 1,2,... are univalent and close-to-convex with 
respect to the convex K(z). For any n > 1 and a < l/2 there exists a K(z), 
convex of order a, and a K,(z) that is not univalent in D. 

Proof: Let S(z) = Cp=, b, zk E S*(1/2), S,(z) = xi=, bkzk, b, = 1. For 
0 < p < 1 we have S(pz)/p E S*(1/2) and Theorem 6 gives 

(z E D), 

or equivalently for 0 < JzI < 1 

S(P) ,-iBWS(P) . 
P 

& < ,-fmS(d . E$i + +--I. 
I I 



UNIVALENT FUNCTIONS 343 

It follows that the function [ePi a’8 ‘(O’ . S@z)/p - z/( 1 - z)] is quasi- 
subordinate [ lo] to [e- ’ arg s(P) . S@z)/p + z/( 1 - z)]. Consequently we have 
the coefficient inequalities [ 1 O] 

Replacing S@z)/p by e-l0 . S@zeie)lp E S*(1/2), we have for z =peie that 
.% [e- i arg s(Z) . S,(z)] > 0, or 5% [S,(z)/S(z)] > 0, ) z[ = p > 0, since 
S(z) # 0 for 0 ( (I] ( 1. For z - 0 we define S,(z)/S(z) to be 1. Hence 
.P?& (S,(z)/S(z)] > 0 for z E D. Since S,(z)/S(z) is not the constant zero we 
have 98 [S,(z)/S(z)] > 0, z E D. 

The example S(z) = z/( 1 - z), S,(z)/S(z) = 1 - zn, shows that we cannot 
have 5% [S,(z)/S(z)] > 6, > 0 where 6, is a constant independent of S(z). 

If we now let K(z) = z + C;PZ2 k,z” be convex of order l/2 in D and let 
S(z) = zK’(z) E S*( l/2) then 

.&? [KL(z)/K’(z)] = 2& [ z + 2k’z2& + nknz” ] 
= 9% [S&)/W)1 > 0 

(z E D) where K,(z) and S,(z) are the nth partial sums of K(z) and S(z), 
respectively. Thus K,(z) is close-to-convex relative to K(z). For another 
proof see Ruscheweyh and Sheil-Small [ 131. 

The example K(z) = (1 - (1 - z)‘“-‘)/2a - 1 is convex of order a, and 
has no partial sum K,(z), n > 1, that is univalent in D for a < l/2. This 
follows since n ] k,l > 1 and so K;(z) has a zero in D. 

THEOREM 12. Let K(Z) = z + C, =* c,z” be convex in D. Then in D 

n-1 

K(z)- \‘ ckzk-f& 
k=l 

<nlzlne’IK(z)--& - 

n = 2, 3 ,..., c, = 1. 

Proof: Since K(z) is convex in D then for IzJ < 1, ) ~11 < 1. by a result of 
Ruscheweyh and Sheil-Small [ 131 

G(z) = z 
K(r) -K(u) u 

I 
-E s*(1/2), G(z) = c Ck(u)zk 

Z-U K(u) k?l 
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where C,(U) = 1, and for k > 1 

Since G(z) E S*(1/2) we have by Corollary 2 

I C”, l(U) - WI G n I 1 - G(ul9 

and this inequality may be written in the form 

where c, = 1. 

COROLLARY 4. Let K(z) = z + Cp=p=2 c,z” be convex in D. Then 

’ (c.-ck)zk~<~12.-1 I:, (I-C,)Z*/, 
k=a 

C,=l, 

n = 2, 3,... . 

THEOREM 13. Let K(z) = z + CF= 2 c,zn be convex in D. Then for 
n = 2, 2 ,..., m = 1, 2 ,... 

n+m m+l 

v 
k=L;;+ 1 

Jc, - ck12< n2 Y 11 -ck12. 
kt2 

Proof: CFzn (c, - ck) zk-” is quasi-subordinate to Cr=, n( 1 - c,J zk- ’ 
and the inequalities of Theorem 13 follow [lo]. 

The author takes this opportunity to thank the referee for a careful reading 
and some pertinent suggestions. 
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