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A gauge U (1) family symmetry is proposed, spanning the quarks and leptons as well as particles of 
the dark sector. The breaking of U (1) to Z2 divides the two sectors and generates one-loop radiative 
masses for the first two families of quarks and leptons, as well as all three neutrinos. We study the 
phenomenological implications of this new connection between family symmetry and dark matter. In 
particular, a scalar or pseudoscalar particle associated with this U (1) breaking may be identified with 
the 750 GeV diphoton resonance recently observed at the Large Hadron Collider (LHC).
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1. Introduction

In any extension of the standard model (SM) of particle inter-
actions to include dark matter, a symmetry is usually assumed, 
which distinguishes quarks and leptons from dark matter. For ex-
ample, the simplest choice is Z2 under which particles of the dark 
sector are odd and those of the visible sector are even. Suppose Z2
is promoted to a gauge U (1) symmetry, then the usual assumption 
is that it will not affect ordinary matter. These models all have a 
dark vector boson which couples only to particles of the dark sec-
tor.

In this paper, it is proposed instead that a gauge U (1) extension 
of the SM spans both ordinary and dark matter. It is in fact also a 
horizontal family symmetry. It has a number of interesting conse-
quences, including the radiative mass generation of the first two 
families of quarks and leptons as well as all three neutrinos, and 
a natural explanation of the 750 GeV diphoton resonance recently 
observed [1,2] at the Large Hadron Collider (LHC).

2. New gauge U (1)D symmetry

The framework that radiative fermion masses and dark matter 
are related has been considered previously [3]. Here it is further 
proposed that families are distinguished by the connecting dark 
symmetry. In Table 1 we show how they transform under U (1)D as 
well as the other particles of the dark sector. The choice of U (1)D

is motivated by the well-known Le–Lμ gauge symmetry [4] where 
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Table 1
Particle content of proposed model of gauge U (1) dark symmetry.

Particles SU(3)C SU(2)L U (1)Y U (1)D Z2

Q = (u,d) 3 2 1/6 0,0,0 +
uc 3∗ 1 −2/3 1,−1,0 +
dc 3∗ 1 1/3 −1,1,0 +
L = (ν, e) 1 2 −1/2 0,0,0 +
ec 1 1 1 −1,1,0 +
� = (φ+, φ0) 1 2 1/2 0 +
σ1 1 1 0 1 +
σ2 1 1 0 2 +
N, Nc 1 1 0 1/2,−1/2 −
S, Sc 1 1 0 −3/2,3/2 −
(η0, η−) 1 2 −1/2 1/2 −
χ0 1 1 0 1/2 −
χ− 1 1 −1 −1/2 −
(ξ2/3, ξ−1/3) 3 2 1/6 1/2 −
ζ 2/3 3 1 2/3 −1/2 −
ζ−1/3 3 1 −1/3 −1/2 −

anomaly cancellation occurs between the first two lepton families. 
Here it corresponds to the difference of B − L − 2Y between the 
first two quark and lepton families. This U (1)D symmetry is broken 
spontaneously by the vacuum expectation value 〈σ1,2〉 = u1,2 to an 
exactly conserved Z2 which divides the two sectors.

The gauge U (1)D symmetry is almost absent of axial-vector 
anomalies for each family. The [SU(3)]2U (1)D anomaly is zero 
from the cancellation between uc and dc . The [SU(2)]2U (1)D
anomaly is zero because Q and L do not transform under U (1)D . 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 

https://core.ac.uk/display/82235817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2016.06.024
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:ma@phyun8.ucr.edu
http://dx.doi.org/10.1016/j.physletb.2016.06.024
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.06.024&domain=pdf


60 C. Kownacki, E. Ma / Physics Letters B 760 (2016) 59–62
Fig. 1. One-loop neutrino mass from trilinear couplings.

Fig. 2. One-loop neutrino mass from trilinear and quadrilinear couplings.

Fig. 3. One-loop electron mass.

Fig. 4. One-loop muon mass.

The [U (1)Y ]2U (1)D and U (1)Y [U (1)D ]2 anomalies are canceled
among uc , dc , and ec , i.e.

3

(
−2

3

)2

(1) + 3

(
1

3

)2

(−1) + (1)2(−1) = 0, (1)

3

(
−2

3

)
(1)2 + 3

(
1

3

)
(−1)2 + (1)(−1)2 = 0. (2)

The [U (1)D ]3 anomaly is not zero for either the first or second 
family, but is canceled between the two.

3. Radiative masses for neutrinos and the first and second 
families

At tree level, only t, b, τ acquire masses from 〈φ0〉 = v as in 
the SM. The first two families are massless because of the U (1)D
symmetry. Neutrinos acquire one-loop masses through the scoto-
genic mechanism [5] as shown in Figs. 1 and 2. With one copy of 
(N, Nc), only one neutrino becomes massive. To have three massive 
scotogenic neutrinos, three copies of (N, Nc) are needed. The one-
loop electron and muon masses are shown in Figs. 3 and 4. Note 
that at least two copies of (N, Nc) are needed for two charged-
lepton masses. The mass matrix spanning (N, Nc, S, Sc) is of the 
form

MN,S =
⎛
⎜⎝

f1u1 mN f3u1 f5u2
mN f2u1 f6u2 f4u1
f3u1 f6u2 0 mS

f5u2 f4u1 mS 0

⎞
⎟⎠ . (3)

Note that the f1,2,3,4u1 terms break lepton number by two units, 
whereas the f5,6u2 terms do not.
Fig. 5. One-loop u quark mass.

Fig. 6. One-loop d quark mass.

Lepton number L = 1 may be assigned to e, μ, τ , N, S and L =
−1 to ec, μc, τ c, Nc, Sc . It is broken down to lepton parity (−1)L

only by neutrino masses. The analogous one-loop u and d quark 
masses are shown in Figs. 5 and 6. Because the second family has 
opposite U (1)D charge assignments relative to the first, the c and 
s quarks reverse the roles of u and d. Two copies of (S, Sc) are 
needed to obtain the most general quark mass matrices for both 
the u and d sectors.

To evaluate the one-loop diagrams of Figs. 1 to 6, we note first 
that each is a sum of simple diagrams with one internal fermion 
line and one internal scalar line. Each contribution is infinite, but 
the sum is finite. There are 10 neutral Majorana fermion fields, 
spanning 3 copies of N, Nc and 2 copies of S, Sc . We denote their 
mass eigenstates as ψk with mass Mk . There are 4 real scalar fields, 
spanning 

√
2Re(η0), 

√
2Im(η0), 

√
2Re(χ0), 

√
2Im(χ0). We denote 

their mass eigenstates as ρ0
l with mass ml . In Figs. 1 and 2, let the 

νiψkη̄
0 coupling be hν

ik , then the radiative neutrino mass matrix is 
given by [5]

(Mν)i j =
∑

k

hν
ikhν

jk Mk

16π2

∑
l

[(yR
l )2 F (xlk) − (yI

l )
2 F (xlk)], (4)

where 
√

2Re(η0) = ∑
l yR

l ρ0
l , 

√
2Im(η0) = ∑

l y I
l ρ

0
l , with∑

l(yR
l )2 = ∑

l(yI
l )

2 = 1, xlk = m2
l /M2

k , and the function F is given 
by

F (x) = x ln x

x − 1
. (5)

There are two charged scalar fields, spanning η±, χ± . We denote 
their mass eigenstates as ρ+

r with mass mr . In Fig. 3, let the 
eLψkη

+ and the ec
Lψkχ

− couplings be he
k and hec

k , then

me =
∑

k

he
khec

k Mk

16π2

∑
r

yη
r yχ

r F (xrk), (6)

where η+ = ∑
r yη

r ρ+
r , χ+ = ∑

r yχ
r ρ+

r , with 
∑

r(yη
r )2 =∑

r(yχ
r )2 = 1 and 

∑
r yη

r yχ
r = 0. A similar expression is obtained 

for mμ , as well as the light quark masses.

4. Tree-level flavor-changing neutral couplings

Since different U (1)D charges are assigned to (uc, cc, tc) as well 
as (dc, sc, bc), there are unavoidable flavor-changing neutral cur-
rents. In the gauge sector, it does not affect the SM Z couplings 
because there is no tree-level Z–Z D mixing, but the Z D couplings 
themselves are in general flavor-changing after diagonalization of 
the quark mass matrices. Even though Z D is heavy, these effects 
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are potentially dangerous as they may induce K 0–K̄ 0 mixing, etc. 
They can be minimized by the following assumptions. Let the two 
3 ×3 quark mass matrices linking (u, c, t) to (uc, cc, tc) and (d, s, b)

to (dc, sc, bc) be of the form

Mu = U (u)
L

(mu 0 0
0 mc 0
0 0 mt

)
, Md = U (d)

L

(md 0 0
0 ms 0
0 0 mb

)
,

(7)

where UC K M = (U (u)
L )†U (d)

L is the quark charged-current mixing 
matrix. Since Z D does not couple to left-handed quarks, and its 
couplings to right-handed quarks have been chosen to be diagonal 
in their mass eigenstates, flavor-changing neutral currents are ab-
sent in this sector. Of course, they will appear in the scalar sector, 
and further phenomenological constraints on its parameters will 
apply.

However, since there is only one Higgs doublet � which is 
responsible for all of electroweak symmetry breaking, all quark 
masses must come from 〈φ0〉 = v . Hence the physical Higgs bo-
son h = √

2(Reφ0 − v) couples to all diagonal terms of the quark 
mass matrices according to mq(1 + ε)/v

√
2. In the case of tree-

level Higgs couplings for the t and b quarks, ε = 0. For the first 
two families, ε is not zero because of their radiative masses [6,7]. 
If ε is negligible, the unitary matrices of Eq. (7) also diagonal-
ize the Higgs coupling matrices, resulting thus in the absence of 
flavor-changing neutral interactions. The residual off-diagonal en-
tries come from nonzero ε but are also suppressed by small quark 
masses. Since the value of ε in each case depends on the scalar 
quark masses and their interactions [6,7], a full analysis is not sim-
ple and will be left to a future study.

5. Z D gauge boson

As σ1,2 acquire vacuum expectation values u1,2 respectively, the 
Z D gauge boson obtains a mass given by

m2
Z D

= 2g2
D(u2

1 + 4u2
2). (8)

Since σ1,2 do not transform under the SM, and � does not under 
U (1)D , there is no mixing between Z D and Z . Using Table 1 and 
assuming that all new particles are lighter than Z D , the branching 
fraction of Z D to e−e+ + μ−μ+ is estimated to be 0.07. The cu,d
coefficients used in the experimental search [8,9] of Z D are then

cu = cd = g2
D (0.07). (9)

For gD = 0.3, a lower bound of about 3.1 TeV on mZ D is obtained 
from LHC data based on the 7 and 8 TeV runs. For our subsequent 
discussion, let u1 = 1 TeV, u2 = 4 TeV, then mZ D = 3.4 TeV. Note 
that Z D does not couple to the third family, so if t̄t , b̄b, or τ+τ−
final states are observed, this model is ruled out.

6. Scalar sector

There are three scalars with integral charges under U (1)D , i.e. 
� and σ1,2. Whereas 〈φ0〉 = v breaks the electroweak SU(2)L ×
U (1)Y gauge symmetry as in the SM, 〈σ1,2〉 = u1,2 break U (1)D
to Z2, with all those particles with half-integral U (1)D charges 
becoming odd under this exactly conserved dark Z2 parity. The 
relevant scalar potential is given by

V = μ2
0�

†� + m2
1σ

∗
1 σ1 + m2

2σ
∗
2 σ2 + m12σ

2
1 σ ∗

2 + m12(σ
∗
1 )2σ2

+ 1

2
λ0(�

†�)2 + 1

2
λ1(σ

∗
1 σ1)

2 + 1

2
λ2(σ

∗
2 σ2)

2

+ λ3(σ
∗
1 σ1)(σ

∗
2 σ2) + λ4(�

†�)(σ ∗
1 σ1)

+ λ5(�
†�)(σ ∗

2 σ2), (10)
where m12 has been rendered real by absorbing the relative phase 
between σ1,2. The conditions for v and u1,2 are

0 = μ2
0 + λ0 v2 + λ4u2

1 + λ5u2
2, (11)

0 = m2
1 + λ1u2

1 + λ3u2
2 + λ4 v2 + 2m12u2, (12)

0 = m2
2 + λ2u2

2 + λ3u2
1 + λ5 v2 + m12u2

1/u2. (13)

As in the SM, φ± and 
√

2Im(φ0) become longitudinal compo-
nents of W ± and Z , and 

√
2Re(φ0) = h is the one physical Higgs 

boson associated with electroweak symmetry breaking. Let σ1 =
(σ1R + iσ1I )/

√
2 and σ2 = (σ2R + iσ2I )/

√
2, then the mass-squared 

matrix spanning h, σ1R,2R is

M2
R =

⎛
⎝ 2λ0 v2 2λ4 vu1 2λ5 vu2

2λ4 vu1 2λ1u2
1 2λ3u1u2 + 2m12u1

2λ5 vu2 2λ3u1u2 + 2m12u1 2λ2u2
2 − m12u2

1/u2

⎞
⎠ ,

(14)

and that spanning σ1I,2I is

M2
I =

(−4m12u2 2m12u1
2m12u1 −m12u2

1/u2

)
. (15)

The linear combination (u1σ1I +2u2σ2I )/

√
u2

1 + 4u2
2 has zero mass 

and becomes the longitudinal component of the massive Z D gauge 
boson. The orthogonal component is a pseudoscalar, call it A, with 
a mass given by m2

A = −m12(u2
1 +4u2

2)/u2. In Eq. (14), σ1R and σ2R

mix in general. For simplicity, let m12 = −λ3u2, then for v2 <<

u2
1,2, we obtain

m2
σ1R

= 2λ1u2
1, m2

σ2R
= 2λ2u2

2 + λ3u2
1, m2

A = λ3(u2
1 + 4u2

2),

(16)

m2
h = 2

[
λ0 − λ2

4

λ1
− 2λ2

5u2
2

2λ2u2
2 + λ3u2

1

]
v2. (17)

7. Relevance to the diphoton excess

Any one of the three particles σ1R , σ2R , A may be identified 
with the 750 GeV diphoton excess. For illustration, let us consider 
σ1R . The production cross section through gluon fusion is given by

σ̂ (gg → σ1R) = π2

8mσ1R

�(σ1R → gg)δ(ŝ − m2
σ1R

). (18)

For the LHC at 13 TeV, the diphoton cross section is roughly [10]

σ(gg → σ1R → γ γ ) � (100 pb) × (λg TeV)2 × B(σ1R → γ γ ),

(19)

where λg is the effective coupling of σ1R to two gluons, normal-
ized by

�(σ1R → gg) = λ2
g

8π
m3

σ1R
, (20)

and the corresponding λγ comes from

�(σ1R → γ γ ) = λ2
γ

64π
m3

σ1R
. (21)

If σ1R decays only to two gluons and two photons, and assuming 
λ2
γ /8 << λ2

g , then

σ(gg → σ1R → γ γ ) � (100 pb) × (λγ TeV)2/8, (22)
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which is supposed to be about 6.2 fb from the recent data [1,2]. 
This means that λγ � 2.2 × 10−2 (TeV)−1, and �(σ1R → γ γ ) �
1 MeV.

Now σ1R couples to the new scalars ξ2/3, ξ−1/3, ζ 2/3, ζ−1/3,

η−, χ− through 
√

2u1 multiplied by the individual quartic scalar 
couplings. For simplicity, let all these couplings be the same, say 
λσ , and all the masses be the same, say m0, then [11]

λγ = αu1λσ√
2πm2

σ1R

[
6

(
2

3

)2

+ 6

(
−1

3

)2

+ 2(−1)2

]
f

(
m2

0

m2
σ1R

)
,

(23)

where the function f is given by

f (x) = 8x

[
arctan

(
1√

4x − 1

)]2

− 2. (24)

Let m0 = 700 GeV, then x = 0.87 and f = 1.23. Hence for u1 =
1 TeV and λσ = 1.1, the required λγ � 0.022 (TeV)−1 is obtained. 
For this λσ , we find λg = 0.128, hence �(σ1R → gg) � 0.27 GeV, 
which is below the energy resolution of ATLAS and CMS. This nar-
row width is not favored by the ATLAS data, but cannot be ruled 
out at this time.

8. Dark matter

The lightest neutral particle with odd Z2 is a good dark-matter 
candidate. In this model, it could be the lightest scalar parti-
cle in the sector consisting of η0 = (ηR + iηI )/

√
2 and χ0 =

(χR + iχI )/
√

2. There are two sectors, the mass-squared matrix 
spanning ηR , χR is given by

M2
R =

(
m2

η A

A m2
χ + C

)
, (25)

and that spanning ηI , χI is

M2
I =

(
m2

η B

B m2
χ − C

)
, (26)

where A, B come from the φ0η0(χ0)∗ and φ0η0χ0(σ1)
∗ couplings 

and C from the χ0χ0(σ1)
∗ coupling. The phenomenology of the 
lightest particle in this group is similar to that of the so-called 
inert Higgs doublet model [5,12,13]. For details, see for example 
recent updates [14–16].

9. Conclusion

A new idea linking family symmetry to dark symmetry is pro-
posed using a gauge U (1)D symmetry, which breaks to exactly 
conserved Z2. The first and second families of quarks and leptons 
transform under this U (1)D so that their masses are forbidden at 
tree level. They interact with the dark sector in such a way that 
they acquire one-loop finite masses, together with all three neu-
trinos. The extra Z D gauge boson may have a mass of order a few 
TeV, and one particle associated with the breaking of U (1)D may 
be identified with the 750 GeV diphoton excess recently observed 
at the LHC.
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