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Abstract

Let µ be a universal lower enumerable semi-measure (defined by L. Levin). Any computable upper bound forµ can be
effectively separated from zero with a constant (this is similar to a theorem of G. Marandzhyan).

Computable positive lower bounds forµ can be nontrivial and allow one to construct natural examples of hypersimple sets
(introduced by E. Post).
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1. Introduction

During the first yearof university education, students learn classic examples of convergent series
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and divergent series

b0
m = 1

m
, b1

m = 1

m logm
, b2

m = 1

m logm log logm
, . . . .

It appears natural to draw a “borderline” between convergent and divergent positive series. This is hard to do if we
stay within the limits of classic calculus.

Let us consider a class of convergent positive series that are superior limits of computable sequences of series.
Then in this class there is a largest up to multiplicative constant seriesµ (the stated accuracy is not surprising because
the property of convergence does not change on multiplying by a positive number). Seriesµ ultimately overtakes
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seriesai
m, but it has a disadvantage: it is not computable. Using a method of G. Marandzhyan we can prove that

any computable upper bound forµ is trivial: we can effectively separate from zero witha constant allits terms.
However, computable positive lower bounds forµ can be nontrivial and allow us to construct interesting examples of
hypersimple sets (the concept of the hypersimple set was introduced by E. Post in the famous article [5] of 1944 with
thepurpose of construction oft t-incomplete undecidable enumerable sets).

2. Convergence of series

Let us denote by log[i ] x thei th iteration of a binary logarithm. Classic examples of convergent series area0
m = 1

m2 ,

a1
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m(logm)2 , a2
m = 1

m logm(log[2] m)2 and so on. Here each series is essentially larger than the previous one; that is,

∀i (ai+1
m /ai

m → ∞ asm → ∞). Classic examples of divergent series areb0
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and so on. Here each series is essentially smaller than the previous one; that is,∀i (bi+1
m /bi

m → 0 asm → ∞). Series
ai

m andbi
m are very close; their ratio is decreasing, but very slowly. Thus there is a question: does the largest convergent

or smallest divergent positive series exist? The answer is negative. However, we are interested in computable positive
series.

Hereinafter we consider only positive series. So withoutloss of generality it can be assumed that terms of series
have values of the form 2−n only. Indeed, we can change each positive numbera to anumber of the form 2−n which
is the nearest from below toa. Thena is decreasing not more than twice, and convergence or divergence of the series
holds.

We can essentially decrease any computable divergent series and at the same time we can keep it divergent.

Proposition 1. For any computable divergent seriesαm there exists a computable divergent seriesβm such that
βm/αm → 0.

Proof. Construct a monotonic sequence{mi } suchthat
∑mi+1−1

m=mi
αm > 2i , m1 = 1. Assumeβm = αm2−i for

mi ≤ m < mi+1. �

We can essentially increase any computableeffectivelyconvergent series and at the same time we can keep it
effectively convergent.

Proposition 2. For any computable effectively convergent seriesαm there exists a computable effectively convergent
seriesβm suchthatβm/αm → ∞.

Proof. Construct a monotonic sequence{mi } suchthat
∑∞

m=mi
αm < 2−2i . Assumeβm = αm2i for mi ≤ m < mi+1

andβm = αm for m < m1. �

Surprisingly there is a computable convergent series such that it is impossible to increase it essentially and keep it
convergent.

Theorem 1. There exists a computable convergent seriesαm such that there is no computable convergent seriesβm

suchthatβm/αm → ∞.

The proof is given below.

Proposition 3. There does not exist a largest up to multiplicative constant computable convergent series.

Proof. Supposeαm is a computable convergent series. Construct a sequence{mi } suchthat αmi < 2−2i . Assume
βmi = αmi 2

i andβm = αm for otherm. �

A remarkable discovery was made that, contrary to what was previously thought, in a natural extension of the class
of computable series there exists a largest up to multiplicative constant convergent series. This extension is the class
of computably approximable from below series. (At each moment of time the lower approximation for the series is
equal to zero on some cofinite set. Note that we do not suppose that the approximation isuniform.)

Now we produce the corresponding exact proposition. For convenience of notation we will allow terms of series
to be equal to zero. It is easy to replace them by very small positive terms. We will write the number of terms of the
series in parentheses and not as an index.
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Theorem 2 (Levin, 1970). There exists a computably approximable from below seriesµ(x) such that its sum is≤ 1
and for any computably approximable from below seriesν(x) such that its sum is≤ 1 there exists a constant C such
that∀x µ(x) > ν(x)2−C.

Proof. As in the case of enumerable sets there exists a universal computable functionU : n �→ νn such that it
enumerates all computably approximable from below series and any other functionV with the same property is
m-reducible toU .

Any computably approximable from below seriesν can be effectively changed to a computably approximable from
below seriesν′ suchthat

∑
ν′(x) ≤ 1 and if

∑
ν(x) ≤ 1, then∀x ν′(x) = ν(x). Theprogram, which approximates

from below seriesν′, runs the same wayas the program, which approximates from belowν, while the sum of values
of the current approximation is not more than 1; when this sum is more than 1, the program forν′ stops.

The required seriesµ can be assumed as
∑

n 2−nν′
n. �

Obviously, seriesµ (which exists as we just proved) is unique up to a multiplicative constant. Let us fix an arbitrary
suchµ.

Levin proved that the seriesµ is not computable. Let us consider the question of its computable upper and lower
bounds.

The seriesµ does not have any nontrivial partially computable upper bounds (this is similar to Marandzhyan’s
theorem for the plane entropy).

Theorem 3. For any partially computable functionγ there exists a constant C such that

∀x ∈ Dom(γ ) µ(x) ≤ γ (x) ⇒ ∀x ∈ Dom(γ ) γ (x) ≥ 2−C .

Proof. Consider the followingcomputably approximable from below seriesδ = lim δn. Approximationδ1 is
identically equal tozero. Approximationδn+1 coincides with approximationδn everywhere except possibly for one
argumentx, which isobtained in the following way. We computeγ at all arguments simultaneously and are seeking
for x suchthatγ (x) < 2−2n. Assumeδn+1(x) = max{δn(x), 2−n} at the firstx found (if we found anyx). It is clear
that

∑
x δ(x) ≤ 1. Hence we can findc (effectively from the number ofγ ) such that∀x µ(x) > δ(x)2−c. Combining

this with∀x ∈ Dom(γ ) µ(x) ≤ γ (x) we get that forn ≥ c thenumberx in the definition ofδn will not be found and
∀x γ (x) ≥ 2−2c. �

We can suppose that forµ there is no “well” computable lower bound; that is, the ratio ofµ and any computable
lower bound forµ tends to infinity. The following theorem contradicts this supposition and at the same time proves
Theorem 1.

Theorem 4. There exists a computable seriesα suchthatα is a lower bound forµ andα is equal toµ on the infinite
set.

Proof. Construct an auxiliary computable seriesβ as result of the computable process of filling the next table.

1
2
...

i
β(x1

i ) = 2−i

µ(x1
i ) > 2−i

β(x2
i ) = 2−i

µ(x2
i ) > 2−i

· · · β(x j
i ) = 2−i

...

We return to each line infinitely often and at the same time we approximate from below the seriesµ. When we
address to thei th line for the first time, we take the first undefined term of the seriesβ (denote its number byx1

i ) and
assumeβ(x1

i ) = 2−i . When we address to thei th line the next time, we compare the current approximationµ(x1
i )

with 2−i ; if this approximation is>2−i , then we indicate this fact in a lower part of the table’s cell and again take the
first undefined term ofβ (denote its number byx2

i ) and assumeβ(x2
i ) = 2−i ; and soon. For any number, there exists

a uniquex in the table which is equal to that number.



440 A. Muchnik, A. Semenov / Annals of Pure and Applied Logic 141 (2006) 437–441

Since
∑

x µ(x) ≤ 1, the length of thei th line is less than 2i . Considerthe setD of numbersx j
i such that

µ(x j
i ) ≤ 2−i . The sum of the seriesβ(x) over this setis equal to

∑
i 2−i = 1. The sum of the seriesβ(x) over

D’s complement isless than
∑

x µ(x) ≤ 1. Thus the seriesβ(x) is convergent and∃c∀x µ(x) > β(x)2−c.
On the other hand,µ(x) ≤ β(x) on the infinite setD. For any natural numberC consider the setMC = {x :

µ(x) ≤ β(x)2−C}. For C = 0 this set isinfinite; for C = c this set is empty. WhenC increases,MC decreases
nonstrictly. Consider the largestd suchthatMd is infinite. Sinceµ(x) > β(x)2−(d+1) ⇔ µ(x) ≥ β(x)2−d, it follows
thatµ(x) ≥ β(x)2−d on the complement of the finite setMd+1 andµ(x) = β(x)2−d on the infinite setMd \ Md+1.

The required seriesα is definedby the formulaα(x) = min{µ(x), β(x)2−d}. �

Theorem 5. If a computable seriesα estimatesµ from below and equalsµ on the infinite set, then the set
{x : µ(x) > α(x)} is hypersimple.

(Recall that an enumerable set withan infinite complement is calledhypersimpleif in any computable infinite
sequence of non-intersecting segments of natural numbers there exists a segment such that it is entirely embedded in
this set.)

Proof. SupposeTj is a computable sequence of non-intersecting segments of natural numbers.
Construct an auxiliary computable seriesβ. For anym find jm > m suchthat

∑
x∈Tjm

α(x) < 2−2m. This is
possible sincethe seriesµ(x) is convergent,α(x) ≤ µ(x), andhence the computable seriesα(x) is convergent.
Assumeβ(x) = α(x)2m on the segmentsTjm; otherwiseβ(x) = α(x). Since

∑

x∈ ⋃
m

Tjm

β(x) <
∑

m

2m · 2−2m = 1,

the seriesβ(x) is convergent. Therefore∃c∀x µ(x) > β(x)2−c. By definition of β we have that on the segmentTjc
there is nox suchthatα(x) = µ(x). �

3. Descriptive complexity

Plane entropyof a natural number (introduced by Kolmogorov in [1]) is the minimal length of its code obtained
using optimal encoding.

An encoding is calledprefix if any code is not an extension to the right of another code. The condition of being
prefix allows one to transmit a sequence of encoded messages without using an auxiliary symbol (for example white
space).Prefix entropyof a natural number (introduced by Levin in [7]) is the minimal length ofits codeobtained using
optimal prefix encoding.

However, definitions are possible which do not use any encoding (see [2]). Let us expound them.
Plane entropyis a minimal up to additive constant enumerable from above functionK S (with values inN) such

that|{x: K S(x) < n}| < 2n for eachn.
Prefix entropyis a minimal up to additive constant enumerable from above functionK P (with values inN) such

that
∑

x 2−K P(x) ≤ 1.
From our definitions it obviously follows that the functionsK S and K P tend to infinity and∀x K S(x) ≤

K P(x) + O(1). It is much more difficult to provethat the difference(K P − K S) tends to infinity. We gave this
proof at the international workshop dedicated to Kolmogorov’s centenary in spring of 2003 in Heidelberg; M. Li and
P. Vitányi formulate this fact in their monograph [3] without proof and refer to the unpublished manuscript [6] of
R. Solovay.

The functionsK S andK P have rare, but unexpected falls. G. Marandzhyan proved in 1969 [4] that the function
K Sdoes not have any nontrivial partially computable lower bound (for the functionK P, the argumentation is similar).

Consider computable one-to-one enumeration of all binary words, such that increasing of number implies non-
decreasing of length of the word having that number. Denote by�(x) the length of a binary word with a numberx.

A computable upper bound of plane entropy is for example�(x) + c.
Using considerations of cardinality, we get

∀n ∃x �(x) = n & K S(x) ≥ n.
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On the other hand, by definition ofK S we have∃c∀x K S(x) < �(x) + c. For anyC consider the setMC =
{x: �(x) + C ≤ K S(x)}. ForC = 0 this set isinfinite; for C = c this set is empty. WhenC increases,MC decreases
nonstrictly. Consider the largestd suchthatMd is infinite. It is clear that�(x)+d ≥ K S(x) on the complement of the
finite setMd+1 and�(x) + d = K S(x) on the infinite setMd \ Md+1. Assume the functionf is equal toK S on the
finite setMd+1 and f is equal to�(x) + d otherwise. It is obvious thatf is a computable function which estimates
K S from above andf is equal toK Son the infinite set.

Theorem 6. If an everywhere defined computable function f estimates K S from above and equals K S on the infinite
set, then the set{x: K S(x) < f (x)} is simple.

(Recall that an enumerable set withan infinite complement is calledsimple if there is no infinite enumerable
subset in its complement. This concept was introduced by E. Post in 1944 [5] with the purpose of construction of a
btt-incomplete undecidable enumerable set.)

Proof. Suppose there exists an infinite enumerable setR suchthat∀x ∈ R f(x) = K S(x). Let f ′ be the restriction
of f to R. Then f ′ is the partially computable lower bound forK S. This contradicts the assertionK S(x) → ∞ and
Marandzhyan’s theorem.�

Theorems 4and5 in the language of prefix entropy are given without proofs in the monograph [3] of M. Li and
P. Vitányi with reference to an unpublished manuscript [6] of R. Solovay. Let us formulate them.

Theorem 7. There exists an everywhere defined computable function f such that f estimates K P from above and
equals K P on the infinite set.

Theorem 8. If an everywhere defined computable function f estimates K P from above and equals K P on the infinite
set, then the set{x : K P(x) < f (x)} is hypersimple.

Note that in the formulation ofTheorem 6the set{x: K S(x) < f (x)} must not be hypersimple. For that let us
change functionK S to the functionK S′ = min{K S+ 1, � + 1}. It is clear that the functionK S′ is enumerable from
above, that|{x: K S′(x) < n}| < 2n and that for this function (as for functionK S) theproperty of being minimal up
to an additive constant holds. Forx suchthatK S(x) ≥ �(x) (there are infinitely many ofthem) it will be the case that
K S′(x) ≥ �(x) + 1. On the other hand, for anyx we haveK S′(x) ≤ �(x) + 1. In the construction which is given
beforeTheorem 6, theparameterd for function K S′ will be equal to 1. Let us divide the natural scale into segments
Tj which consist of the numbers of all the words of lengthj . In each of these segments there is a numberx suchthat
K S′(x) = �(x) + 1, which contradicts the property of hypersimplicity.

4. Conclusion

The constructive mathematics of Andrei Markov revising the classical one is fed and fertilized by its ideas and
contexts. In its turn the constructivist consideration of classical concepts helps to answer relevant questions of the
theory of algorithms itself. This supports our belief in the future development of ideas and approaches of A. Markov.
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