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Abstract 

Engelfriet, J., 6. Leih and G. Rozenberg, Nonterminal separation in graph grammars, Theoretical 
Computer Science 82 (1991) 95-111. 

The notion of nonterminal separation in eNCE graph grammars is introduced: such a graph 
grammar is k-separated (with k 2 1) if the distance between any two nonterminal nodes in any 
of its sentential forms is at least k (?-separated eNCE grammars are known as boundary eNCE 
graph grammars). There exists a 2-separated eNCE graph language that is not 3-separated. Apex 
eNCE graph grammars can be arbitrarily separated: every apex eNCE graph language can be 

generated by a k-separated apex eNCE grammar, for every k. 

0. Introduction 

Node label controlled (NLC) graph grammars have become well known since 
their introduction in 1980 [13,14]. This may be due to the fact that, in comparison 
with some other types of grape grammars, they are rather easy to handle. Some of 
the main features of the NLC grammar are the following (we assume the reader to 
be familiar with the idea of rewriting in a graph grammar; see [4] and [5] for an 
overview). An NLC grammar generates undirected node-labeled graphs. The left- 
hand side of a production consists of a single labeled node. The embedding 
mechanism is such that edges can only be added between newly generated nodes 
and former neighbors of the replaced node. Moreover, which edges are added 
depends solely on the labels of the nodes involved. 

Recently several variation:, of the NLC model have been investigated. One of 

these is the eNCE model (see /2,6,7,10,11,16,17]). It differs from the NLC 
grammar in a number of aspects: (1) the embedding mechanism makes use of the 
identity (rather than the label) of the nodes in the right-hand side of the productions 
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(this change of the NLC embedding mechanism is called neighborhood controlled 
embedding (NCE) [ 151; (2) the generated graphs have also edge labels (the “e” in 
“eNCE”); (3) t; e embedding mechanism also uses the labels of the edges incident 
with the replaced node. It is shown in [lo] that eNCE grammars are more powerful 
than NLC grammars, whereas it seems that all the nice features of the NIX grammar 
also bold for the eNCE grammar. In this paper we consider eNCE grammars, and 
in particular we investigate the notion of separation in these grammars. 

In [ I9,20,21, IO] it is demonstrated that the so-called boundary restriction (to 
be explained) on graph grammars yields a number of additional nice features and 
properties. One of the reasons for this is that boundary NLC and eNCE grammars 
are con&lent (cf. [3]), i.e., when two nodes in a graph can be replaced, they may 
be replaced in either order (without influencing the result); arbitrary NLC or eNCE 
grammars do not have to be confluent. An eNCE grammar is a boundary (eNCE) 
grammar if there are no edges between nonterminal nodes in its sentential forms. 
In other words, the distance between nonterminal nodes in any sentential form of 
a boundary grammar is at least two, whereas it may (of course) be one in the case 
of an arbitrary eNCE grammar. 

In this paper we study the general notion of distance between nonterminal nodes 
in eP?CE grammars. In particular we investigate whether “small” distances between 
nonterminal nodes can be avoided. For k 3 1 we say that a (eNCE) grammar is 
k-separated if the distance between any two nonterminal nodes in its sentential 
forms is 22. Thus, all eNCE grammars are l-separated, and the 2-separated eNCE 
grammars are precisely the boundary grammars. It is well known that l-separated 
grammars are more powerful than 2-separated grammars. We prove that 2-separated 
grammars are more powerful than 3-separated grammars. Thus, “small” distances 
cannot be avoided in (boundary) eNCE graph grammars. This is in contrast to the 
case for context-free string grammars, where it is shown that small distances between 
4onterminals ran be avoided (see [ 1,12,18]). We conjecture that for k 2 3, 
k-separated grammars are more powerful than (k + l)-separated gramrnars. 

Another natural restriction on graph grammars is the apex restriction (introduced 
in [8,9]). An eNCE grammar is an apex (eNCE) grammar if the embedding 
mechanism can only establish edges between terminal nodes. It is easy to see 
(cf. [8,6]) that each apex language can be generated by a 2-separated apex grammar. 
We show that this can be generalized as follows: each apex language can be generated 
by a k-separated apex grammar for each k 3 1. Hence, demanding apex grammars 
to be k-separated, for some k, has no influence on their generating power. Roughly 
speaking, the idea behind this result can be explakled as follows. After the application 
of a production in an apex grammar, the distance between the newly generated 
nonterminal nodes and the old nonterminal nodes is larger than the distance between 
these old non:erminal nodes and the replaced node. Thus, “small” distances are 

entirely due to small distances between the new nonterminal nodes. Consequently, 
another grammar can be constructed in which these new nodes are “contracted” 
into one node; this new grammar is more separated than the original one. 
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The organization of the paper is as follows. The preliminary definitions concerning 
graphs can be found in Section 1, and the definition of an eNCE grammar in Section 
2. In Section 3, k-separation is introduced, and the generating power of k-separated 
and (k + l)-separated eNCE grammars is compared. Finally, in Section 4 apex 
eNCE grammars are defined, and it is shown that these grammars can be arbitrarily 
separated. 

This paper is part of a series of five papers on eNCE grammars (the crttrer four 
are [6,7,10,11]). Altogether these five papers (together with [2,16,17] j form a 
rather complete picture of basic properties of eNCE grammars and 13nguages. In 
our opinion they demonstrate that this class is natural (as an extension of NLC) 
and interesting (as illustrated by the various results of this series of papers). We 
would also like to stress that the class of eNCE grammars is technically attractive 
in the sense that many of the constructions used, either in proving properties or in 
designing grammars for specific languages, can be done easily, 

The results established in this paper were first presented (without full proofs) in 
[9], where directed graphs were considered. 

1. Preliminaries 

In this section we discuss some notation and terminology used in this paper. 
For a function f: A + B and a set C c_ A, f(C) denotes the set {f(c) ! c E C}. 
A node- and edge-labeled graph, or just a graph, is a system PI = ( V, E, 2, r, cp), 

where V is the finite set of nodes, C is the alphabet of node labels, r is the alphabet 
of edge labels, E c {({v, w}, h ) 1 v, w E V, v P w, A E r) is the set or (labeled) edges, 

and Q: V+C is the node labeling function. Thus we consider undirected graphs 
without loops; multiple edges between the same pair of nodes are allowed if they 
are labeled differently. We use V’, EH, &, IQ,, and QH to denote the difTerent 
components of H. For better readability, an edge ({v, w), h ) will be denoted (v, A, w) 
or (w, A, v) in the sequel; so (v, A, w) and (w, A, v) denote the same edge; A is said 
to be the label of (v, A, w). 

Let If be a graph. If V, = 0 then h-I is the empty graph (denoted A). and if EH = 0 
then H is discrete. A graph H with just one node, say v, with QH (v) = X for some 
X E &, will also be denoted X. 

A graph H = ( V3 E, -C, r, cp) is called a graph over 2 and K Fctr alphabets C and 
r, the set of all graphs over 2 and r is denoted GRZ,,-. A graph language is any 
subset of GRr,lq. 

Let H and K be graphs over Z and K H and K are isokorphic if there is a 
bijection fi : VH + V’ such that EK = {(p(v), A, p( NJ)) I( v, A, w) E En} and, for all 

VE v,,QK(P(V))=QH(V).TheUnionOf and , which is only defined if VH n VK = 

0, is the graph H v K = ( VH u V,, EH u EK, 2, u &? -!-H w 
Let be a graph. henever (v, A, w) E En, 

A sequence vl, v2,. . . , v, of nodes in VH, with r> 1, is a p 
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in H if vi, vi+l are neighbors for all 1 s i s r - 1. The length of this path is r - 1. 

For two nodes x and y in V,, the distance between x and y in H, denoted dist, (x, y), 
is the length of a shortest path between x and y, if such a path exists; otherwise 
dist,(x, y) = 00, where 00 is such that k<a for all ka0. 

For a graph H and VC, V,, the subgraph of H induced by V is the graph 

H[ V] = (V, I?, &, r,,, V,), where E = {(v, A, w) E EH 1 v, w E V}, and @ equals cp 
restricted to V. 

asic definitions on graph grammars 

In this paper we use eNCE graph grammars, defined as follows. 

efinitisn 2.1. A graph grammar with neighborhood controlled embedding and dynamic 
edge relabeling, for short eNCE grammar, is a system G = (Z, A, I”, 0, P, S), where 
C is the total alphabet of node labels, A c C is the alphabet of terminal node labels, 
P is the total alphabet of edge labels, 0 c_ r is the alphabet ofJina1 edge labels, P is 
the finite set of productions, and S E C - A is the initial nontetminal. A production 
v E P is of the form ‘TT = (X, D, B), with X E 2 -A, DE GRr,,., and BE 
vDxrxrx2. 

Before we proceed with the definition of the behavior of a graph grammar we 
introduce some terminology concerning the concepts defined above. First, elements 
of A are called terminals, and elements of Z -A are called nonterminals. Then, for 
agraph HEGR. l,l., a node v E V, is called terminal if (gH (v) E A, and nonterminal 
otherwise. For a production 7~ = (X, D, B) we use apex(n) to denote the set {v E 

V,lcp,,(4~~- A} of nonterminal nodes of D. Moreover, X is called the left-hand 
side of n, D is called the right-hand side of IT, and B is called the embedding relation 
of rr. We write lhs( 7r) = X, rhs( r) = D, and emb( n) = B. Finally, 7~ is a A-production 
if rhs( n) = A. 

nition 2.2. Let G = (2, A, r, 0, P, S) be an eNCE grammar. Let H and K be 
graphs over C and r, let v E VH, let 7~ = (X, D, B) E P, and let p : VP + Vk be a total 
injective function such that VH n p( Vb) = (b. Then we write H =$( o,W,pI K, or just 
H+ K, if (PH( 0) = X and K is the following graph: 

vK =(vH -{dh@(b), 

Ek ={(x&,y)E E&f u,y# v) 

W{(P(X),~,P(Y))I(X,~,Y)E EDI 

ww44Y)b~ b,YE VH-bhd, 

ah E r: (u, A, Y) E EH, (x, A, Pu, (PH(y)) E N, 

& =z 

L = r, 

+&b=q&) if XE V,+ and (P&~(x))=(P/,(x) if xc V,,. 
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As usual, +* is the transitive-reflexive closure of +. A graph H E GRL,,- such that 
S +* H is ca!led a sententin:! form of G. The language generated by G is L(G) = 
{H E GRJ,n 1 S _,.* H}. 

As usual, somewhat informally, 19+K is called a derivation step, and a sequence 
of such derivation steps is called a derivaticrn. 

Thus, the set of all graphs with only terminal node labels and final edge labels 
which can be derived from S (more precisely, from any graph with just one node 
labeled S) forms the language of an eNCE graph grammar. The class of all languages 
generated by eNCE grammars is denoted eNCE. 

Note that we define a derivation step between “concrete” graphs while in [6,7, lo] 
‘“abstract” derivation steps have been considered, i.e., (in the notation of above) 
steps of which the result may be any graph isomorphic with K. The “concrete” 
derivation steps are more convenient for technical reasons. However, we do not 
lose any generating power, as it is easy to see that the set of all sentential forms of 
an eNCE grammar G is closed under isomorphisms (and, in particular, L(G) is 
closed under isomorphisms). 

Next, two examples of an eNCE graph grammar are given. The same examples, 
and some more, can be found in [6] and [lo]. 

Example 2.3. Let G, = (2; A, IY’, 0, P, S) be the eNCE grammar defined by 2 = {a, S}, 

A =(a), r = 0, PI9 0 = W, and with P consisting of the productrons n1 = (S, D, B) 

and n2 = (S, A, 0), where V, = 1x3 Y, ~1, ED = {(x, PW, Y), (x, A, z), (Y, P, z)), V,(X) = 
q&y) = Q, cp&) = S, and B ={(x, A, p, a), (y, p, p, a)}. In Fig. l(a) a picture of 
production rrl is given. Nonterminal nodes are drawn as boxes and terminal nodes 
as circles. The graph inside the big box (i.e., the nonterminal node that is rewritten) 
represents rhs(rl), the symbol in the left upper corner represents lhs(?r,), and the 
edges crossing the big box represent emb(n,). These latter edges have two labels: 
the one outside the box is the “old” label and the one inside the box is the “new” 
label. It is not difficult to see now that L( G,) is the set of all 
in Fig. l(b). 

“ladders” as depicted 

Let Gz be defined as G1 above, but with the productions as depicted in Fig. 2. 

It is easily seen that L( G,) is the set of all binary trees over (a) and W- 

Finally we introduce some more terminology with respect to derivations. Consider 
an eNCE grammar G = (& A, I’, 0, P, S) and a derivation 6 : S + u, ,“, ,p,, HI+ 

l l l *w?.,B,) Hr in G, with Hi EGR~,,- and r 3 1. Then H, is called the result of 6, 
and S is said to be a derivation of Hr. Moreover, 6 is said to be consistent if vi e VH, 

for all 16 i s,’ s r. Thus, in a consistent derivation, no node is “used twice”, i.e., 
when a node is rewritten it cannot be introduced anymore later on. It is not di 
to see that for every derivation there is a consistent derivation with the same result. 
Hence, from now on we will consider consistent derivations only. 

The following notion will play an important role in Section 4. 
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Fig. P. 

Fig. 2. 
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Let 6 = (Z, A, I’, 0, P, S) be an eNCE grammar, let 

~:S%,Jr,,p,, HI** - *%dr,,P,) H, be a consistent derivation in G with r 3 I, and 
let x be a node in Pa,. Then the producer of x in 8, denoted producers(x), equals 
the number i E { 1,2, . . . , r) such that x E &( Vrhs(xi ,). 

Intuitively, the fact that producer,(x) = i means that x is generated in the ith 
derivation step Hi-1 * Hi of 6 (with HO = S). 

3. Separation 

We now introduce the notion of nonterminal separation in graph gram;nars. 

Definition 3.1. Let G be an eNCE grammar, and let k 2 1. G is k-sepamred if for 
every sentential form H of G and every two distinct nonterminal nodes x and y of 
H, dist,(x, y) 3 k. 

For k 3 1 we use SEPk to denote the set of all eNCE languages that can be 
generated by a k-separated eNCE grammar. Trivially, the eNCE grammar G, of 
Example 2.3 is k-separated for each k 2 1, and so L( G,) E S km Moreover, it is 
easy to see that G2 is 2-separated, but not 3-separated. However, we will prove in 
Section 4 that for every k L( G2) E SE 

Let us now make some easy observations. First, S , and second, 

SEP,+, c SEPk for all k Z= 1. Furthermore, as mentioned in the Introduction, it is 
not difficult to show (cf. Lemma 2.1 of [19]) that the class S Pz coincides with the 
class of so-called boundary eNCE languages, which have been investigated in [lo]. 
Since it is proved in that paper that the class of boundary eNCE languages is a 
proper subclass of eNCE, it follows that S 

The main question concerning separati 
of SEPk for all k 2 1. Unfortunately, we do not know the answer. However, we do 
know that SEP3 is properly included in SE which shows that “small” distances 

ca2z3t be avoided in boundary eNCE grammars. In order to prove this we first 
need the notion of a linear grammar (cf. [6]). 

efinition 3.2. An eNCE grammar G is linear if the right-hand side of each 
production of G contains at most one nonterminal node. 

We will use the notation for the class of all languages that can be generated 

by a linear eNCE grammar. Clearly, G1 is linear, but G, is not. 
Now we are ready to give the proof of the proper inclusion of 3 in 2. It 

is based on the (nontrivial) fact, shown in [6], that is properly included in 

2 (in fact, a linear grammar is k-separated for 

all k 2 1 because the sentential forms of a linear grammar have no more than one 
nonterminal node). 
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Theorem 3.3. SEPj is properly included in SEP2. 

roof. Consider any graph language L such that L is in SW 
example of such a language is the set of all binary trees of Example 2.3 (cf. Theorem 

16 of [6]). Define now for each H E L the graph dot(H) by dot(H) = (K 8 2, K cp), 
where V = V’ u (6) with 5 a new node, 2 = &., v ($} with $ a new node label, 

r = &.,, Q(V) = QH(V) for each o E V,, ~(6) = $, and E = & v {(v, A, &)I v E VH, 
A E r}. Hence, dot(H) is obtained from H by adding one node labeled $ which is 
connected to all other nodes by a h-labeled edge, for all A . Let dot(L) be the 
set {dot(H) 1 H E L}. It is not difficult to see that dot(L) E 2, using L E SEP2 : 

first genehate the $-labeled *lode, and then simulate a 2-separated grammar gener- 
ating L; it is easy to take care that the edges incident with the $-labeled node are 

established. 
Assume now that there exists an eNCE grammar G such that L(G) = dot(L) and 

G is 3-separated. A contradiction will be derived from this. We may assume that 
G contains no A-productiosls (cf. Theorem 10 in [IO]). If G would be linear, then 
L could also have been generated by a linear eNCE grammar (just remove the 
$-labeled node from the right-hand sides of the productions of G). Since L ti LIN, 
it follows that G is not linear. Hence, there exists a derivation ~5 : S ** HI ** H2 
in G such that H+ L(G) and HI contains (at least) two different nonterminal 
nodes. There are now two possibilities. 

(1) The $-labeled node is generated by one of the nonterminal nodes in H,) 
say X. Let y be one of the other nonterminal nodes in H,. Since G contains no 
A-productions, y generates at least one terminal node, which has to get connected 
to the s-labeled node. Hence, there is an edge between x and y in H, , contradicting 
the 3-separateclness of G. 

(2) The $-labeled node already appears in H,. Consider now two different 
nonterminal nodes x and y in H,. Since G contains no A-productions, both x and 
y generate at least one terminal node, each of which has to get connected to the 
$-labeled node. Hence there is an edge between x (y, resp.) and the $-labeled node, 
which means that the distance between x and y in H, is at most two. This again 
ccntradictq the 3-separatedness of G. 

Hence, dot(L) is in SE 2 but not in SEP,, which proves our theorem. Cl 

As mentioned above we do not know whether the same resuit can be obtained 
for arbitrary k. But we conjecture that SE k+l is properly included in SEPk for all 
k 3 3, and we propose the following counter examples: the language generated by 
the eNCE grammar Gk defined in Fig. 3 is in SE k but does not seem to be in 
S &+i . In Fig. 4 a typical graph in L(Gk) is draw (for k = 4). We have removed 
the only edge label from the pictures. Note that L( G,) is precisely the set of all trees. 

We will now argue that there do not exist “simpler” counter examples. In fact, 
all counter examples must be languages that cannot be generated by a nontermina! 
bounded eNCE grammar. An eNCE grammar G is nonterminal bounded if there is 
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% 
A 

(k-2) 
a-labeled 

nodes 

Fig. 3. 

a number n 2 ! such that each sentential form of G has at most n norxrminai 
nodes. Hence, a graph grammar which is not nonterminal bounded has for each 
n 2 1 a sentential form with more than n nonterminal nodes. It is proved in [6] that 
each nonterminA bounded eNCE rammar is eqkalent to a linear one. 

any grammar generating a language in 
not nonterminal bounded. The next sec’_Ion shows 
cannot be aF?ex either. 
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Fig. 4. 

Finally we note that the above counter examples, and the one in the proof of 
Theorem 3.3, are all graph languages of unbounded degree (i.e., there is no bound 
on the degree of the nodes of the graphs in the language). We conjecture that SE& 
languages of bounded degree can be arbitrarily separated. 

h grammars and separation 

. In this final section we consider apex eNCE graph grammars, and we show that 
demanding apex grammars to be k-separated has no influence on their generating 
power, in the sense that every apex eNCE language can be generated by a k-separated 
apex eNCE grammar for each k 3 1. First we give the precise definition of an apex 
grammar (see also [8,9]). 

An eNCE grammar G = (-C, A, l-l9 0, P, S) is an apex eNCE grammar, 
for short A-eNCE grammar, if for every production 7~ = (X, 0, B) E P the en&e&ling 
relation B is a subset of {(x, A, p, a) E V, x r x r x 2 1 cp&) E A and A f A). 

It is not difficult to see that both G, and G2 of Example 2.3 are apex grammars. 
Th:: class of all languages generated by A-eNCE grammars is denoted A-eNCE. 

k (for k 2 1) is used to denote the class 
y an apex grammar which is k-separated. 

oreover, it is easy to see that each A-eNCE language can be generated 
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by an A-eNCE grammar which is 2-separated (cf. Lemma 5 of [6]); hence, 
. This section is devoted to proving that k 

= -eN 

To prove this we need the following lemma. It states the essential fact that whenever 
two nonterminal nodes in a sentential form of a k-separated A-eNCE grammar 
have distance k, they have been generated in the same derivation step. 

.2. Let G be a k-separated A-eNCE grammar, for some ks2, and let 

~:S*~ul,x,,P,) H*+ l ‘=s~ur,~r,P,) I-p, be a consistent derivation in G, with r 2 1. Con- 
sider two distinct nonterminal nodes x and y in H,. such that the distance between x 
and y in Hr is k. Then l=roducer&) = producers(y). 

roof. We use induction on r to prove this statement. 
r = 1. It is clear that in this case each node in H, is in the set &( V&,J, and so 

producer8 (x) = producer6 (y ) = 1. 
r > 1. Let S’ be the consistent derivation in G consisting of the first r - 1 steps of 

6. Hence, H,_, is the result of 6’. We make the induction hypothesis that the lemma 
holds for 6’. Consider now two distinct nonterminal nodes x and y in H, at distance 
k,andapath wo,wl ,..., wk_,, wk in M, of length k such that w. = x and wk = y. 
Four cases can be distinguished. 

Case 1. x and y are both nodes in flr( V&J. In this case producer,(x) = 
producer8 (y ) = r. 

Case 2. x and y are both in H,_, . We argue that x, wl,. . . , w,+~, y is also a path 
in H,_, . It clearly suffices to show that all nodes Wi on the path are in H,.__, . Assume, 
to the contrary, that i is the smallest number with 1 s i s k - 1 such that Wi is not 
a node in H,._,. From the way the embedding mechanism of an eNCE grammar 
works it immediately follows that x, wl,. . . , Wi_1, or is a path in Hr._, of length 
i < k; this contradicts the k-separatedness of G. Hence, indeed x, wl,. . . , wk+, y 
is a path of length k in H,_, , and so the induction hypothesis states that pro- 
ducer8Jx) = producer&y). The lemma now follows from the easy observation that 
producer&) = producer&) for all nodes z which are both in H, and in H,-, l 

Case 3. x is in Hr+ but y is in fir: V,hs(rr,J ). We will show that this situation 

cannot occur. Assume that i is the smallest number with 1 s is k such that Wi is in 

Pr( Khs(7rJ ). As above, it follows from the way the embedding mechanism of an 

eNCE grammar works, that x, wI, . . . ) wi_1, v, is a path in Hr._, . Since only terminal 

nodes can get connected by the embedding mechanism of an apex grammar, it 
follows moreover that Wi (and Wi_1) is a terminal node. Hence, since wk =y is 
nonterminal, i # k, and sc there is a path of length <k between the nonterminal 
nodes x and v, in H,_, . This is a contradiction, and so Case 3 cannot occur. 

Case 4. y is in H,.-, , but x is in &( ,). This leads to a contradiction in the 

same way as in Case 3. 
ence, we have seen that Cases 3 and 4 cannot OCCW, w ereas in Cases 

indeed producer,(x) = producers(y). This proves th< lemma. 0 
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This lemma lays the foundation for the proof of the following theorem. The idea 
is that a k-separated apex grammar G can be turned into a (k + l)-separated grammar 
G by “contracting” the nonterminal nodes in the right-hand side of the productions 
of G into one new nonterminal node, which represents all the contracted nodes. 
One derivation step of G consists of applying a production of G to each of the 
contracted nodes. Lemma 4.2 shows that in this way there will remain no nonterminal 
nodes at distance k, since all such nodes are in the right-hand side of one production 
of G (and arc thus contracted in G). Similar constructions have been dsed in the 
proofs of Theorems 12 and 14 of [6]. 

Theorem 4.3. A-SEPk = A-SEP,,, for all k 2 1. 

roof. Let G = (Z, A, r, 0, P, S) be an A-eNCE grammar that is k-separated, for 
some k. According to Lemma 5 of [6] we may assume that there are no edges 
between nonterminal nodes in rhs( n), for all 7~ F P (hence, k 3 2). Assume that for 
distinct productions rr and ii in P, V& mj n Vrhs(*) = 0. Assume, moreover, that for 
each w E P all nodes in apex(r) have distinct labels (this property is easy to obtain). 
Retail that apex(r) is the set of nonterminal nodes in rhs( ?T). 

We will construct an A-eNCE grammar G = (s, A, r, 0, pi, S) with L(G) = L(G) 
such that G is (k + l)-separated. 

First, let 2 = A u (S} u {K E GRL_J,,I K = rhs( ?r)[apex( rr)] for some w E P}, and 
r = r u {(A, X) 1 A E r, x E apex(n) for some 7~ E P}. Thus, each new symbol in s is 
the subgraph of the right-hand side of some production of G induced by the 
nonterminal nodes. According to the assumptions we made, these are all discrete 
graphs, of which the nodes are labeled by (different) elements of C -A. 

Second, we associate with each production v E P a graph contract(n) t^ GRr,r 
which is constructed from rhs( n) as follows. If apex(n) = 0 then contract( tT) = 
rhs( n), and otherwise contract(n) = ( V, E, ii?, r, cp), where 

V=(&hs(d- apex(d)uk), 

where & is for each production 7~ a distinct new node, 

E ={(vV A9 W)E ErhstTb( 0, weapex 

u{( v9 th9 x), &) I(& A9 x) E Erhs( d9 0 @ aped d, x E aped d), 

d+%hs(&) if 0 + tsr and &$A =Wn)[apexh)l. 

Then we are now ready to define the productions in E To star: with, if 9;’ E P is 
such that lhs(rr) = S, then p contains the production (S, contract(n), g). Further- 
more, if K is one of the discrete graphs in s - A - {S}, and if rr, is, for ea&;h x E VI;, 

a production in P with lhs( 7q) = qk (x), then P contains the product&l (X, 0, B), 
where 

. t vK contract( 7~,), 

={(v,(h,x),~,a)l(L’,h,~~a)Eemb(rr,)}. 
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Note that the two assumptions we made and the distinctness of the &‘s assure that 
the graphs contract( TX) are mutually disjoint. Hence, D is well defined. 

This concludes the construction of G. In order to show that L(G) = L(G) and 
that G is (k + l)-separated, we need the following definitions and claim. 

Consider a derivation 

s:s . . . 
*, 

in G with r 2 1, and let H = H,. S is called apex-complete if S is consistent and, for 
each 1 s i c r, either Pi(apex( vi)) c I& or Pi(apex(mi)) n V’ = 0. Intuitively, this 
means that all nonterminal nodes with the same producer either have all been 
rewritten or have all not yet becsn rewritten. Furthermore, if 6 is apex-complete, 
then the graph contract@) is constructed from H as follows: contract(S) = 
(V, E,~,CQ) with 

V=bE v,lQH(Vk4 

u{Si 11 s i c 5 apeX( fli) # 0, Pi(apeX( 7Ti)) C VH}, 

V IiT! apeX( 7Ti), 41’ E iApeX( 7Ti)}, 

~(v)=Q~_(v), for each DE V’ with p,,(v)~A, 

Q( &) = rhs( wi)[apex( vi)], fqr each ti E V. 

With these definitions we can state the follo*;*;ing claim. 

Claim. A graph g is a sentential form of G if and only if h? = S or I? is isomorphic 
with contract@), for some apex-complete derivation 6 in G. 

Proof (sketch). The + part of the claim is not difficult to show. With respect to the 
C- part, we make some comments. Let 6 : S *(VI rXi ,@,) H, + l l l =J, c,,n,,P, ,’ H be an 
apex-complete derivation in G with r 2 1. The claim is obvious for r = 1. For r a 2 
it follows from the apex-completeness of 6 that there exists an s, 1 s s -C r, such that 

apexw # 0, 
P,(apex(7rJ) (7 V’ = 0, and 

for every t, if v, E &(apex(ns)), then &(apex(7r,)) E V’. 
Hence, s is such that each kp,onterminal node v, in rhs(g’,) has been rewritten, but 
none of the nonterminal node? in rhs(rr,) has yet been rewritten. y the confluency 
of apex grammars (cf. the Introdution) the derivation can be r rdered in such a 
way that the elements of &(apex(7r$ are rewritten at the end of the derivation. So 
we can assume that {v~._~+, , . . . , v,) = /3,(qm~(~~)) where p = #apex( n;), p 2 
first r -p steps of this derivatio erivation, for whi 

assume tha.t the claim holds (ind e last p steps can be simulated 
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by a single production (X, 0, B) of e, with X = rhs( ,nJ[apex(?r,)] and D = 

&, contract(q), where I ={r-p+ 1,. . . , r}. It is left to the reader to formalize 

the proof of this claim. 

Since trivially each N E L(G) can be generated by an apex-complete derivation 
6, and since contract(S) = H in this case, it follows directly from the claim that 
L(c)= L(G). 

s 

a 

1 CL 

ss 

s 

0 a 

Fig. 5. 
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We next discuss the (k+ I)-separability of e. Consider a sentential form H of 
G, and let 6: S+tU,,R,,P,J N,+- l l + (u,,m,,P,) N, be an apex-complete derivation in 

IS isomorphic with contract(S), cf. the claim above. Consider any 
path wO,wl,..., w, in contract@) such that w. and w, are distinct nonterminal 
nodes and w1 to w,_~ are terminal nodes. We show that t 2 k+ 1. From the definition 
of contract@) it easily follows that there are nonterminal nodes x and y in H, such 
thatqq,... , w,._~ , y is a path in H,. Hence, since G is k-separated, t 2 k. Assume 
now that t = k. We will derive a contradiction from this. From Lemma 4.2 it follows 
that producer,&) = producer,(y), and so x and y are generated in the same deriva- 
t:on step, say in the ith (16 i s r). Thus, X, y E Pi(apex(T)), and Pi(apex( ni)) c VHr. 
From the way in which contract( 6) is defined, it now directly follows that w. =I w, - [i. 
This contradicts our assumption that w. and wt are distinct nonterminal nodes, so 

S ss 

Fig. 6. 
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indeed d # k. Thus, G is (k + l)-separated, which proves the theorem. A more precise 
analysis would show that G is in fact (k + 2)-separated (cf. the next example). 0 

Consider the 2-separated apex grammar G2 of Example 2.3, generating 
the set of all binary trees. A La-separated apex grammar G4 generating the same 
language is given in Fig. 5; this grammar is not Gz from the proof of Theorem 4.3, 
but it is close to it. Figure 6 shows some of the productions of a 6-separated apex 
grammar Gb generating the binary trees. For each of the three grammars a derivation 
is sketched in Fig. 7. This figure illustrates clearly that a larger separation can be 
obtained by contracting nonterminal nodes with the same producer. It also shows 
that Gi is not (i + l)-separated, for i = 2,4,6. 

From Theorem 4.3 it now follows directly that A-eNCE grammars can be arbitrarily 
separated. 

S. A-eNCE = A-SEPR jbr every k 2 1. 

Finally, we observe that it has been shown in [6] that LIN 
incomparable, and so it follows that both A-eNCE and LIN are 

and A-eNCE are 
proper subsets of 

G2 : 

G4 : 

s7 

a 
a 

/\ 
I\ 

s =$ ---* a 
s Ia\ I\ 

s s s 5 

a 

I 
SS 

-. 

a 

I\ 
a a 

1 I 
ss ss 

G6 : 

a 
a 

s===? I 

/\ 
a a 

ss 4/ I-1 

ssss 

Fig. 7. 

ajala _ _ 
* -_I 

* /\ /a 
ia\ P\ I”\ Ia\ 

S ss ss ss s 

ya\ q __I 3 /a\ P\ 
ii ii 
ss ss ss ss 

> 

Aa\ ia\ P\ 
a 

A\ A a a 

x\ /p 
ssss ssss 
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