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ABSTRACT Distortion of the open-time or closed-time distributions of single channel currents, due to limited time resolution of
the recording system, has been addressed by many authors. The calculation of the modified distributions generally involves
the numerical inversion of a Laplace transform and is difficult to apply in fitting multistate kinetic schemes to data. Our
approach is to introduce "virtual states" into the kinetic scheme, as suggested by Blatz and Magleby (1986. Biophys. J.
49:967-980) to account for missed events. To simplify the assignment of rate constants in multistate schemes we make use

of Kienker's (1989. Proc. R. Soc. Lond. 236:296-309) theory to first transform schemes to uncoupled form. Our approach
provides a good approximation to the exact solution, while allowing the observable dwell-time distributions, and also the
second-order probability density functions, to be computed by standard matrix techniques.

INTRODUCTION

Recordings of currents in single ionic channels are com-

monly analyzed in terms of the dwell times in closed and
and open states. It has been pointed out by numerous

authors that the limited time resolution of the recordings
results in the distortion of the open- and closed-time
distributions (Rickard, 1977; Sachs et al., 1982; Neher,
1983; Colquhoun and Sigworth, 1983; Magleby and
Palotta, 1983). An example of the problem is illustrated
in Fig. 1. A short open interval (epoch 3) and a short
closed interval (epoch 6) are not detected, so that the
apparent channel activity (part B of Fig. 1) shows
extended closed and open intervals. In this figure, the
usual model of the detection process is invoked, namely
that a closed or open interval (an "e-dwell", cf. Colqu-
houn and Sigworth, 1983) is detected only if it begins with
a dwell in that state longer than a particular dead time 6
of the recording systems.
As was first shown by Roux and Sauve (1985) and

generalized by Ball and Sansom (1988) and Milne et al.
(1988) it is possible to calculate the distributions of
e-dwells, given a fixed dead time, from the activity of
channels obeying any Markov gating scheme. The exact
solution is difficult to apply in practice because it involves
the numerical inversion of a Laplace transform. For this
reason, several approaches have been taken to obtain
approximate solutions. Roux and Sauve (1985) presented
a "first-order" solution that can be computed by standard
matrix techniques but which ignores the contribution of
the durations of missed events to the total duration of an
observed dwell time. Milne et al. (1988) use a series
expansion of the Laplace transform to obtain approxi-

mate solutions for simple kinetic models; they and Ball
and Sansom (1988) also consider the use of moments of
the dwell-time distributions, which are more readily
computed. Blatz and Magleby (1986) take an alternative
approach to the problem in which the values of certain
rate constants in the kinetic scheme are modified to reflect
the effect of missed events. Their technique yields the
correct mean dwell times for simple kinetic schemes, but
the application to multistate, coupled schemes requires
the assumption that multiple state transitions do not
occur during missed dwell times.

In this paper we present yet another approximate
solution to this problem. We make the usual assumption
that the limited time resolution of the single-channel
recording is characterized by a dead time 6, such that all
dwell times shorter than a are not observed, but all longer
dwell times are observed. Our approach is to introduce
"virtual states" into the kinetic scheme, as suggested by
Blatz and Magleby (1986); the transitions into and out of
the virtual states correspond to transitions that are

undetected experimentally. To avoid the difficulty of
assigning virtual states in the case of complicated, cou-

pled schemes we use the recent results of Kienker (1989)
to allow any scheme to be transformed for the simple
introduction of virtual states. The approximation in our

solution is that we treat the missed dwell times as if they
were dwells in single kinetic states and therefore have
exponential probability distributions (the true distribu-
tions are exponentials that are truncated at the time 3).
This approximation allows the observable dwell-time
distributions to be computed by standard matrix tech-
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FIGURE 1 Idealized single-channel traces. (A) Channel activity includ-
ing a brief opening (epoch 3) and a brief closure (epoch 6). (B) Apparent
activity after imposing a dead time 5. Note that even though the closed
time represented by epoch 4 in A is much shorter than 6, the e-opening in
B does not begin until epoch 5, where a continuous opening longer than 5
occurs. States of Schemes I' and I" corresponding to the channel activity
are labeled in A.

niques, while introducing errors that are expected to be
negligible in practice.

THEORY

A two-state scheme
Let us first consider the simple case of a channel with two
states, closed and open (Scheme I). In the analysis of the
channel's behavior, missed dwells in the closed state cause
the apparent open time to be extended, whereas missed
open dwell times extend the apparent closed time. For
now we consider only the problem of computing the
e-closed time distribution. To do this we introduce the
"virtual scheme" I' in which the missed openings are
represented as sojourns in the state O' whereas openings
that are detected are represented by the state O'. It is
possible for a channel in its closed state C' to make a
transition into either O' or Om, but transitions between O'
and Om do not occur. Using this scheme, apparent closed
times are taken to be the times between leaving the
"observable" open state 0 and returning to it.

Scheme I Scheme I'

kO'
kol

,8

l'

kom OmIk;
C0 ±1 C5t

Let us call Pm, the probability that an open dwell time is
less than the dead time a and is therefore missed:

PI = fo klo exp (-klot) dt = 1 - exp (-klob). (1)

The mean duration of these missed open dwells lies

between 0 and (/2 and is given by

klot exp (-k1ot) dt a exp (-k105)

(Dm)= ;-P- (2)

Using these quantities we can assign the rate constants
in the virtual scheme as follows. First, the dwell time in
the closed state is unchanged, so that the two rates leading
from the closed state C' should sum to the original
opening rate kol. The relative probabilities of entering Om
and O; from the closed state are P' and 1 - P
respectively. From these considerations we obtain

kol = kol (1 - Pm)

km ,=kom^01 =^1

To make the mean time in the virtual state equal to the
mean duration of missed events we assign

1

k' (Dm)

For our present purpose of determining the apparent
closed times, the rate k'o is arbitrary, as will be proved
later.
Thus all of the rates in the scheme are determined, and

the e-closed-time distribution can now be obtained through
solving for the time spent in the aggregate of states {C0,
O'}. An example of an e-closure is shown in Fig. 1. It
corresponds to a dwell in state CO (epoch 2) followed by
dwells in O" (epoch 3) and CO (epoch 4) before exiting to
an observed opening. It should be emphasized that, by
definition, an e-closed interval must begin with a dwell of
length a in the closed state, and therefore cannot be
shorter than (. The distribution of e-closed times is
therefore computed from the time of leaving the aggre-

gate {CO, Om} given that the system is in state C' at time 5.

The distribution of e-open times can be computed
analogously by constructing a three-state virtual scheme
but now with an extra state Cm representing the missed
closed events. We give an example of this procedure in a

later section.

Coupled and uncoupled schemes
Virtual schemes can be readily constructed for some

kinetic schemes having multiple open and closed states.
For example, in scheme U of Fig. 2, the effect of missed
openings can be modeled by adding virtual states Om and
Om in parallel to the existing open states. However, in
schemes like scheme G of Fig. 3, it is difficult to add such
virtual open states and specify the rate constants. The
difficulty arises from the direct connection between the
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FIGURE 2 Construction of a virtual scheme U' from an uncoupled
scheme U to take into account missed openings. Dwells in the open states
02 and 03 that are shorter than the deadtime are represented by virtual
closed states O° and 0', respectively. The states °2 and 0 in the virtual
scheme account for detected open times.

open states, which implies that a missed opening can

consist of dwells in both open states. In many such cases a

reasonable approximation is to assume that missed dwell
times consist of sojourns in a single state (Blatz and
Magleby, 1986), and to compute effective rate constants
on that basis. However, this approximation is not always
valid, and it could be tedious to verify in every case.

Using Kienker's (1989) terminology, scheme G of Fig.
3 is called a "coupled" scheme, and U is an "uncoupled"
scheme; an uncoupled scheme has no direct transitions
between pairs of open states or between pairs of closed
states. From any uncoupled scheme we can construct a

virtual scheme having extra states representing missed
dwell times. In some applications a "partially uncoupled"
scheme will suffice. For example, if we are interested in
computing the closed-time distribution in the presence of
missed openings, we require only that the scheme be
uncoupled for openings (Scheme Uo of Fig. 4) so that we
can add virtual open states in parallel to the existing ones;
coupling of the closed states does not matter in this case.

Transformation to uncoupled schemes
Kienker (1989) has demonstrated that through a class of
similarity transformations it is possible to transform a
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FIGURE 3 Example of a general, coupled scheme G and an uncoupled
scheme U that could be made equivalent to it by the proper choice of rate
constants. The schemes have the numbers of states N. = 2, NC = 2, and
N = 4. The total number of identifiable rate constants is H = 2NONC =
8. Although scheme G has 10 rates, U can be equivalent to it by proper
choice of its H = 8 rate constants.

FIGURE 4 Example of a scheme uncoupled for openings (Uo) and a
scheme uncoupled for closings (Uc).

given kinetic scheme into all other equivalent schemes
which have indistinguishable kinetic behavior. Further,
he showed that for a given scheme G there always exists a

unique, equivalent uncoupled scheme. His results can be
summarized as follows. Using the notation of Colquhoun
and Hawkes (1981), we let Q be the matrix of transition
rates of a given kinetic scheme which can be partitioned
into the four submatrices Q.O, QOc,, Qco, and Q,c which
represent transitions among open states, between open

and closed states, and transitions among closed states,
respectively. Two kinetic schemes G and U are then
equivalent if and only if their Q matrices are related by a

similarity transformation

QU = S . QG . 1 (4)

in which S is an invertible block diagonal matrix in which
each row sums to unity and has the form

Soo 0

Further, if the matrices Soo and Scc diagonalize the
submatrices QGO and QG<C of QG, then QUO and QUCC will
be diagonal. This is the condition for scheme U being
uncoupled because then all rates among the open states
and among the closed states are zero.
Assuming that QG is diagonalizable (which is true if the

scheme satisfies detailed balance) then so are submatrices
QGOO and QGCC.1 The matrix S that yields the transforma-
tion to the uncoupled scheme is then fully and uniquely
determined by letting S., be the matrix of eigenvectors of
QGO whose rows sum to unity, and S<c be the matrix of
eigenvectors Of QGCC whose rows sum to unity. Thus we
can write, for the case of So,o

QUoo = SOO * QGOO - Soo
SOo . U = U

where u is a No by 1 column vector of ones.
The transformation to a partially uncoupled scheme

'If QGCC (or QGOO) is not diagonalizable because two or more eigenvalues
are identical, then scheme G is lumpable and we should look for an
equivalent scheme with fewer states.
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can be performed similarly. For example, to transform G
to a scheme uncoupled for openings, Soo must be a matrix
of eigenvectors Of QGO whose rows sum to unity, but S,
could be the identity matrix.

Significance of uncoupled schemes
The states of an equivalent uncoupled scheme typically
have no physical significance, but they have a mathemati-
cal significance. In a scheme uncoupled for openings, for
example, the fact that the open states are connected only
to closed states means that each dwell time in an open
state is directly observable as an open interval. Because
the dwell time in each state is exponentially distributed,
each open state contributes an exponential component to
the open-time distribution. Thus there is a one-to-one
correspondence between each state in an uncoupled scheme
and each exponential component of the dwell time distri-
butions.
An uncoupled scheme obtained by Kienker's transfor-

mation is equivalent to the original scheme in that the
distribution of dwell times in closed and open states, as

well as the second-order probability density functions
fc(t1, 12) andf5o(tI, 12) are the same. Since Bauer et al.

(1987) have shown that all other probability density
functions for dwell times can be deduced fromf. andf.,
the uncoupled scheme behaves in a way indistinguishable
from the original scheme. As Kienker points out, this is
interesting in view of the fact that the schemes may have
differing numbers of rate constants: an uncoupled scheme
can have a maximum of only 2NONC nonzero rate con-

stants, which, however, is equal to the maximum number
of identifiable rates (Bauer et al., 1987).

Negative transition rates in the uncoupled scheme
sometimes result when strongly coupled schemes are

transformed. Although they have no physical meaning,
the negative rates are required to reproduce negative
amplitudes of exponentials in the second-order probabil-
ity density functions of some coupled schemes. The
negative rates result in the correct formal solutions to the
kinetic behavior; the sum of the rates leaving each state is
always positive, so that the distribution of dwell times
(first-order probability density function) in each state is a
decaying exponential function.

Virtual states for a multistate
scheme
We now consider the problem of computing the closed-
time distribution for a multistate scheme when brief
openings are missed. We start with a scheme that is
uncoupled for openings such as scheme U of Fig. 2. Let
the states be ordered such that 0, 1 ... Nc - 1 are the Nc
closed states and Nc, Nc + 1 ... Nc + No- 1 = N- 1

are the No open states. Let kj be the rate constant from
state i to state j in the uncoupled kinetic scheme. The
probability density function of dwell times in a given open
state O is the single exponential

SO (t) = X, exp (-Xit),

where XA equals the sum of all rates leading away from
state 01, for i = Nc toN - 1

Ai= E kii
j=O

(5)

Then the probability of missing an open dwell time in
state 01 is simply

P,= Xi exp (-Xit) dt = 1 - exp (-A,;) (6)

and the mean missed open time (Dim) is

X:it exp (-Xit) dt 1 6 (-X,;)
(D!p) = - _ _I pmn xi PM (7)

for i = Nc to N - 1. (Colquhoun and Sigworth, 1983;
Neher, 1983; Blatz and Magleby, 1986).
As in the case of the two-state scheme considered

earlier, we now create a virtual scheme U' which has
additional states to account for unobserved dwells in the
actual open states. Our fundamental assumption, as

before, is that we can approximate the distribution of
missed dwell times by exponentially distributed dwells in
the virtual states. Each original pathway in U from closed
state Cj to open state Oi is replaced in the virtual scheme
by two pathways (Fig. 2) representing the two possible
outcomes of each closed open transition:

(1) The dwell time in Oi is longer than 6. This is
represented in U' by a transition from closed state Cj to
detected open state O (j = 0 to Nc - 1, i = Nc to N -

1).

(2) The dwell time in O is shorter than 6. Then the
transition to 0, will not be observed. In U' this is
represented by the transition from Cj to the virtual state
om (j = 0 to Nc -1, i = Nc to N- 1). The fact that U
is uncoupled for openings implies that each virtual state
O07 will also be uncoupled, i.e., it will only have pathways
back to closed states.

Let us now derive the rate constants of the virtual
scheme. The rates k;, and kji, i = N, to N-1, j =O to
N- 1 are for transitions between the detected open state

and the closed state Cj. The new set of rates kV and
kjm,, i = NC to N- 1; j = 0 to Nc-1 are for transitions
between the missed open state and the closed state Cj.
Then for i = Nc to N - 1, j = 0 to Nc- 1, the following
relations hold between the rates of the virtual scheme U'
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and the scheme U:

kji= k11(1 - P,)

ji -ji
(8)

(9)

because when a transition occurs from closed state C. to
open state Oi it is detected with probability 1 Pm.
Meanwhile, to have the mean dwell time in state O be
equal to the mean missed open time in 0, we have

N-I km = Am
j=o

(10)

02

Co Cl
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02 2
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FIGURE 5 Construction of a virtual scheme U" from an uncoupled
scheme U to take into account missed closings. The significance of each
state in U" is readily understood by exchanging closed and open states in
Fig. 2.

with

The relative magnitudes of the rates kj and k, leading
from states 0; and om can be obtained from the following
consideration. The probability of a transition to state C1
given that the transition starts in 0,,

Xri = N,-I (12)
Ekijj=o

will be equal to the corresponding probability ij and irV

for transitions starting from 0 and om. Hence for i = Nc
to N-1 andj =0 to N -1,

C<j = a,ik, (13)

k' = #,ik,1. (14)

From Eqs. 10 and 14 we find

Am

p= N-I (15)

T kijj=o

The value of ai can be an arbitrary positive value
because it determines the dwell time in the observed open
state, a quantity that is irrelevant to us because we are

constructing the virtual scheme for the determination of
closed time. A proof of this assertion is given in the
Appendix.

In the same way, we can create a virtual scheme U" for
estimating the e-open-time distribution. It has Nc addi-
tional states to account for missed closed times (Fig. 5).
Starting with the uncoupled scheme, a matrix Qu is
constructed, with Nc virtual open states; the matrix
elements are computed as in Eqs. 8, 9, 13, and 14.

Although we have no proof for this, we think that
detailed balance is preserved when we transform a gen-
eral scheme G to an equivalent uncoupled scheme U.
Moreover, from Eqs. 8, 9, 13, and 14 it is clear that

microscopic reversibility is preserved when we change the
equivalent scheme into the virtual schemes. Thus, if the
initial scheme G satisfies detailed balance, we expect that
the probability density functions of e-closed times and
e-open times should be, after our approximation, a sum of
decaying exponentials with positive amplitudes (Kijima
and Kijima, 1987).

Computing the closed and
open-time distributions
Having determined all of the rate constants of the two
virtual schemes, we can use them to obtain the probability
density functionsfc(t) andf'"(t) of the e-closed times and
e-open times, respectively. First let us review the deriva-
tion of the pdfs in the case of no missed events. In the
general case of a Markov process described by the
transition matrix Q the closed dwell time probability
density function is given by

fc(t) = 7rceQctQcoUo, (16)

where 7rc is the 1 by N, row vector of equilibrium closed
entrance state probabilities (Fredkin et al., 1985; Ball and
Sansom, 1988). Its jth element is the steady-state proba-
bility that a closed interval begins in Cj, forj = 0 to Nc-
1. It is computed as the normalized sum over all open

states i of the stationary probability to be in state i times
the rate constant from i to j (Colquhoun and Hawkes,
1977):

0Qoc
Xc = pzQu

where PO is the vector of the stationary probabilities of the
open states and uo and uc are column vectors of ones, one

for each open or closed state, respectively.
The vector 7rc can be alternatively written as the left

eigenvector of matrix QX1 * Q. * Q` * QOZ associated
with the eigenvalue of unity, it satisfies

rc * uc= 1

Grouzy and Sigworth Dwell Time Omission Problem 735~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and

rc =vc * QC-cl * Qo * QO-Ol * QOC. (17)

Distributions from virtual schemes
Now let us compute the pdf of e-closed times using the
virtual schemes. The virtual scheme U' simulates missed
openings through its No virtual states Om", which are

treated as closed states, yielding Mc = Nc + No closed
states in all. From the submatrices of the transition
matrix Q' of this scheme the pdf of e-closed times is
obtained analogously to Eq. 16 as

fC(t) = rcegc('-I)Q' u t 2 6, (18)

and is zero for t < 6.

Here ir' is the 1 by NAc row vector whose jth element is
the steady-state probability that an observed closed inter-
val begins in Cj, for j = 0 to NA,- 1. Notice that the
function is shifted in time by 6; as we discussed in the case

of the two-state scheme, an e-closed interval always
begins with a dwell of duration 6 in a closed state (Fig. 1).
Because the scheme U' is uncoupled for closures, we know
that if the e-closed interval begins in Cj, the system will
remain in that state for the entire initial interval 6; thus xr
is the appropriate probability function for the state of the
system after the initial dwell time 6.

The closed entrance state vector 7r' is obtained analo-
gously to 1rc as described above, but makes use of the
virtual scheme U' and also U", which describes the e-open

intervals. The factors in Eq. 17 have the following
significance: the first factor Q-1 * Q. refers to dwells in
the closed states ending with a transition to an open state;
in the case of missed events these dwells would be
represented by the virtual scheme U'. The second factor,
Q -1 * Qo, represents dwells in the open states ending with
a transition to a closed state; in the case of missed events
these dwells would be represented by the virtual scheme
U". Thus we can write the analogous eigenvector equation
for 7r' as

Ir = 7r Q'-' - Q'- Po_o- * QO * Qocs (19)

where PO,'-O, is a projector from open states in virtual
scheme U' to open states in virtual scheme U": Po.0O' is a
matrix with No rows and NY' columns with its first No
columns corresponding to the identity matrix and all its
remaining columns zero. This projector means that we

can only enter scheme U", i.e., start an e-open time, in a

true open state and not in a missed closed state. In the
case of the four-state scheme given in Fig. 2, P0-O'- is:

0 0 0
0 1 0 0/

The first Nc elements of vector ir4 are then computed as

the left eigenvector associated with the unity eigenvalue
of the transition matrix of closed entry process: Qc-
Qco Po,_o,, * QOO Qo (Fredkin et al., 1985; Ball and
Sansom, 1988), restricted to its Nc first rows. All follow-
ing elements of i4' are zero because an observed closed
dwell cannot start in a missed open state. (The transition
matrix has an eigenvalue of unity because all its columns
sum to unity; all other eigenvalues are < 1 [Ball and
Sansom, 1988]). Each element [i,j] of the transition
matrix is the probability that we observe a closed dwell
time starting in observed closed state i, followed by some

observed open dwell time ending in closed state j.
The corresponding equation for the probability density

of the e-open times is

fo(t) =- iore%(` )Qou, t > 6, (20)

where the row vector ir'" of entrance-state probabilities is
obtained from the equation

7ro = ro" * QOO * Qo * PC,- c, * QC'C * QcO

Here Pc"-.c' is a projector from closed states in virtual
scheme U" to closed states in virtual scheme U' whose
meaning is that we can only enter scheme U' in a true
closed state, not in a missed open state.

Fitting experimental data
Thus it is possible to obtain the pdfs of e-open times and
e-closed times given the value of 6 and the matrix of rate
constants Q for an arbitrary Markov scheme. The calcula-
tion of these pdfs can be embedded in a fitting procedure
to find the best set of rate constants, for example by
maximizing the likelihood (Colquhoun and Sigworth,
1983). The fitting procedure would start with the scheme
having an initial set of rate constants and would consist of
repeating the following steps: (a) transform the original
scheme to uncoupled form (if required); (b) build the
virtual schemes; (c) solve for 7r and ir'", and thenf c and
f'O; (d) compute the likelihood; (e) choose new values for
rate constants in the original scheme.

Numerical implementation
We summarize here our numerical implementation of the
calculations just described. Given a kinetic scheme G with
No open states and Nc closed states, we first build the QG
matrix and its four submatrices. If the scheme is coupled,
we compute the transformation matrix S by finding the
eigenvalues and eigenvectors ofQG and QG., for example
using the QR algorithm (Press et al., 1986). By solving
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Eq. 4, we now have the equivalent uncoupled scheme
given by the matrix Qu.
To account for missed openings, we construct an

enlarged matrix Qu' by adding No virtual states, which are

counted as closed states. The off-diagonal matrix ele-
ments are set equal to the new rate constants given in Eqs.
8, 9, 13, and 14, whereas the diagonal elements are chosen
so that each row sums to zero (Colquhoun and Hawkes,
1977). A similar procedure is used to account for missed
closings: we construct an enlarged matrix Qu" by adding
Nc virtual states, which represent missed closures and are

counted as open states. Then we compute the product of
matrices Q'-1 QQ Po_ Q * Qo and use a

standard eigenvalue algorithm to derive arc as the eigenvec-
tor associated with the eigenvalue 1.0 of the transpose of
this product restricted to its first Nc columns. Finally,
from Eq. 18, the desired probability density functionf'(t)
is determined for all t 2 6 (it is zero for t < 6).
The matrix exponential in Eq. 18 is readily evaluated if

the eigenvalues X, and the matrix of eigenvectors M of Qc
are first determined. Then f' can be written as a sum of
Nc exponentials

Ne

f c(t) = E a,eA'i6) t 6, Xi 0,

where

Nc No NK

a, = E rcM m,k qCOkj
j-1 k-i

and mli and m,j' are elements of M and its inverse,
respectively.
The computations require only a moderate amount of

computer time. The entire process for a 10-state scheme,
starting with the 10 x 10 matrix Q and obtaining the a,
and X,, requires -2 s in our implementation using the
PowerMod Modula-2 compiler (Instrutech Corp., El-
mont, NY) on a 68030-based computer.

Experimental data are usually fitted with exponential
functions starting at t = 0, not at t = 6. The normalized
areas of the exponential components, extrapolated in this
way back to zero time, are given by

A,-i/ (21)

E [aie-x,/Ai]
i-I

and each exponential e\i' will contribute to the mean

observed closed dwell time according to

(22)

RESULTS

Example of a two-state scheme
Closed time distribution
We first present an explicit solution for the two-state
scheme I. The corresponding virtual scheme (I') has two
closed and one open state and matrix Qu. can be written,
in the base (C'0, O', O'),

(kol + km) km koI
Qu' kl3 -km 0

kSo 0 -Ik'i

with explicit values for each rate given by Eqs. 1-3. In this
very simple case, all closed dwell times will start in the
only closed state C% so that the vector of closed entrance
probabilities will be 7r' = (1, 0). Then, with the parame-
ters

l, = 0.5 (XA - kol)

12= 0.5 (Xi + kol)

IXmko,l(Il
a 12

(1 - )ko
212 rIi -

the two eigenvalues of Qc are given by

= -12 (1 - a/1-ca)

2= -12(1 + Vi - a)

and the distribution of detected closed dwell times will be
approximated by a sum of two exponentials:

fc(t) = Al,1 + 12 v/l - a] exp [-XI(t - 6)]

+ A[-1, + 12VIFZ] exp [-X2(t- 6)1 (23)

Open time distribution
The virtual scheme (I"), for computing the open-time
distribution, has two open and one closed state. The
corresponding matrix Qu" can be written, in the base (C'0,
Cm O1 ),

f-kg1

Qu = 0 -ko
kip km

km01
-(kf' + km)

Grouz an iwrDelTmeOiso
3

737Grouzy and Sigworth Dwell Time Omission Problem

ai I
Ai== f t c

=

a f'(t) d xi xi 6 .



If Po is the probability that a closed dwell time is less than
the dead time,

P0 = 1 - exp (-ko06), (24)

the mean duration of the missed closed dwells is given by

(D m) I 6 exp (-ko,6) (25)
ol PO

Then,

k-o= klo(1 - Po)

koPm
10- 10

,m
(Dm)

and the distribution of detected open dwell times: f'o(t)
can be computed in the same way as the distribution of
detected closed dwell times.

Numerical examples and
comparisons with other solutions

In Fig. 6 we compare our approximate closed dwell time
distribution (dotted curve) with Roux and Sauve's (1985)
exact solution (solid curve) for a symmetrical two-state

0.80

0.60
5-

.0

a.1

c 0.2

Tlme (s)

FIGURE 6 The solid curves show the exact solution for the distribution
of e-closed times for a two state scheme with kol = klo = 1 s- and for
three different values of the deadtime 6 = 0 (a), 0.5 (b), 1.0 (c) s. The
corresponding approximate solutions obtained from Eq. 23 are plotted
as dotted curves; the approximations presented by Yeo et al. (1988) are
plotted as dashed curves.

scheme with kol = klo = 1 s- 1 and 6 = 0, 0.5, and 1.0 s.

Our two-exponential function is mostly obscured by the
solid curve; it is larger than the true distribution for small
t and slightly smaller for large t but the difference
remains very small even for the extreme case of the
deadtime equal to the mean dwell time. It should be noted
that Roux and Sauve did not take into account the fact
that the probability density functions must be zero for
times smaller than the dead time whereas we explicitly
introduce this constraint by shifting the axis by 6. There-
fore, we shifted the function as computed according to
their theory by 6 before displaying it. Also plotted in the
figure as the dashed curve is the two-exponential approxi-
mation of Yeo et al. (1988), which also consists of two
exponential terms, obtained from an expansion of the
Laplace transform of the exact solution.

Let us now consider in detail the following asymmetri-
cal two-state scheme:

kol = s-

ko= 2s-'
II

With a dead time 6 = 0.5 s, we build the virtual schemes
II' for computing the closed distribution and II" for the
open distribution,

k' = 4.784s-' 41 = 0.3679 s-'
Om ------0. otC

I * t0 *- I

ko-I = 0.6321 s-' kl'o: "Free"

k' = 4.362s-' k = 1.213s-'
Cma%

-------- Pr
a

kmo = 0.7869 s- kE,': "1Free"

From these, we obtain

fc(t) = 0.3194 exp [-0.3222(t - 0.5)]
+ 0.04851 exp [-5.462(t - 0.5)]

fW(t) = 0.9326 exp [-0.9839(t - 0.5)]
+ 0.2805 exp [-5.378(t - 0.5)].

In Fig. 7, we show a histogram of 125,000 e-open times,
obtained from a simulation of scheme II with 6 = 0.5 s.

The predictionf' (t) from the virtual scheme II" is drawn
as a dashed curve and compared with the best fit obtained
with only one exponential (solid curve).
The two probability density functions f (t) and f' (t)

are also plotted in Fig. 8, A and B, respectively, as the
dotted curves a. They follow very closely the exact
solutions, (solid curves) obtained by FFT from Roux and
Sauve's theory (again shifted by 6).

Let us compare these results with some approximations
that have been made for missed events for the simple C
O scheme. First, if the duration of a missed open interval
is negligible compared with the mean closed dwell time,
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E

0.32
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FIGURE 7 Dwell-time histogram built from 125,000 simulated ob-
served open dwell times for the two-state scheme described in the text
with kol = I s- 'and k,o = 2 s- 'and with a deadtime a = 0.5 s. The best
fit with only one exponential (solid curve), is compared with the
two-exponential distribution (dashed curve) from Eq. 23.

i.e., Xk >> kol, then Eq. 23 reduces to

fC(t) c Kexp [-K(t -6)],

where

024
U-

D 0.16

D
o

0)

0.080

1.2

0.90

'on

c 0.60
c

0

(26) D
0

50
9L0.30

K = kol exp (-k1o5).

This is the standard result for the probability density
function, of closed dwell times when open transitions
shorter than 6 are omitted (Sachs et al., 1982; Roux and
Sauve, 1985), and is plotted as curve b in Fig. 8 A. (f'o[t],
following the same approximation, is shown as curve b in
Fig. 8 b).
From Eq. 23, or directly from Eq. 22, we can easily

derive the mean dwell time in the observed closed states
(true closed plus missed open) as

DM, = tfc(t) dt.

Then, assuming that the observed intervals are exponen-

tially distributed with time constant rob, we deduce

Time (s)

0.0 1.0 2.0

Time (s)
3.0 4.0

FIGURE 8 (A) Three approximations for the distribution of e-closed
times shown together with Roux and Sauv6's exact solution shifted by a
(solid curve) in the case of the same two-state scheme as in Fig. 7. Curve
a (dots nearly hidden by solid curve), our two-exponential distribution;
Curve b (short dashes), the one-exponential approximation with K =
0.3679 s- '; Curve c (long dashes), single exponential with rate constant
K,ff = 0.3249 s- ', computed according to Blatz and Magleby. The inset
represents distributions a, b, and c plotted on a log-time axis (Sigworth
and Sine, 1987; the abscissa is log [t - 5]). (B) Comparison of the
corresponding distributions of open dwell times. K = 1.213 s- ', K,ff =
1.028 s-

'obs= DM,- 6,
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and an effective rate constant

Keff(o1) = 1 Tobs

kolklo(I-Pm-P2)
(klo + kol) - kol (1 + 6klo) exp (-k106)

which is the approximation presented by Blatz and
Magleby (1986) for the effective rate constant from
closed to open. The resulting single exponential functions

fc'(t) =-- Keff(oj)e-Ks'K,ff"('-6)

So(t) =- Keff(o)e-Keff(lo)(t-')

are shown as curves c in Fig. 8, A and B, respectively.
In comparing the approximations shown in Fig. 8, we

note that the condition XA = 4.784 s- >> kol = 1.0 s- l is
not quite satisfied, which causes the approximation of Eq.
26 (curve b) to be a poor one. Blatz and Magleby's
approximation (curve c) is much better, with a substantial
deviation only for t < 6, i.e., for dwell times that are

normally not observable.
To check that our method gives relevant results for

schemes with more than two states, we first considered
Scheme III of the Ca activated K channel given by Blatz
and Magleby (1986). As shown in Table 1 we obtained
very similar values for the time constants and normalized
areas (Eq. 21) of the slower exponential components. The
extra exponentials introduced in the solution of the virtual
scheme have very small areas and short time constants;
this is to be expected in a case like this where the deadtime
of 0.15 ms is small compared with the mean dwell times in
closed or open states.
We also considered the four-binding-site model of the

gating behavior of the locust muscle glutamate receptor,
for which Ball and Sansom (1988) obtained numerical
results for mean dwell times, transition-matrix eigenval-
ues and entrance-state probabilities. Although the initial

kinetic scheme was strongly coupled and contained ten
states (so that we had to build virtual schemes with fifteen
states), we obtained identical values, up to the fourth
significant figure, of each of these quantities as given in
Tables 1-3 of their paper. We believe that our approxima-
tion preserves the correlation between open and closed
times in multistate schemes; the agreement of the transi-
tion matrix and entrance-state probabilities is consistent
with this. Further, as we will now show, it is possible to
compute two-dimensional distributions from the virtual
schemes.

Two-dimensional open-closed time
distributions
The two-dimensional probability density functionsfdOe,(tl,
t2) gives the joint probability of an e-closed interval t,
followed by an e-open interval t2. The standard result for
the probability density f.0(t1 t2) when no events are

missed is

f,0(tl, t2) = irceQhIQcoeQoo2Qcuc, (28)

where lrc is the 1 by Nc row vector described previously
and uc is a column vector of ones.
The meaning of each term in this equation can be

explained as follows: we start in a closed state with
relative probability given by 7rc; we spend time t, in the
aggregate of closed states (eQcct). Then there is a transi-
tion to one of the open states (Q.) and we spend time t2 in
the aggregate of open states (eQ3t2) before returning to
one of the closed states (Q,).
The same arguments can now be used to derive

f."01,(t1 t2): we start in an observed closed state (in virtual
scheme U') with relative probability given by xr' (Eq. 19);
we spend a time t, larger than 6 in the aggregate of
observed closed states [eq-('' 5)]. Then the system under-
goes an observable transition to one of the open states; we

TABLE 1 Comparison between Blatz and Magleby's effective rate constants (effective rates) and our exponential
distributions (virtual scheme) for a Ca activated K channel (Blatz and Magleby, 1986).

xr, Area,12 Area2 73 Area3

Open Pdf ms ms ms

Effective rates 0.357 0.0997 5.49 0.900
Virtual scheme 0.3575 0.0968 5.495 0.9016
Extra terms 6.59 10-2 8.31 10-4 7.36 10-2 7.51 10-4 7.5 10-2 9.0 10-6

Closed Pdf

Effective rates 0.230 0.801 1.96 0.130 47.0 0.0691
Virtual scheme 0.2314 0.7742 1.968 0.1275 46.95 0.0677
Extra terms 7.29 10-2 3.06 10-2 6.95 10-2 -8.0 10-6

The time constants and normalized areas are also given for the three extra open-time components and two extra closed-time components that arise in
thevirtual schemes.
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take this into account with matrix Q'c which describes
transitions between closed states and an observable open
state. This first open dwell, along with the rest of the
transitions during the e-open time t2 are now described
with virtual scheme U", i.e., ePZ(2"6). The channel finally
undergoes an observable transition to one of the closed
states, a transition that we take into account with matrix
Qo. The resulting expression is

fc0 (t,, t2) = 'eQcc(' -6)Q0 * Po,-o,, * e%(12-6)Q uc (29)

It should be noted that the transition matrix used to
calculate ir', (Eq. 19) is proportional to the integral over

all values of t, and t2 from zero to infinity of f,e (t,, t2)
(Fredkin et al., 1985).
We can explicitly writef,0,, (tl, t2) as a sum of exponen-

tials of t1 and t2, for t1 and t2 > 6:

NC No'

fco"(tl c t2) = E a,eXi(' 5)eMJ(t2-6)
i=I j=I

where the Xi's and A.'s are the eigenvalues of matrices Qc
and QO,, respectively and

Nc NC No N' Nc

aij= 1rCmli E m,T q ,nJ E nikI'q .

1=1 k=l 1=1 p-I q=l

Here mij and nj are elements of M and N, the matrices of
eigenvectors of Q' and QO,, respectively; m''and n''are
elements of M- and N- '.

DISCUSSION

Our approximate solution to the missed-event problem
gives very similar results to the exact solution in all cases
that we have tried. The approximation, which involves
treating missed dwell times as dwells in virtual states,
yields the wrong probability distribution for the durations
of the missed dwells. However, as we have shown, it is
possible to assign the rate constants so that the mean
dwell times in the virtual states equal the true mean
durations of missed intervals. Because in most cases the
missed dwell times make only a small contribution to the
total observed dwell times, the difference in their distribu-
tion makes little difference in the overall, observed dwell-
time distribution. Even in extreme cases where, for
example, the mean closed time and the dead time 6 are
equal (Fig. 6c), the difference between the exact and
approximate solutions is apparent only for closed times
smaller than 6, which are normally not observable.

For comparison with experimental data, one normally
wishes to compute both the closed-time distribution in the
presence of missed openings, and the open-time distribu-
tion with missed closings. In our approach, the computa-
tions of the rate constants of the two distributions are

done separately, with different virtual schemes being
constructed to simulate the activity during extended
closed and open intervals. It is possible, in the special case

of a two-state process, to build a scheme with virtual
states that accounts for both missed openings and missed
closings. For example, the three-state virtual schemes II'
and II" can be condensed into the following four-state
scheme,

km 4.784s = s-' km"' = 0.7869 s-'
01 ^ Co a L-0; C

kO = 0.6321 s-' klo= 1.213 s-' km(")= 4.362 s-'

Here we have made use of the fact that rates 40 and ko,
are both free parameters and therefore can be set to k%

and k'1, respectively. Considering {O1, C'0 and O', Cm'} as

new aggregates of closed and open states, respectively, we
can solve for the eigenvalues and eigenvectors of this
scheme and deduce both fc(t) and f'o(t) in one step. It
should be noted, however, that building such a condensed
scheme is not possible for initial schemes with more than
two states because the constraints on the rate constants of
Eqs. 8 and 13 will not match in general.

Ambiguity in the determination of
rates
It has been pointed out that the presence of missed events
allows different sets of rate constants to yield the same

observed mean open and closed times (Colquhoun and
Sigworth, 1983). Yeo et al. (1988) have shown that
higher-order approximations in the solution of the missed
event problem can in principle remove the nonuniqueness
of the solutions.
The origin of the nonuniqueness can be understood by

considering the four-state virtual scheme above. Although
in principle all eight rate constants for such a scheme can

be determined from observed open and closed dwell times,
the fact that the dwells in the virtual states are very short
(by definition they represent missed events) means that in
practice only one exponential component is seen in either
the open or the closed time distribution. Even with the
rate constants in the virtual scheme constrained by a

known value of 6, there are two sets of values of kol and klo
that yield the same time constants for the observable
dwell time distributions. We expect that in practice this
ambiguity is readily resolved by inspection of the original
recordings; typically one solution represents a relatively
low missed-event rate, whereas the other is for the case

where the majority of events are missed.

Origin of the fast components
As can be seen in Fig. 6, the pdf of extended dwell times
includes a rapidly decaying component when the proba-

Grouzy and Sigworth Dwell Time Omission Problem 741Dwell Time Omission ProblemGrouzy and Sigworth 741



bility of missed events becomes large. In our approximate
solution this component consists of exponential compo-
nents with time constants -6. Consider the case of
e-closed intervals. By the criterion of detection illustrated
in Fig. 1, this interval must begin with a time 6 during
which no missed openings occur. After this time, however,
missed openings are allowed. In modeling this behavior
we require that the channel occupies an observable closed
state continuously for a time 6 and only after this time the
evolution of the system is modeled by a virtual scheme.
The initial behavior of the virtual scheme is a rapid
equilibration between the observable closed state and the
states representing missed openings. The resulting rapidly
decaying component consists of No exponentials with time
constants generally smaller than 6/2 and having small
amplitudes.

third issue is that, in practice, the probability of detection
of a brief event is higher when it occurs as a cluster of
closely-spaced events, due to summation in the filtering of
the signal. This effect is not important in a recording when
either the open or the closed dwell times are long, so that
the brief events are well separated in time. In the situation
where both open and closed times are brief and compara-

ble to the dead time, the error from this effect might be
substantial.

APPENDIX

We stated thatf,(t) is unchanged when the factors a, in Eq. 13 are set to
any positive values. To prove this, let us first find a useful relation for 7rc.

Let P- be the row vector of stationary probabilities. It can be
decomposed into P- and Py, the stationary probabilities for being in the
open and closed states, respectively. The relation

Limitations of the theory
Although we have demonstrated a relatively good approx-
imation to the exact solution of the missed-event problem,
we wish to emphasize that the use of the methods that we
and others have proposed are subject to three limitations
in the way that the "missed-event problem" itself has
been posed. First, the assumption is made that there is a

clear and invariant criterion, namely the dead time, that
determines whether a given dwell will be detected or not;
and if it is detected, the proper duration will be measured.
Many workers use the half-amplitude threshold detection
technique, which in the absence of noise detects all events
longer than about half of the filter risetime; for a Bessel or

Gaussian filter the minimum event duration is 6 t 0. 18/fe,
where f, is the -3 db frequency (Colquhoun and Sig-
worth, 1983). Due to the "damped filtering" this detector
underestimates the duration of brief events that are

detected, distorting the distribution of apparent dwell
times (e.g., see Roux and Sauve, Figs. 2 and 4). The
approach in our laboratory has been to apply a correction
to remove this distortion (see Colquhoun and Sigworth,
1983, Eq. 17). The presence of background noise in
recordings means that the detection threshold is not
sharp; simulations, however, show that the effect of noise
on the observed distributions is not large (see Fig. 11-12
of Colquhoun and Sigworth, 1983).
The second assumption is that a transition is taken to be

detectable only if the channel remains in the new state for
at least the dead time. That is, in theory an e-opening is
said to occur only if no brief closures occur during 6 s. This
is a simplified answer to the difficult problem of specifying
the probability of detection in random series of transi-
tions. As we discussed above, it is this feature of the
specification of the missed-event problem that gives rise to
the fast components of the predicted distributions; these
components are most likely absent from actual data. The

P . Q =O

from the general theory of Markov processes (Colquhoun and Hawkes,
1977) leads to the following:

Po * Qoo + c * c = 0

po * Qoc + P Qcc = 0

which can be combined into

Po = Po * Qoc * Q Qco, Q

or

(Pt * Qoc) = (P- * Qoc) * Q Qco * Qo *I Qoc

and because

Wc= c. (PO * Qoc)
where C is a constant, we obtain the desired result (Kienker, 1989)

7c = xrc * Q o * QOO * Q. (Al)

Then, what happens to f,(t) when we change the rate constant from
open state O0 to closed state Cj from kij to kj'j = aikij?
From Eq. 16, fc depends on Qcc, Q., and ir,. As Qcc and Q. are

unchanged by the transformation, the exponential constants remain the
same. Only ir, and therefore the amplitudes of the exponentials may

change. Let us note by primes the matrices of the transformed scheme,
and assume that the initial kinetic scheme is uncoupled for the openings,
as will be the transformed scheme. Q., and Q% are diagonal matrices
whose element of row i equals the opposite of the sum of all elements on

row i in Q., and Q<O, respectively. Therefore, the diagonal element of row
i in Q:, equals a, times the diagonal element of row i in Q.0 and the
diagonal element of row i in Q- ' equals 1/ai times the diagonal element
of row i in Q-', for all i. Then,

(A2)

which implies by Eq. Al that 1r, and thereforef,(t) are unchanged by the
transformation. Thus, ai can be set to any convenient positive value, for
all i equals Nc to N- 1.
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