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1. Introduction

Signal transmission through a noisy channel typically uses the following strategy: a generic signal is

decomposed (encoded) into a sequenceof coefficientswhichare thengrouped intoanumberofpackets

of the same size. Then these packets are sent through the noisy channel. For practical purposes, we

shall assume that the noise in the channel can not affect the integrity of the data in each packet; we

can think that these small pieces of data are protected by an efficient error-correcting algorithm. Still,

the noise of the channel may cause the loss of some packets so that the reconstruction of the signal is

done possiblywithout thewhole set of packets. Hencewe search for encoding–decoding schemes that

minimize,with respect to somemeasure, theworst case error between (anormalizationof) theoriginal

signal and the reconstructed signal for a fixed number of packet losses, under certain hierarchies (see

the beginning of Section 4 for a description of these hierarchies). This and similar problems have been

�
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considered recently byCasazza andKovacevic [13], Holmes andPaulsen [19], BodmannandPaulsen [8],

Bodmann [6], Bodmann, Paulsen and Kribs [7] and Strohmer and Heath [32], where they describe the

structure of optimal encoding–decoding schemes based on a particular choice to measure the worst

case reconstruction error. In the present paper we extend some of the results obtained in those works,

as we show that the previously mentioned optimal schemes are actually optimal with respect to a

continuous family of measures of the worst case reconstruction error in the more general setting of

block-encoding–decoding introduced in [6]. Our approach and techniques relatedwith these problems

are derived here as a generalization of those in [6].

The optimal schemes found in the frame-based transmissionmodel (under suitable restrictions) are

related with the so-called Parseval (or more generally tight) frames. There is a natural generalization

of Parseval frames introduced by Bodmann in [6], the so-called protocols, which is the starting point for

the development of the theory of optimal protocols under packet-erasures in that paper. In this setting,

the optimal protocols correspond to some projective protocols, which were originally introduced by

Casazza and Kutyniok [14] under the name of (Parseval) frames of subspaces, and recently have also

been called Fusion frames [15]. But there are more general reconstruction systems (see Defintion 3.1)

than protocols, just as there are more general frames than Parseval frames.

Inorder to investigatepossibleadvantagesofgeneralprotocols in theclassof reconstructionsystems

we introduce what we called the q-potential, which is a generalization of the frame potential defined

by Benedetto and Fickus in [4] and further considered in [10,11]. In our case the q-potential of a

reconstruction system takes values in the cone of positive matrices, rather than numerical values,

a fact that makes it difficult to compare q-potentials of different systems. Still, we show that under

suitable conditions, protocols are the minimizers of the q-potential within reconstruction systems

with respect to (sub)majorization and thus we obtain lower bounds and minimizers of a family of

(anti)entropic measures of the q-potential. These results indicate that protocols are indeed a good

starting point for the theory of block-erasures.

On the other hand, although there are interesting techniques to construct 2-uniform protocols,

i.e., protocols that are optimal for two packet losses (see [6,8,19]), the problem of finding necessary

and sufficient conditions for the existence of protocols that are optimal for one packet loss has been

considered open (see the discussion in [7]). We relate this problem to a problem solved by Klyachko

[24] and Fulton [18] related with Horn’s conjecture on the sums of hermitian matrices and hence we

obtain a characterization of the existence of such optimal protocols. This result can be regarded as an

extension of the equivalence of the Schur–Horn problem on themain diagonal of a hermitian operator

with prescribed spectrum and the problem of finding necessary and sufficient conditions for the

existence of a frame for a finite dimensional Hilbert space with prescribed norms and frame operator

as described in [2] (see also [12,26,33]), using the notion of extended majorization as described in

[28]. We then derive the q-fundamental inequalities (see Corollary 5.3), that is a generalization of the

fundamental inequality found in [11].

The paper is organized as follows. After some preliminary facts in Section 2,we introduce in Section

3 the q-potential defined on the class of reconstruction systems and show that the protocols are the

minimizers of this positive operator function with respect to submajorization. Thus, it is natural to

restrict the analysis of optimal reconstruction systems for erasures to protocols. In Section 4.1 we give

a complete description of optimal protocols for onepacket loss,whenwebase themeasure of theworst

case reconstruction error on a compatible unitarily invariant norm. In Section 4.2we dealwith the case

of two lost packetswherewe show explicitly a family of optimal protocols, when restricted to a certain

family of optimal protocols for one loss packet. We then show that this restriction is automatically

satisfied by optimal frames for one coefficient loss and obtain a generalization of previous results on

the structure of optimal frames for two lost packets. Finally, in Section 5 we consider the problem of

designing protocols with prescribed additional properties.

2. Preliminaries

In this note we shall denote by H = Fd and K = Fl , where F stands for R or C and l � d. Hence, if

l < d there is a natural injection ι : K → H such that ι(x) = (x, 0d−l), where 0d−l denotes the zero
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vector in Rd−l . Moreover, H = K ⊕ K′ under the identification given by ι, for K′ = ι(K)⊥. In what

follows, given r, t ∈ N we denote by Mr,t(F) the F-algebra of all r × t matrices with entries in F. For

simplicitywe noteMr(F) instead ofMr,r(F).We further considerMr(F)
sa,Mr(F)

+ andU(r) that are the
real space of self-adjointmatrices, the cone of positive semi-definitematrices and the group of unitary

matrices over F, respectively. If A ∈ Md(C)
sa thenwe denote by λ(A) ∈ Rd the vector of eigenvalues of

A (countingmultiplicities) with its entries arranged in decreasing order. The canonical basis ofH = Fd

is denoted {ei}di=1. By fixing the canonical basis in H and K respectively, we shall identify L(H),L(K)
and L(H,K) with Md(F),Ml(F) and Ml,d(F) respectively. The vector ed ∈ Rd is the vector with all its

entries equal to 1. Finally, if X is a finite set then |X| denotes its cardinal.
2.1. Submajorization in Ml(C)

sa

Given x ∈ Rl we denote by x↓ ∈ Rl the vector obtained by re-arrangement of the coordinates of x

in non-increasing order. Given x, y ∈ Rl we say that x is submajorized by y, and write x ≺w y if

k∑
i=1

x
↓
i

�
k∑

i=1

y
↓
i , for 1� k � l. (1)

If we further have that tr(x):= ∑l
i=1 xi = ∑l

i=1 yi then we say that x is majorized by y, and write

x ≺ y.

Example 2.1. As an elementary example, that we shall use repeatedly in what follows, let x ∈ Rl
� 0

and 0� a� tr(x)� b: then, the reader can easily verify that

a

l
el ≺w x ≺w be1. (2)

The following result, that we shall need in the sequel, is a slight strengthening of the previous

example.

Lemma 2.2. Let α1,α2 ∈ Rl and α↓ = (α1,α2),β
↓ = (b1el , b2el) ∈ R2l

� 0 be such that tr(α)� tr(β)
and tr(α1)� b1l. Then β is submajorized by α.

Proof. Since tr(α1)� b1l then, by Example 2.1, b1el ≺w α1 = (a
(1)
1 , . . . , a

(1)
l ). Hence, if 1� k � l then∑k

i=1 α
↓
i = ∑k

i=1 a
(1)
i

� kb1 = ∑k
i=1 β

↓
i . If α2 = (a

(2)
1 , . . . , a

(2)
l ) then define γ = (a

(2)
1 + (tr(α1)−

b1l), a
(2)
2 , . . . , a

(2)
l ) and note that γ = γ ↓ ∈ Rl

� 0. Since tr(γ ) = tr(α1)+ tr(α2)− b1l � b2l then we

conclude again that b2el ≺w γ . If 1� k � l then
∑k

i=1 γi = ∑l+k
i=1 α

↓
i − b1l � b2k and the lemma fol-

lows from this last fact. �

(Sub)majorization between vectors is extended by Ando in [1] to (sub)majorization between self-

adjoint matrices as follows: given A, B ∈ Ml(C)
sa then we say that A is submajorized by B, and write

A ≺w B, if λ(A) ≺w λ(B). If we further have that tr(A) = tr(B) then we say that A is majorized by B

and write A ≺ B.

Although simple, submajorization plays a central role in optimization problems with respect to

convex functionals and unitarily invariant norms, as the following result shows (for a detailed account

in majorization and in von Neumann’s gauge functions theory see Bhatia’s book [5]).

Theorem 2.3. Let A, B ∈ Ml(F)
sa. Then, the following statements are equivalent:

(i) A ≺w B.
(ii) For every unitarily invariant norm ‖ · ‖ in Ml(F) we have ‖A‖ � ‖B‖.
(iii) For every increasing convex function f : R → R we have tr(f (A))� tr(f (B)).
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Moreover, if A ≺w B and there exists an increasing strictly convex function f : R → R such that

tr(f (A)) = tr(f (B)) then there exists U ∈ U(l) such that A = U∗BU.

Recall that given a unitarily invariant norm (henceforth abbreviated u.i.n.) ‖ · ‖ in Ml(C) there

exists anassociated symmetric gauge functionψ : Rl → R� 0 such that‖A‖ = ψ(s(A)),where s(A) =
λ(|A|) ∈ Rl is the vector of singular values of A. Next we describe a particular class of u.i.n’s that we

shall consider in the sequel.

Definition 2.4. A sequence {‖ · ‖n}n such that for each n ∈ N ‖ · ‖n is a u.i.n. in Mn(F) is compatible

if, for every X ∈ Mr(F) then∥∥∥∥(X 0

0 0t

)∥∥∥∥
r+t

= ‖X‖r , (3)

where 0t ∈ Mt(R) is the zeromatrix. Ifψn is the symmetric gauge function associatedwith‖ · ‖n then,

(3) is equivalent toψr+t(x, 0t) = ψr(x), where x ∈ Rr and 0t ∈ Rt is the zero vector. In this case, we

simply write ‖ · ‖ andψ respectively to denote the norms and functions of any order.

Let V : H → K be a linear operator and assume that dimH = d > l = dimK. Then, it is well

known that there exists a unitary operator U ∈ U(d) such that

U∗
(
VV∗ 0

0 0d−l

)
U = V∗V ,

where the above block matrix representation is with respect to the decomposition H = K ⊕ K′ as
described in the preliminaries. Hence, if ‖ · ‖ is a compatible u.i.n. in the sense of Definition 2.4 it

holds that ‖VV∗‖ = ‖V∗V‖. This last equality is our main motivation to consider these norms.

We shall use systematically the following facts, that are an elementary consequence of the previous

results: if‖ · ‖ is an arbitrary u.i.n. inMl(F)with associated symmetric gauge functionψ then, for every

A ∈ Ml(F)
+ (resp. x ∈ Rl

� 0) we have

‖A‖ �
tr(A)

l
‖Il‖ = tr(A)ηψ(l) (resp. ψ(x)�

tr(x)

l
ψ(el) = tr(x)ηψ(l)),

where ηψ(l) = ‖Il‖
l

= ψ(el)
l

, since
tr(A)

l
el ≺ λ(A) and tr(x)

l
el ≺ x respectively.

Definition 2.5. A compatible u.i.n. ‖ · ‖ is strict if, for any A ∈ Ml(F)
+ then

‖A‖ = tr(A)ηψ(l) ⇒ A = tr(A)

l
I,

whereψ is the symmetric gauge function associated with ‖ · ‖ and ηψ(l) = ψ(el)
l

. Equivalently, ‖ · ‖
is strict if for x ∈ Rl

� 0 such thatψ(x) = tr(x)ηψ(l) then x = tr(x)
l

el .

Examples 2.6. As an example of compatible unitarily invariant norm, let us consider the p-norms

‖ · ‖p, with 1� p� ∞. On the other hand, if 1 < p� ∞ then ‖ · ‖p is an strict norm. Moreover, if

1 < p < ∞ then fp(x) = xp is an strictly convex function and hence the following stronger property

holds (see Theorem 2.3): if A, B ∈ Ml(C)
sa are such that A ≺w B and ‖A‖p = ‖B‖p then, A = U∗BU for

some U ∈ U(l).

2.2. Klyachko’s and Fulton’s spectral theory on sums of hermitian matrices

Inwhat followswedescribe the basic facts about the spectral characterization of the sumsof hermi-

tian matrices obtained by Klyachko [24] and Fulton [18], related with A. Horn’s saturation conjecture

solved by Knutson and Tao [25].
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Let Sd
r = {(j1, . . . , jr) : 1� j1 < j2 · · · < jr � d}. For J = (j1, . . . , jr) ∈ Sd

r , define the associated

partition

λ(J) = (jr − r, . . . , j1 − 1).

Denote by LRdr (m) the set of (m + 1)-tuples (J0, . . . , Jm) ∈ (Sd
r )
(m+1), such that the Littlewood–

Richardson coefficient of the associated partitions λ(J0), . . . , λ(Jm) is positive, i.e., one can generate

the Young diagram of λ(J0) from those of λ(J1), . . . , λ(Jm) according to the Littlewood–Richardson

rule (see [17]). With these notations and terminologies we have

Theorem 2.7. Let λi = λ
↓
i = (λ

(i)
1 , . . . , λ

(i)
d ) ∈ Rd for i = 0, . . . ,m. Then, the following statements are

equivalent:
(i) There exists Ai ∈ Md(C)

sa with λ(Ai) = λi for 0� i �m and such that

A0 = A1 + · · · + Am.

(ii) For each r ∈ {1, . . . , d} and (J0, . . . , Jm) ∈ LRdr (m) we have∑
j∈J0

λ
(0)
j

�
m∑
i=1

∑
j∈Ji

λ
(i)
j (4)

plus the condition
∑d

j=1 λ
(0)
j = ∑m

i=1

∑d
j=1 λ

(i)
j .

We shall refer to the inequalities in (4) as Horn–Klyachko’s compatibility inequalities.

For comments on further developments related with the previous theorem see Remark 5.2

3. Optimality of (m, l, d)-protocols for the q-potential

In what follows we consider (m, l, d)-reconstruction systems, which are more general system of

operators than those considered in [4,6,7,8,19,29], that also have an associated reconstruction algo-

rithm. In what follows H and K denote (real or complex) Hilbert spaces of dimensions d and l respec-

tively, with l < d.

Definition 3.1. A family {Vi}mi=1 is an (m, l, d)-reconstruction system if for 1� i �m, Vi : H → K are

linear transformations such that
∑m

i=1 V
∗
i Vi = S is an invertible (positive) operator.

Notice that an (m, 1, d)-reconstruction system is a frame [9] in the usual sense.

Recall thatan (m, l, d)-protocolon theHilbert spaceH [6] is a family {Vi}mi=1 such thatVi : H → K for

1� i �m and
∑m

i=1 V
∗
i Vi = Id (see also [7], where protocols are related to C∗-encodingswith noiseless

subsystems). Clearly, (m, l, d)-protocols are (m, l, d)-reconstruction systems in the sense of Definition

3.1.

If {Vi}mi=1 is an (m, l, d)-reconstruction system then we consider its analysis operator V : H →
⊕m

i=1K given by Vx = ⊕m
i=1Vix; similarly, we consider its synthesis operators given by V∗, i.e., V∗ ⊕m

i=1
yi = ∑m

i=1 V
∗
i yi. For a general (m, l, d)-reconstruction system {Vi}i such that

∑m
i=1 V

∗
i Vi = S we have

m∑
i=1

S−1V∗
i Vi = Id and

m∑
i=1

V∗
i Vi S

−1 = Id

and thus, we obtain the reconstruction formulas

x =
m∑
i=1

S−1V∗
i (Vix) =

m∑
i=1

V∗
i Vi(S

−1x).

In this context S is called the reconstruction system operator of {Vi}i while G = VV∗ is called the Gram-

mian operator of {Vi}i. It is easy to see that in this case {ViS
−1}mi=1 is also an (m, l, d)-reconstruction
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system, that we call the dual reconstruction system associated to {Vi}i; indeed the reconstruction

system operator of the this dual is S−1.

For practical purposes, an encoding–decoding scheme based on the (m, l, d)-reconstruction system

above involves the problem of inverting the reconstruction system operator S. One of the advantages

of considering (m, l, d)-protocols for applications is that the reconstruction system operator in this

case is Id. As we shall see (m, l, d)-protocols are optimal in other senses, too.

In the seminalwork [4] Benedetto andFickus introduced the so-called framepotential, as apotential

function for the frame force. The structure of minimizers of the frame potential under several restric-

tions [4,10,11,29] have been obtained, since these are considered as stable configurations with respect

to the frame force. This has motivated possible physical interpretations of families of frames, such as

(uniform) tight frames [11]. Moreover, in [29] it is shown that the minimizers of the frame potential

(under suitable restrictions) have structural properties implying their stability with respect to a more

general family of convex functionals that contains the frame potential of Benedetto and Fickus.

In what follows we introduce the q-potential of a reconstruction system (regardless of an under-

lying force inducing this potential), which is a positive semi-definite matrix. Then, we consider two

optimization problems associated with this potential (see Theorems 3.3 and 3.4 below).

Definition 3.2. Let {Vi}mi=1 be an (m, l, d)-reconstruction system on the Hilbert space H. Then, the

q-potential of the reconstruction system is defined as

Pq(V) =
m∑

i,j=1

|ViV
∗
j |2 ∈ Ml(C)

+.

It is straightforward that the q-potential above is the value Trm((VV
∗)2) ∈ Ml(C), i.e., the partial

trace of the square of the Grammian operator VV∗ with respect to the block representationMm·l(F) =
Mm(Ml(F)). Note that the q-potential coincides with the Benedetto–Fickus potential in the case l = 1.

In contrast to theBenedetto–Fickuspotential, there isnonaturalwayapriori to compare theq-potential

of two (m, l, d)-reconstruction systems when l > 1.

In order to state the following result we recall some distinguished classes of protocols. We say that

an (m, l, d)-protocol {Vi}i is projective if for each 1� i �m then V∗
i Vi = wiPi, where Pi is an orthogonal

projection inMd(C) andwi > 0are called the associatedweights. If theweights of aprojective (m, l, d)-
protocol are equal then we say that it is uniformly weighted (and we abbreviate this by u.w.p). Finally,

we say that an (m, l, d)-protocol is rank-l, if rank(V∗
i ) = l for 1� i �m. Notice that if {Vi}i is a rank-l

projective (m, l, d)-protocol then ViV
∗
i = wiIl with wi > 0, for 1� i �m.

Theorem 3.3 (Optimality of general protocols). Let {Vi}mi=1 be an (m, l, d)-reconstruction system on the

Hilbert space H such that tr(V∗V) = ∑m
i=1 tr(V

∗
i Vi)� d. Then,

d

l
Il ≺w Pq(V). (5)

Hence, for every u.i.n. ‖ · ‖ on Ml(C) with associated symmetric gauge functionψ we have

d · ηψ(l)� ‖Pq(V)‖ (6)

and for every increasing convex function f : R� 0 → R with f (0) = 0 we have

l · f (d
l
)� tr(f (Pq(V))). (7)

If majorization holds in (5) or there exists u.i.n. ‖ · ‖ such that equality holds in (6) or if there exists an

increasing strictly convex function f : R� 0 → R� 0 with f (0) = 0 such that equality holds in (7) then
{Vi} is an (m, l, d)-protocol.

Conversely, if {Vi}i is a projective rank-l (m, l, d)-protocol then majorization holds in (5) and the lower

bounds in (6) and (7) are attained for each u.i.n. and each function as above, respectively.
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Proof. Since tr(V∗V)� d then it follows that Id ≺w V∗V ∈ Md(C) and thus d = tr(I2d)� tr((V∗V)2) =
tr((VV∗)2). Hence,

d � tr((VV∗)2) = tr(Pq(V)) ⇒ d

l
Il ≺w Pq(V) ∈ Ml(C). (8)

Notice that (6) and (7) are consequences of this last fact (see the comments after Example 2.6).

Assume that majorization holds in (5), so then we have

tr(I2d) = tr

(
d

l
Il

)
= tr(Pq(V)) = tr((VV∗)2) = tr((V∗V)2).

Since Id ≺w V∗V and the function f (x) = x2 is strictly convex, by Theorem 2.3 we conclude that there

exists a unitary U ∈ U(d) such that

V∗V = U∗(Id)U = Id.

If there exists an u.i.n. ‖ · ‖ such that equality holds in (6) then, using the left-hand side of (8) we get

d · ηψ(l) = ‖Pq(V)‖ � tr(Pq(V)) · ηψ(l)� d · ηψ(l), (9)

which implies that tr((V∗V)2) = tr(Pq(V)) = d. As before, we conclude that V∗V = Id. On the other

hand, if there exists an increasing strictly convex function f for which equality holds in (7) then, since
d
l
Il ≺w Pq(V), we conclude from Theorem 2.3 that tr(Pq(V)) = d and hence that V∗V = Id.

Finally, it is clear that in case {Vi}i is a projective rank-l (m, l, d)-protocol then Pq(V) = d
l
Il . The last

part of the theorem follows from this fact. �

Theorem 3.4 (Optimality of u.w.p. protocols). Let {Vi}mi=1 be an (m, l, d)-reconstruction system on the

Hilbert space H such that tr((V∗
i Vi)

1/2)�
(
d·l
m

)1/2
for 1� i �m. Then,

d

l
Il ≺w Pq(V). (10)

Hence, for every u.i.n. ‖ · ‖ on Ml(C) with associated symmetric gauge functionψ we have

d · ηψ(l)� ‖Pq(V)‖ (11)

and for every increasing convex function f : R� 0 → R with f (0) = 0 we have

l · f (d
l
)� tr(f (Pq(V))). (12)

Moreover, majorization holds in (10) or there exists u.i.n. ‖ · ‖ such that equality holds in (11) or there
exists an increasing strictly convex function f : R� 0 → R with f (0) = 0 such that equality holds in (12)
if and only if {Vi}i is a u.w.p. rank-l (m, l, d)-protocol.

Proof. Let {Vi}i be an (m, l, d)-reconstruction system such that, for 1� i �m

tr((V∗
i Vi)

1/2) = tr((ViV
∗
i )

1/2) =
(
d · l
m

)1/2

⇒
(

d

ml

)1/2

Il ≺w (ViV
∗
i )

1/2

and thus tr(V∗
i Vi) = tr(ViV

∗
i )� tr

(
d
ml

Il

)
= d

m
. Hence,

∑m
i=1 tr(V

∗
i Vi)� d and thus (10), (11) and (12)

are consequences of Theorem 3.3. If majorization holds in (10) or there exists u.i.n. ‖ · ‖ such that

equality holds in (11) or there exists an increasing strictly convex function f : R� 0 → Rwith f (0) = 0

such that equality holds in (12) then, again by Theorem 3.3, we conclude that {Vi} is an (m, l, d)-proto-

col. Thus, Pq(V) = ∑m
i=1 ViV

∗
i with tr(Pq(V)) = d. Therefore, tr(ViV

∗
i ) = d

m
and since

(
d
ml

)1/2
Il ≺w

(ViV
∗
i )

1/2 (recall that f (x) = x2 is an strictly convex function) we conclude as before that V∗
i Vi = d

ml
Pi

for some rank-l orthogonal projection Pi for 1� i �m. �
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There are other issues regarding this potential, such as the structure of local minimizers where

we consider the relativization of the product topology in
∏m

i=1 L(H,K), to the sets of reconstruction

systems considered in the previous theorems. This topic has recently been considered in [30].

Remark 3.5. There are other criteria with respect to which (u.w.p.) (m, l, d)-protocols are optimal in

the class of (m, l, d)-reconstruction systems satisfying some further restrictions. For example, consider

the class R(m, l, d) of all (m, l, d)-reconstruction systems {Vi}mi=1 for which its associated reconstruc-

tion system operator S is a contraction, i.e., ‖S‖∞ � 1, where ‖ · ‖∞ denotes the spectral (operator)

norm. A natural measure of stability for an (m, l, d)-reconstruction system {Vi}i ∈ R(m, l, d) is ‖S−1‖,
where S is the reconstruction system operator of {Vi}i and ‖ · ‖ denotes a fixed u.i.n. inMd(F); we are

then interested in minimizing ‖S−1‖. Equivalently, we are interested in minimizing the norm of (the

reconstruction system operator of) the dual reconstruction system.

Notice that if λ(S−1) ∈ Rd denotes the vector of eigenvalues of S−1 then λi(S
−1)� 1 for 1� i � d,

so that tr(S−1)� d. Therefore (see the comments before Definition 2.5) Id ≺w S−1. Hence, Theorem

2.3 implies that

‖S−1‖ � ‖Id‖. (13)

Notice that this lower bound is attained whenever {Vi} is an (m, l, d)-protocol.
Moreover, if we further assume that ‖ · ‖ is a strict u.i.n. (e.g. the Frobenius or the operator norm)

then the inequality (13) is attained for {Vi}i ∈ R(m, l, d) if and only if {Vi}i is an (m, l, d)-protocol, i.e., if
and only if S = Id. Indeed, if ‖S−1‖ = ‖Id‖ then the inequalities ‖S−1‖ � tr(S−1) · ηψ(d)� ‖Id‖ imply

that ‖S−1‖ = tr(S−1) · ηψ(d), where ψ is the gauge function associated with ‖ · ‖. Thus S−1 = Id
since ‖ · ‖ is strict.

We can similarly introduce restrictions to each coordinate operator of an (m, l, d)-reconstruction
system in order that u.w.p. (m, l, d)-protocols are theminimizers of‖S−1‖ for an strict u.i.n.‖ · ‖. These
facts strengthen the idea developed in Theorems 3.3 and 3.4 that protocols play an special (important)

role within the class of general reconstruction systems.

4. Optimal protocols for erasures and strict compatible u.i.n.

Following [6] (see also [8,19])webeginbymodeling the situation inwhich in anencoding–decoding

scheme based on an (m, l, d)-protocol some fixed number of packets (Vix) are lost, corrupted or just

delayed for such a long time that we decide to reconstruct x without these packets.

In order to model the previous situation we consider a signal as a vector in the d-dimensional (real

or complex) vector spaceH, which is transmitted in the form ofm packets of l coefficients. Hence, each

packet is a vector the l-dimensional (real or complex) Hilbert space K. We shall assume that d < ml

to allow for redundancy of the information sent through the channel and thus for the possibility of a

reasonable reconstruction even when some packets are lost in the transmission. On the other hand,

we shall also assume that l < d, i.e., the dimension (complexity) of the data is strictly bigger that the

dimension of the noiseless sub-channel (subsystem) which constitute the packets (otherwise there

are trivial optimal schemes).

Given K ⊆ J:={1, . . . ,m} a subset of size |K| = pwe consider the associated packet-lost operator

EK on⊕m
j=1K given by EK(⊕m

j=1yj) = ⊕m
j=1(1 − χK(i))yi, whereχK : J → {0, 1} denotes the charac-

teristic function of the set K ⊂ J. We denote DK := I − EK. In order to simplify the notation we write

Ej (respectively Dj) in case K = {j}.
In our present situation, we shall consider a “blind reconstruction” strategy for (m, l, d)-protocols

forH. In case some packets are lost, i.e., assuming that the encoded information Vx ∈ ⊕m
i=1K (for some

x ∈ H) is altered according to the packet-lost operator EK, our reconstructed vector will be V∗EKV(x),
where V denotes the analysis operator of the (m, l, d)-protocol {Vi}mi=1.

As a measure of performance of an (m, l, d)-protocol in this setting we introduce the worst case

reconstruction errorwhen p packets are lostwith respect to an arbitrary compatible unitarily invariant

norm:



1310 P.G. Massey / Linear Algebra and its Applications 431 (2009) 1302–1316

eψp (V):= max{‖V∗V − V∗EKV‖ : K ⊆ J, |K| = p},
where ‖ · ‖ is a compatible u.i.n. with associated symmetric gauge function ψ (see Definition 2.4)

and V denotes the analysis operator of the (m, l, d)-protocol {Vi}mi=1. Since the set V(m, l, d) of all

(m, l, d)-protocols is compact then the value

e
ψ
1 (m, l, d) = inf{eψ1 (V) : {Vi}i ∈ V(m, l, d)}

is attained and we define the set of 1-loss optimal protocols for ‖ · ‖ to be the non-empty compact set

Vψ1 (m, l, d)where this infimum is attained, i.e.,

Vψ1 (m, l, d):={{Vi}i ∈ V(m, l, d) : eψ1 (V) = e
ψ
1 (m, l, d)}.

Proceeding inductively, we now set for 1� p�m

eψp (m, l, d) = inf{eψp (V) : {Vi}i ∈ Vψp−1(m, l, d)}
and define Vψp (m, l, d), the optimal p-protocols for ‖ · ‖, to be the non-empty compact subset of Vψp−1

(m, l, d)where this infimum is attained.

4.1. e
ψ
1 (·) optimality for one package lost

Lemma 4.1. Let ‖ · ‖ be a compatible u.i.n. with associated symmetric gauge function ψ. Let {Vi}mi=1 be

an (m, l, d)-protocol on the Hilbert space H. Then,

max
1� j �m

‖VjV
∗
j ‖ �

d · ηψ(l)
m

, (14)

where ηψ(l) = ψ(el)
l
.Moreover, if ‖ · ‖ is strict then equality holds in (14) if and only if {Vi}mi=1 is a u.w.p.

rank-l (m, l, d)-protocol.

Proof. Following [6] we consider

max
j

‖VjV
∗
j ‖ �

1

m

m∑
j=1

‖VjV
∗
j ‖. (15)

Recall that in this case
tr(VjV

∗
j )

l
el ≺ λ(VjV

∗
j ) and hence

‖VjV
∗
j ‖ �

tr(VjV
∗
j )

l
ψ(el) = tr(VjV

∗
j )ηψ(l). (16)

Using the fact that
∑m

i=1 tr(VjV
∗
j ) = d, (14) now follows from (15) and (16).

Assume further that ‖ · ‖ is strict and the equality holds in (14). Then, equality also hold in (15)

and (16), too. Since ‖ · ‖ is strict we conclude that λ(VjV
∗
j ) = tr(VjV

∗
j )

l
el and hence V∗

j Vj is a multiple

(independent of j) of a rank-l projection. The lemma easily follows from these facts. �

Theorem 4.2. Let ‖ · ‖ be a compatible u.i.n.with associated symmetric gauge functionψ. Let {Vi}mi=1 be

the coordinate operators of an (m, l, d)-protocol on the Hilbert space H. Then,

e
ψ
1 (V)�

d · ηψ(l)
m

. (17)

Moreover, if‖ · ‖ is strict then equality holds in (17) if andonly if {Vi}mi=1 is au.w.p. rank-l (m, l, d)-protocol.

Proof. For fixed 1� j �m note that V∗V − V∗EjV = V∗DjV and

‖V∗DjV‖ = ‖DjVV
∗Dj‖ = ‖VjV

∗
j ‖ = ‖V∗

j Vj‖.



P.G. Massey / Linear Algebra and its Applications 431 (2009) 1302–1316 1311

Therefore, the quantity to be minimized is e
ψ
1 (V) = maxj ‖V∗

j Vj‖. The result now follows from the

previous lemma. �

The previous theorem completely characterizes the structure of the 1-loss optimal (m, l, d)-proto-
cols in case ‖ · ‖ is an strict compatible u.i.n. Since the operator norm is a compatible strict u.i.n. we

derive in particular [6, Theorem 13] (note that for the operator norm ‖ · ‖∞ we have η∞(l) = 1
l
). In

Section 5 we shall be concerned with the existence of protocols with prescribed properties (such as

u.w.p. rank-l (m, l, d)-protocols).

4.2. The case of two lost packages

Consider the quantity defined in [6]

cm,l,d :=
√

d

(m − 1)ml

(
1 − d

ml

)
.

In what follows we consider the class

C(m, l, d) = {{Vi}i : u.w.p. rank − l (m, l, d)protocol, max
1� i /=j �m

tr(|ViV
∗
j |)� l · cm,l,d}.

Theorem 4.3 (e
ψ
2 optimality in C(m, l, d)). Let ‖ · ‖ be a compatible u.i.n. with associated symmetric

gauge functionψ. Then, if {Vi}i ∈ C(m, l, d) we have that

e
ψ
2 (V)�ψ

((
d

ml
+ cm,l,d

)
el ,

(
d

ml
− cm,l,d

)
el

)
. (18)

If {Vi}i is a u.w.p rank-l (m, l, d) protocol such that for i /= jViV
∗
j = cm,l,dQi,j for unitary operators on K,

then {Vi}i ∈ C(m, l, d) and it attains the bound for e
ψ
2 in (18).

Proof. In order to compute the worst case reconstruction error for two lost packages we note that if

‖ · ‖ is a compatible u.i.n. then (see the comments after Definition 2.4 in Section 2)

‖V∗(Di + Dj)V‖=‖(Di + Dj)VV
∗(Di + Dj)‖ =

∥∥∥∥∥
(

d
ml

I ViV
∗
j

VjV
∗
i

d
ml

I

)∥∥∥∥∥
=ψ

((
d

ml
el + s(ViV

∗
j ),

d

ml
el − s(ViV

∗
j )

))
,

where the last equality above follows from [20, Theorem 7.3.7] and s(A) = λ(|A|) ∈ Rl is the vector

of singular values of A ∈ Ml(C). Notice that for i /= j

tr

((
d

ml
el + s(ViV

∗
j ),

d

ml
el − s(ViV

∗
j )

))
= 2

d

m
(19)

and since {Vi}i ∈ C(m, l, d) then, for some fixed i0 /= j0 we should have

tr

((
d

ml
el + s(Vi0V

∗
j0

))
= d

m
+ tr(|Vi0V

∗
j0
|)�

d

m
+ l · cm,l,d. (20)

Now, (19), (20) and Lemma 2.2 imply that in this case((
d

ml
+ cm,l,d

)
el ,

(
d

ml
− cm,l,d

)
el

)
≺
(

d

ml
el + s(Vi0V

∗
j0
),

d

ml
el − s(Vi0V

∗
j0
)

)
.

Therefore,

e
ψ
2 (V)� ‖V∗(Di0 + Dj0)V‖ �ψ

((
d

ml
+ cm,l,d

)
el ,

(
d

ml
− cm,l,d

)
el

)
.
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Finally, is clear that in case that {Vi}i is such that for i /= j, ViV
∗
j = cm,l,dQi,j for unitary operators on

K, then {Vi}i ∈ C(m, l, d) and it attains the bound of e
ψ
2 in (18). �

It would be interesting to characterize the structure of all u.w.p. rank-l (m, l, d)-protocols that attain
the lower bound in (18) in the general context of compatible u.i.n. On the other hand, it is not clear at

this point whether the condition in the definition of the class C(m, l, d) is not trivial, i.e., it holds for
every u.w.p. protocol (see also Lemma 4.4 and Theorem 4.6).

The following facts are known for l = 1 (see [19]).

Lemma 4.4. Let ‖ · ‖ be a compatible u.i.n. with associated symmetric gauge function ψ. Let {Vi}mi=1 be

a u.w.p. rank-l (m, l, d)-protocol on the Hilbert space H. Then, for every 1� i �mwe have

m∑
j=1, j /= i

tr(|VjV
∗
i |2) = d

m

(
1 − d

ml

)
, (21)

m∑
j=1, j /= i

tr(|ViV
∗
j |)�

√
d

ml

(
1 − d

ml

)
· l (22)

and hence

max
1� j �m, i /= j

tr(|ViV
∗
j |2)� c2m,l,d · l, (23)

max
1� j �m, i /= j

tr(|ViV
∗
j |)�max

(
cm,l,d · l√
m − 1

, cm,l,d · √
l

)
. (24)

Proof. Since VV∗ = (VV∗)2 then, for fixed 1� i �m

d

ml
Il = ViV

∗
i =

m∑
j=1

|VjV
∗
i |2 =

m∑
j=1, j /= i

|VjV
∗
i |2 + d2

m2l2
Il. (25)

Now (21) follows by taking traces in (25). Using again (25) and the concavity of the square root function

[31] we get

m∑
j=1, j /= i

tr(|VjV
∗
i |)� tr

⎛⎝
√√√√( d

ml
− d2

m2l2

)
Il

⎞⎠
which is (22). Now, from (21) we get (23). Using (23) we get that, for fixed 1� i �m

max
1� j �m, i /= j

tr(|ViV
∗
j |)� max

1� j �m, i /= j
tr(|ViV

∗
j |2)1/2 �

√
c2m,l,d · l. (26)

Finally, from (22) and using (26) we get (24). �

Remark 4.5. Under the hypothesis of Lemma 4.4, note that (23) implies that, for fixed 1� i �m then

max
1� j �m,i /= j

‖|ViV
∗
j |2‖ �

1

m − 1

∑
1� j �m,i /= j

‖|ViV
∗
j |2‖ �

c2m,l,d(ψ):=
1

m − 1

∑
1� j �m,i /= j

tr(|ViV
∗
j |2)ηψ(l) = d · ηψ(l)

m (m − 1)

(
1 − d

ml

)
.

If we assume further that ‖ · ‖ is strict and that for fixed 1� i �m

max
1� j �m,i /= j

‖|ViV
∗
j |2‖ = c2m,l,d(ψ)
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then, for every j /= i, |ViV
∗
j | has only one eigenvalue, namely cm,l,d. Using the polar decomposition for

ViV
∗
j we conclude that ViV

∗
j = cm,l,dQi,j for some unitary operator Qi,j in K. In particular,

max
1� i /= j �m

‖|ViV
∗
j |2‖ � c2m,l,d(ψ) (27)

and equality holds if and only if, for 1� i /= j �m then ViV
∗
j = cm,l,dQij for unitary operators Qij in K.

These remarks generalize to this context [6, Lemma 14] for the spectral norm (notice that in this case

η∞(l) = 1
l
); in particular, (27) is an extension of a result of Welch [34].

Given a compatible strict u.i.n. ‖ · ‖ we say that it is k-strongly strict if for every A, B ∈ Mk(C)
sa

such that A ≺ B and ‖A‖ = ‖B‖ then A = U∗BU for some U ∈ U(k). For example, the p-norms are

k-strongly strict for k � 1 (see Example 2.6). On the other hand, it is easy to see that the operator norm

is 2-strongly strict.

Theorem 4.6. Let ‖ · ‖ be a compatible u.i.n. with associated symmetric gauge functionψ.

(i) If {Vi}i is a u.w.p. (m, 1, d)-protocol (i.e. a uniform tight frame of m vectors) then {Vi}i ∈ C(m, 1, d)
and

e
ψ
2 (V)�ψ

((
d

m
+ cm,1,d,

d

m
− cm,1,d

))
. (28)

If we further have that ViV
∗
j = cm,1,d qij for qij ∈ C with |qij| = 1, for every i /= j then equality holds

in (28).Moreover, the converse is true for 2-strongly strict compatible u.i.n.
(ii) If {Vi}i is a u.w.p. rank-l (2, l, d)-protocol then {Vi}i ∈ C(2, l, d) and

e
ψ
2 (V)�ψ

((
d

2l
+ c2,l,d

)
el ,

(
d

2l
− c2,l,d

)
el

)
.

If {Vi}i is a u.w.p-(2, l, d) protocol such that for i /= j, ViV
∗
j = c2,l,dQij for unitary operators Qij in K, it

attains the bound for e
ψ
2 above.

Proof. By setting respectively l = 1, respectively m = 2, in (24) we see that in these cases C(m, l, d)
coincides with the class of all u.w.p. rank-l (m, l, d)-protocols (i.e., the condition in the definition of

C(m, l, d) becomes trivial in these cases) so the first part of item (i) and item (ii) follow from Theorem

4.3.

In order to prove the second assertion in item (i) assume that ‖ · ‖ is a 2-strongly strict compatible

u.i.n. Note that ifα,β ∈ R2 are such that tr(α) = tr(β) then these vectors are comparablewith respect

to majorization; indeed α ≺ β if and only if max{α1,α2} �max{β1,β2}. Assume now that ‖ · ‖ is a

2-strongly strict norm and that {Vi}i is an u.w.p. (m, 1, d)-protocol in which the lower bound in (28) is

attained. Hence, by inspection of the proof of Theorem 4.3 (note that ViV
∗
j ∈ C for l = 1) we see that

if i /= j then

ψ

(
d

m
+ |ViV

∗
j |, d

m
− |ViV

∗
j |
)

�ψ
(
d

m
+ cm,1,d,

d

m
− cm,1,d

)
,

which implies that

d

m
+ |ViV

∗
j | �

d

m
+ cm,1,d ⇒ |ViV

∗
j | � cm,1,d i /= j. (29)

Since

tr(VV∗) = tr((VV∗)2) = ∑
i /= j

|ViV
∗
j |2 + d2

m
= ∑

i /= j

c2m,1,d + d2

m
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we conclude that equality holds in the right hand side of (29) and the theorem follows from this last

fact. �

Remark 4.7. The first item in Theorem 4.6 generalizes the results in [8,19] about the optimality of

2-uniform frames to the context of strongly strict compatible unitarily invariant norms.

5. Existence of optimal protocols for one package lost and the q-fundamental inequalities

In [6,8,19,7,33], several examples of 2-loss optimal protocols, i.e., u.w.p. rank-l (m, l, d)-protocols
{Vi} for which ViV

∗
j = cm,l,dQij with Qij ∈ U(l), are constructed based on different techniques. Still, the

problem of finding necessary and sufficient conditions for the existence of 1-loss optimal protocols,

i.e., u.w.p. rank-l (m, l, d)-protocols, has been considered open (see the discussion in [7] about this

topic).

In the case l = 1 (i.e., the classical case of frames), the existence of tight normalized frames with

given norms of the frame vectors (and hence of 1-loss optimal protocols) is characterized completely

by the so-called fundamental frame inequalitydiscovered in [11].Moreover it is nowknown [2,12,26,29]

that the fundamental frame inequality is aparticular caseof amajorization relation (via theSchur–Horn

theorem, see [3,16,21,22,23]) that constitutes a necessary and sufficient condition for the existence of

a frame with prescribed norms of the frame vectors and frame operator.

In what follows we exhibit necessary and sufficient (spectral) conditions for the existence of

(m, l, d)-protocols {Vi}i with prescribed eigenvalue vectors λ(V∗
i Vi) ∈ Rd

� 0 for 1� i �m. As in the

classical case l = 1 there exists a relation between these conditions and an extended notion of (block)

majorization as introduced in [28] (via a non-commutative Schur–Horn theorem).

Theorem 5.1. Let λi = λ
↓
i ∈ Rl

� 0 for 1� i �m. Then, the following statements are equivalent:
(i) There exists an (m, l, d)-protocol {Vi}mi=1 such that λ(V∗

i Vi) = (λi, 0d−l), for 1� i �m.

(ii) There exist {Ai}mi=1 ⊂ Md(F)
+ such that

λ(Ai) = (λi, 0d−l) for 1� i �m and

m∑
i=1

Ai = Id.

(iii) The (m + 1)-tuple

((λ1, 0d−l), . . . , (λm, 0d−l), e) ∈ (Rd)(m+1)

satisfy Horn–Klyachko’s compatibility inequalities plus
∑m

i=1 tr(λi) = d.
(vi) There exists an orthogonal projection P ∈ Mm(Ml(F))with tr(P) = d and such that, if P = (Pij)

m
i,j=1

with Pij ∈ Ml(F) for 1� i, j �m, then

λ(Pii) = λi for 1� i �m.

Proof. Clearly, (i) implies (ii) by considering Ai = V∗
i Vi for 1� i �m. Assume then item (ii). In this

case note that rank(Ai)� l and hence there exist linear operators Vi : H → K such that V∗
i Vi = Ai for

1� i �m. It is clear that {Vi}mi=1 is an (m, l, d)-protocol as in (i). Therefore, (i) and (ii) are equivalent.

The equivalence of items (ii) and (iii) is Theorem 2.7.

Assume again (i) holds and let V : H → ⊕m
i=1K be the analysis operator of the protocol {Vi}i. Since

V∗V =∑m
i=1 V

∗
i Vi = 1d then we get that the block matrix VV∗ = (ViV

∗
j )

m
i,j=1 ∈ Mm(Ml(F)) (i.e., the

Grammian of {Vi}i) is an orthogonal projection; moreover, note that tr(VV∗)= tr(V∗V) = d and that

the diagonal blocks of the Grammian satisfy (λ(ViV
∗
i ), 0d−l) = λ(V∗

i Vi) = (λi, 0d−l), for 1� i �m (see

the comments after Definition 2.4). Conversely, assume that item (iv) holds and let V : H → ⊕m
i=1K

be an isometry such that VV∗ =P (such an isometry exists since rank(P) = d by assumption). Let Vi :
H → K for 1� i �m be such that Vx = ⊕m

i=1Vix and note that then P = VV∗ = (ViV
∗
j )ij and that Id =

V∗V =∑m
i=1 V

∗
i Vi that is, {Vi}i is an (m, l, d)-protocol as in (i). Thus, items (i) and (iv) are equivalent. �
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Remark 5.2. Using the characterization in item (iv) in Theorem 5.1 and the reduction described in

[27] (which is relevant from an algorithmic point of view) it is possible to show that Horn–Klyachko’s

compatibility inequalities in (iii) in Theorem 5.1 can be reduced to a system of inequalities that, in

case l = 1 are simply the conditions given in the majorization relation diag(‖P11‖2, . . . , ‖Pmm‖2) ≺
Id ⊕ 0m·l− d, where diag(x) ∈ Mn(C) is the diagonal matrix with main diagonal x ∈ Cn.

Actually, the inequalities in (iii) in Theorem 5.1 can be regarded as determining an extended notion

of majorization as defined in [28]. Indeed, with the terminology of [28, Definition 4.4], the conditions

given in Theorem 5.1 are also equivalent to the t-extended majorization relation ⊕m
i=1diag(λi) ≺t

Id ⊕ 0m·l− d ∈ Mm·l(C), where t = (el , 1)
m
i=1.

Corollary 5.3 (q-fundamental projective (m, l, d)-protocol inequalities). Let t(i) ∈ {1, . . . , l} and wi ∈
R� 0 for 1� i �m. Then, there exists a projective (m, l, d)-protocol {Vi}mi=1 for the Hilbert spaceH such that

V∗
i Vi = wi Pi for orthogonal projections Pi with tr(Pi) = t(i) for 1� i �m if and only if for every 1� r � d

and every (J0, . . . , Jm) ∈ LR d
r (m) we have that

r �
m∑
i=1

wi · | Ji ∩ {1, . . . , t(j)}|

plus the condition d = ∑m
i=1 wi · t(i).

As an immediate consequence of the q-f.p.p.i. we conclude that u.w.p. rank-l (m, l, d)-protocols exist
if and only if for every 1� r � d and every (J0, . . . , Jm) ∈ LR d

r (m) it holds that

r �
d

m · l ·
m∑
i=1

| Ji ∩ {1, . . . , l}|.

It turns out that Corollary 5.3 plays a central role in the study of the fusion frame potential recently

considered in [30]. In particular, Horn–Klyachko’s inequalities allow the study and description of the

spectral structureof (local)minimizers of this functional defined for fusion frames infinitedimensional

Hilbert spaces.

Example 5.4. Next, we show explicitly how to construct a projection P = (Pij)ij ∈ Mm(Ml(C)) such

that Pii = d
ml

I for 1� i �m, when d = k · l for some k ∈ N. Thus, by Theorem 5.1, we show the exis-

tence of u.w.p. rank-l (m, l, d)-protocols in this case. This construction is a particular case of that

appearing in the proof of [28, Proposition 4.12]: consider first ξ ∈ C anmth primitive root of unity and

let Ũ ∈ Mm(C) be the matrix with jth row given by

Rj(Ũ) = 1/
√

m (1, ξ j , ξ2j , . . . , ξ (m−1)j) , 1� j �m.

It is then straightforward to show that the rows of Ũ form an orthonormal basis for Cm and hence

Ũ ∈ U(m) is a unitary matrix. Let U ∈ U(d · m) be the block matrix U = (Ũij · 1d)mi,j=1. Then, consider

the matrix A = ⊕k
i=1I = (Aij)ij ⊕ 0(m−k)l ∈ Mm(Ml(C)) and note that

U∗AU = (Pij)ij , Pii = 1

m

m∑
i=1

Aii = k

m
I ,

where the last equality follows from the diagonal block structure of A and by construction of U. Now,

recall that k = d
l
and we are done.
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