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Abstract 

First-order componentwise and normwise perturbation bounds for the SR decompo- 
sition are presented. The new normwise bounds are at least as good as previously known 
results. In particular, for the R factor, the normwise bound can be significantly tighter 
than the previous result. © 1998 Elsevier Science Inc. All rights reserved. 
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I. Introduction 

Let A E R 2"×2", and let P = [el,e3,. . .  ,e2,-l,e.~,e4 . . . .  ,e2,,] with e~ denoting 
the kth unit vector. Let [0 ,] 

J =  - 1  0 "  

If all even leading principal submatrices of  PArJAP x are nonsingular, then 
Bunse-Gerstner [4] showed that A can be factored as 

A = S R -  ~l  $22 [R:l R22j' 
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where S satisfies 

SVJS = J, 

and is called the symplectic matrix; R~y, i , j  = 1,2, are upper triangular, and 
diag(R2~) = 0. This is called the SR decomposition. In order to make the fac- 
torization unique, we require 

diag(Rl~) = Idiag(R22)l, diag(Rl2) = 0. (2) 

The existence and uniqueness of the SR decomposition satisfying Eq. (2) can 
easily be shown by following the idea of Theorem 3.8 in [4]. In this paper when 
we refer to the SR decomposition we assume that R satisfies Eq. (2). The SR 
decomposition is a useful tool in the computation of some optimal control 
problems. For more details, see for example [4,5,10]. 

Suppose A,,I is small enough that all even leading principal submatrices of 
P(,4 + AA)TJ(A + AA)P "r are still nonsingular, so that A + AA has a unique 
SR decomposition 

A + ~4 = (s + aS)(R + ae) .  

The goal of the sensitivity analysis for the SR factorization is to determine a 
bound on IIt~SII (or IASI} and a bound on II~ll (or lael) in terms of I1~11 
(or I~1). 

The sensitivity analysis of the SR factorization has been considered by Bha- 
tia [2], who gave first-order normwise perturbation bounds. In [2] it is assumed 
that diag(Rit) = diag(R.,2) instead of the first equality in Eq. (2). But a simple 
example like 

[_, 0] 
,4.--- 0 

shows that such an SR decomposition may not exist even though all even lead- 
ing principal submatrices of PArJAP T are nonsingular. However the perturba- 
tion bounds derived in [2] are correct if we require the first equality in Eq. (2) to 
hold. The purpose of this paper is to derive tighter first-order bounds. 

Before proceeding, let us introduce some notation. Let B = (b~j) E R "x', we 
define the upper triangular matrix 

up(B) - 

~bxl 
0 

0 

hi2 bl. 

½ b~.2 b2,, 

0 ½ bn,, 

and use sut(B) to denote the strictly upper triangular part of B, i.e., 

(3) 
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0 b12 b13 bin 

0 0 b23 bzn 

For any 

sut(B) - 

B = [BI1 
! 1-. 
kZ121 

0 0 b,,- I,,, 

0 0 

BI2 ] wi:h 
B22j . . . .  B o G '~"'~"~ (i , j  = 1,2), 

we define (b denotes "block") 
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(4) 

bup(B) ~ I sut(Bl') up(B,2)] 
[up(B21) sut(B22) " (5) 

The rest of this paper is organized as follows. In Section 2 we first derive ex- 
pressions for S(0) and/~(0) in the SR decomposition A + tG = S(t)R(t), then 
use these expressions to derive the first-order componentwise and normwise 
perturbation bounds for R and S, respectively. In Section 3 we give numerical 
examples and suggest practical condition estimates. Finally we briefly summa- 
rize oar findings in Section 4. 

2. Main results 

2.1. Rate o f  change of  S and R 

Here we derive, for later use, the basic results on how S and R change as A 
changes. 

Theorem 1. Given A E R 2n×2". Suppose all even leading principal submatrices o f  
pATjAP T are nonsingular and suppose A has the SR decomposition A = SR. Let 
A,,I E II~ 2"×2" satisfy AA = eG. I f  e is small enough that all even leading principal 
submatrices of  P(A + tGT)j(A + tG)P T are still nonsingular for 
A + tG has a unique SR decomposition 

A -4- tG -- S(t)R(t), Itl ~< e, 

which leads to: 

S(O) = GR -1 + SJ bup(R-TGTJS + STjGR -l ), 

[~(0) = - J  bup(R-TGTjS + STjGR -I )R. 

In particular, A + AA has the SR decomposition 

A + ~ = (S+ aS)(R + ~ )  

Itl ~ e, then 

(6) 

(7) 
(8) 

(9) 
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with AR and AS satisfying: 

AS = ~s(0) + o(d), 
= ~(o) + o ( d ) .  

(10) 

( l l )  

Proof.  Since for any [t[<~c all even leading principal submatrices of  
P(A + tG)Tj(A + tG)P x are nonsingular, A + tG has the unique SR decom- 
position (6). Note that  R(0) = R, R(e) = R + AR, S(0) = S, and S(¢) = S + AS. 
When t = e, Eq. (6) becomes Eq. (9). Since S(t)Tjs( t )  = J, from Eq. (6) we have 

(A + tG)TJ(A + tG) : R(t)TjR(t) .  

Differentiating this at t = 0 gives 

ATjG + GTjA = RTJ/~(0) + R(O)TjR. 

Premultiplying by R -T and post-multiplying by R- 
equation and using A = SR, we obtain 

(12) 

on both sides of  the above 

R-T/~(0)TJ + J/~(0)R -I = R-TGTJS + STJGR -1 . (13) 

Now we want  to use the special structure of  R and/~(0) to give an expression 
for JR(O)R -I in Eq. (13). In order to do this, we write: [R,,I,) 

R(t) - R2t(t) R.2( t )J '  

[u,,u,..] 
/ ~ ( 0 ) R - ' -  U21 U.,2 ' 

[/~11(0) k,~(0) ] 
R(0)  - L R , , ( 0 )  R.,.,(0) ' 

(14) 

where all subblocks are n × n matrices. Note that  for Itl <~ ~, PR(t)P r is a non- 
singular upper triangular matrix with diagonal elements (Rll(t)),  and (R2.,(t)),, 

that U0, i---I,...,n, thus (R~l(t)),--I(g,.z(t)),l #0. It is easy to show 
i , j  = I, 2 are all upper triangular,  diag(U12) = diag(U.,i) = 0, and 

( U i i ) i  i _ (/~ll(0))i/ (U22)/i _ (/~22(0))/i, i =  1 . . . .  ,n. 
(RLI). ' (R.,2). 

(15) 

Since for It[ ~< t= and i = 1, . . . .  n 

(Rll(t)),  = I(R22(t))ii I = sgn(R22(t)), . (R2z(t))ii, 

by Taylor expansion theory we have 

(Rtl ! t[~tl(O)+O(t2)), -sgn(R,.,_(t)),.(R22+t[C22(O)+O(tZ))ic (16) 

Since (R22(t)), is a continuous function of  t and (R2.,(t))ii # 0, we must have 

sgn(R2,.(t)), = sgn(R,.2)ii, i =  1 . . . .  ,n. (17) 
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Then from Eq. (16) we obtain 

( e l l ( 0 ) ) i i  = sgn(R22)ii" (/~22(0))i/, i = 1 . . . .  ,n. 

By this and Eq. (15) we have 

sgn(R22),i. (R22(O))ii 
( V l l ) i  i = sg---~2T)~.  "~ ~ ---~ (U22)i i ,  i - - -  l ,  . . . .  /~. 
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(18) 

From Eq. (14) we have 

< +u2,] 
R-T i , ' (O)D + j i c ( o ) R - '  = L _ ~ T  _ U,,  U ~  - U,,_ " 

It follows from Eq. (13), the structures of Uij, i , j  = 1,2 and Eq. (18) that with 
the notation "bup" in Eq. (5) 

JR(O)R- '  = bup(R-TGTjS  + ST jGR- ' ) ,  

which gives Eq. (8). 
Differentiating A + tG = S(t)R(t)  at t = 0 we have 

G =,¢(~ "+ sR(0), 

SO 
s(0) =OR-'-sk(o)R-' .  

Then Eq. (7) fo"ows from this and Eq. (8). 
Finally the Taylor expansions for S(t) and R(t) about t = 0 give Eqs. (10) 

and (11). [] 

2.2. Sensitivity analysis f o r  R 

From Eq. (8) it follows that 

IR(0)I ~< Idlbup(lR-Xl • [GTI " Idl. IS[ + IsT[ • ]J[-IG[" IR-tI)IRI • 

Then by Eq. (11) and AA = tG we have the following componentwise bound 

I ~ l  ~< IJIbup(IR-TI • I~TI  " IJl" ISl + IsTI • iJl" I ~ l "  IR-'l)lRI. 

N o w  we derive a normwise bound by using a similar approach to one of our 
approaches for the sensitivity analysis of the R in the QR factorization devel- 
oped in [7]. Let ~2,, be the set of all 2n x 2n real positive definitive diagonal ma- 
trices. For any 

D =- diag(D Ill D czl) = diag(611 I) 611i 6(12) -(2) (19) , , . . . ,  ,, , . . . ,6 , ,  ) ~ ~2,,, 

let R = D/~. Note for any B E 1~ 2''×2" we have bup(BD) = bup(B)D. Hence if we 
define B - s'rjG[~ -l ,  then from Eq. (8) we have 
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k ( 0 ) = - J  bup( D-l  R- T G T JSD + S TJGR- l ) k 
= -3[bup(B) - D- 'bup(B T)D]/~. 

To bound this we need the following lemma. 

(20) 

Lenuna 2. For any B E I~ 2n×2n and D E ~2., 

~p -- Ilbup(B) - D-Ibup(BT)DIIF ~ 7 1  + ~2[IBII F, 

where 
{m<ax{ ~1)- 6~2)} max, 6~1) b~2) }} 

~n -- m a x  6i(I)' (~i'(2) ' i<~j (~(2) ' t ~ l l ) i  " 

Proof. Let 

(21) 

(22) 

with K, L, M, N E R n×n. Then 

tp2 = ll [ sut(K) - (DO))-'sut(KT) D('' up(L) - (D"))-'up(MT)D(2) ] II2t: 
up(M) - (D(21)-tup(Lr)Dlll sut(N) (Ot2))-I sut(Nt)D I:l ( )2 ( 

i=1 j=i+l £~i i=i j=i+l 

• --_ 611) m,, + E lij 6/ i= I j=i+ I 611 ) I'tlJi 

i~  t ~ m~i mo ~ l/i + 
"= 612) i=1 j=i+l £~i 

= ~°t + ~P2 + rP3. 

By the Cauchy-Schwartz theorem, 

kq 61,/kji ~<(k~+k~) 1 

+ k'1") J' 
SO 

i= I j=i+ I 

)2] / 60)'\ 2] 
l+max/-~ / IIKII 2. '<' k l") 
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Similarly, 

qh 1 + max IINIIT~. 
,<J ~ J J  

Now we bound % 

,,[ ,-££ 
"= i = 1  j = i + l  

/ 'a?'~q 

U )  (t,~ 

+ ~ 
6i 

max ' Ix@l) <. l + ,<-, ( kal ~, ',", 

Thus with ¢o in Eq. (22) we have 
2 "~ 9 

~2 <~ (1 + ¢o)(llKIl~- + Iltll} + IIMII} + IINII}) = (! + g~,)IIBII~.- [] 

We can now bound R(,)) in Eq. (20): 

IIk(0)ll,~ ~< q, llnll: ~< ~/i + ¢~IISTII_,IIJII,II611FIIR-' 11,11,~112 

--- ¢ i  + ¢~K,.(D-'R)IISII=IIGIIr. (23) 
Since this is true for any D E ~2,,, we have: 

IIR(0)IIF <~ KR(,4) IlGIIr (24) 
Ilnll~ IIAII~' 

~¢n(A) = inf lcn(A,D), (25) 
DE ~2n 

KR(A,D) -= ¢1  + C~:2(D-'R)IISII211AIIF (26) 
IIRIIr 

Thus from the Taylor expansion (11) and A/I = ~G we obtain 

IIz~IIF [IARI]F < xR(A) (27) 
Ilnll~ IIAII~ 

Clearly XR(A) can be regarded as a measure of the sensitivity of the R factor 
in the SR decomposition. Since a condition number as a function of matrix of a 
certain class has to be from a bound which is attainable to first-order for any 
matrix in the given class, we use a qualified term condition estimate when this 
criterion is not met. For general A the bound (24) (or the bound (27)) may not 

n[ 
+ ~ . ~ )  1 (12.+m'~)+ Z I+ (l~2i+m~) 

} (IILII2F + IIMIIF). 
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be attainable, i.e, for some A, we cannot find G :~ 0 such that the inequality in 
Eq. (24) becomes an equality. Therefore we say xR(A) is a condition estimate 
for the R factor in the SR decomposition. Certainly we can use the so called 
matrix-vector equation approach developed by Chang [6] (see also [7]) to derive 
ti~e condition number by Eq. (12), but it would be tedious. 

If we take D = I in Eq. (26), then ~o = 1, and from Eq. (27) we obtain the 
following bound: 

Ila, RIl,~ <~KR(A,I)II,~ll,~ _ vS,,:=(R)IISII.,IIAII,~ IlaAII,~ (28) 
IIRII,~ IIAIIF IIRII,~ IIAII,~ ' 

o r  

IlZXRIIF z vrS~c2(;R)llSII2 IlzXA II, 
which is due to Bhatia [2]. We see the ~ew first-order bound Eq. (27) is at least 
as good as Eq. (28). Our analysis shows the sensitivity of R in the SR decom- 
position is dependent on the row scaling in R = D/~. If the ill conditioning of R 
is mostly due to the bad scaling of its rows, then the correct choice of D in 
R = DR can give r2(/~) very near one. If at the same time ~o is not large, then 
xR(A,D) can be much smaller than xR(A,I). So potentially the bound (28) can 
severely overestimate the true sensitivity. Let us give a simple example to illus- 
trate this. Let 

R = 

1 0 0 

0 c 0 

0 1 1 

0 0 0 

1 

0 

0 

£ 

with very small positive c. Take 

D , , / = D , 2 , =  [10 0] .  

Then (o = !, and it is easy to obtain XR(A,D)/x~(A,1) = O(e). 
We will consider how to choose D in Eq. (26) for general case in Section 3. 

Certainly if R has good row scaling, Bhatia's condition estimate for the R factor 
will be as good as the new one. For example if R is an 2n x 2n identity matrix, 
then it is easy to show xe(A) = •n(A,l). 

Since sTJS = J ,  we have JS = S-T J, which gives II8112 = IlS-tll2, Since 
A = SR, we have Ilhll~- <~ IIStl211RIIF. Thus from Eq. (28) we obtain the following 
weaker but simpler bound: 

IlaRIIF < V~K,(S)K,(R)IlaAIIF 
IIRII~ " " 11-411,~ " 
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2.3. Sensitivity analysis Jbr S 

From Eq. (7) we obtain 

IS(0)l ~< IGIIR-'I + ISIIJIbup(Ig-TIIa~lgllSI + ISTIIJIIGIIR-'I), 
then from Eq. (10) and A = eG we have the componentwise bound 

IASI < IAAIIR-I I + IsIIglbuP(I R-TIIAATIIJI ISI + IS TIIJIlaA lie -~ I). 

Now we derive a nonnwise bound. Multiplying sTJ o n  both sides of Eq. (7) 
and using Sx JS = J gives 

(29) 

if we define 

s T j s ( 0 )  = STJGR -I _ bup(R-TGTJS  + STJGR-I) .  

For any D having the form of Eq. (19), let S = SD. Then 
B =_ STJGR-I, we have from Eq. (29) that 

gTjg(o ) = ~TjG R-I _ bup(D-iR-TGTjg D + gTjG R-I) 

= B -  b u p ( B -  D-IBTD). (30) 

In order to bound this we need the following lemma which is similar to Lem- 
ma 2. 

Lemma 3. For any B ¢ ~2,,×2,, and D C ~2,,, 

- - . ~  , B ¢/~_ liB bap(B) O-t bup(nr)Ollr ~< W'  + ~,11 I11:. 
where ~o is defined by Eq. (22). 

(31) 

Proof. The proof is similar to that of Lemma 2, so we omit it. 

Now we can bound sTJs(0) in Eq. (30): 

IISTJS(0)IIF ~< ~ <~ v/l + colISII211GIIFIIR '112" 

Thus 

ilS(0)llF = IlJS(0)ilF = I I s -TsTJs (0) I IF  

v/l + ~l lS- '  11211SlI211GIIFIIR-' 112 

= v~i + ~xz(SD-l)lle-'llzllallr. 

Since this is true for any D E ~_,,,. we have: 

[] 

(32) 
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IIS(O)IIF ~< Ks(A)IIGII~ 
IISlI~ IIAIIF' 

Ks(A) = inf Ks(A,D), 
DE~2n 

Ks(A,O) _ ~ + ¢~(SO-') IIR-'IhlIAII~ 
IISlI~ 

Then from the Taylor expansion (10) and AA = cG we obtain 

(33) 

(34) 

(35) 

II~Sll~ ~<~(A) . 
IlSll~ IIAII~ 

(36) 

So Ks(A) is a condition estimate for the S factor in the SR decomposition. 
If we take D = I in Eq. (35), then ~o = 1, and we obtain the following 

bound: 

II~Sll~ < Ks(A,Z)IIAAII~ _ -~K2(S)IIR-'II211AII~ I1~11~ 
IISlt~ ~ IIAII~ IISlI~ IIAII~ 

(37) 

o r  

IIASll~ z ~K. , (s) I IR- '  thlIAAII~, 

which is due to Bhatia [2]. We see the new first-order bound (36) is at least as 
good as Eq. (37). But so far we have not found an example to show that Ks(A) 
can be arbitrarily smaller than Ks(A, I). 

Using IIAllr ~< IlSlIrllRll2 we obtain from Eq. (37) the following weaker but 
simpler bound: 

IlaSll~ IIA~II~ 
IlSll~ ~< V~,~2(S)K2(R) IIAII~ 

3. Numerical experiments 

In Section 2 we derived new condition estimates for R and S. Our perturba- 
tion results are tighter than previous results. 

The optimization problems (25) and (34) are complicated. In practice we 
would like to choose D such that KR(A, D) is a good approximation to the in- 
fimum KR(A) and choose another D such that Ks(A, D) is a good approximation 
to the infimum Ks(A). 

By a well-known result of van der Sluis [9], ~c2(D-IR) will be nearly minimal 
when the rows of D-~R are equilibrated. But this could lead to a large (o in 
Eq. (22). So a reasonable compromise is to choose D to equilibrate R as far 
as possible in some sense while keeping (o = 1. There are four obvious oossi- 
bilities for D: 
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• ~'," - V / Z  ~" 4 ,  j= l  

i = ¢ ( I )  

Oi- I 

D (2) = D (j) 

j= l  Wn+l'J ' 

/~-~2n 

A(2) 
" i -  I 

D (~) = D(2). 

/r-'~-~2n ~ A(I) 
if V LJ  ='r?j <~ " i - l '  

otherwise ,  

/x"~2n ") <, ~(2) 
i f  VLJ= I Wn+i.j "~ v i - I '  

otherwise ,  

{ / ~ : , ,  ~ /~-',, , } ®611') = max VZ_,j= ' 'Tj, V L j = l i " n . I . j  , 

f ]v-~2n ~ /~"~2n .29 max~v2-.,j:l~,VLj=lt,,+i.j ~ 
~ I ' )  - -  { 

if  max  ~ / ~ " ,  " /~2,, , 1 : ~,;, VL,:,"~+,Jj' <- ~I'),, 

6(~ ~)1 otherwise .  

i = 2, . . . .  n, 

i = 2 , . . . , n ,  

i = 2 ,  . . . .  n ,  

D(2) .__ D(I ) .  

® 61 ., = min 2,, r2j, . 4+ 
j= l  I 

f~(I) 
~ A - , 2 ,  , 

i f  m i n  %/2..~j= It"0 ' V 2 . ~ j =  I t'nn+i,j 

fit]) o therwise ,  i - I  

A(1) 
Vi_l~ [ = 2 , . . . , 1 1 ,  

D(2) _ D(I ) .  
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For the same reason we may use the corresponding column version of the 
above four methods with respect to S to scale the columns of S. 

To illustrate our results and the scaling strategies above we present two sets 
of examples. The first set of matrices are 2n x 2n f r a n k  matrices (aij = 2 n -  
j + 1, i ~< j; ai,i-i = 2n - i -I- 1; aij = 0, i > j + 1) and the second set of matrices 
are 2n x 2n p a s e a l  matrices (an = 1, alj = 1, aij "--ai-l,j + ai,i-l), /'/ = 5,6,7. 
Both are from The Test Matrix Toolbox for Matlab (Version 3.0) by Higham 
[8]. The Matlab program for computing the SR decomposition was provided 
by Peter Benner. The numerical results for Bhatia's condition estimates 
(XR(A,I) and xs(A,l)) and our new condition estimates (tce(A,D) and 
xs(A,D)) with four different choices of D for R and S are presented in Ta- 
bles 1-3. In order to see whether our choice of D is good or not, we used Mat- 
lab function fm±ns to compute the local minima of xR(A, D) and Xs(A, D) with 
respect to D by using the D determined above as initial points. The termination 
tolerance for both the variable and function i3 10 -4, and the maximum itera- 
tion numbers for n = 5, 6, 7 are 2000, 2400 and 2800, respectively. The comput- 
ed minima (optii, i = 1,2, 3, 4, corresponding to the different initial D obtained 
by our four different choices) are shown in Tables 1-3 too. 

From Tables 1-3 we see for the R factor, Bhatia's condition estimate 
~:R(A, I) can be much larger than xR(A, D) with D determined by any of  the four 
choices. The latter is only slightly worse than the local minima computed by 
fmins .  But for the S factor, Bhatia's condition estimate Ks(A,I) is almost 
the same as or slightly better than Xs(A,D) with D determined by the four 
choices. The computed local minima of xs(A,D) are slightly better than 
xs(A, 1). For R, according to Tables I-3 and our other numerical tests we do 
not see which choice of D is superior to others. But on average we find the third 
choice is pretbrable. For S, we suggest in practice using Bhatia's xs(A, 1) as the 

Table  1 

Condi t ion  es t imates  for tes: matr ices  o f  o rder  10 

Method  F r a n k  Pascal  

R S R S 

Bhatia 3.20 x 107 4.50 × 10 7 3.60 x l0 II 

newl 1.51 X 10 4 4.50 X 10 7 5.17 x 106 

o p q l  1.44 :< 104 3.22 x 10 ~ 2.64 x Iff' ~' 
new2 1.49 x 104 4.50 x 107 1.37 x 107 

opti2 !.44 X 10 4 " 3.22 x 107 2.52 x Iff' ~ 
new3 1.46 X 10 4 4.50 x 107 5.17 X 10 6 

opti3 !.44 x 104 3.22 x 107 2.64 x Iff' ~ 

new4 1.49 X 10 4 4.50 X 10 7 1.37 x 10: 

opti4 1.44 x 104 3.22 X 10 7 2.52 x Iff' ' 

3.28 x 10 It 

3.28 x I0 It 

2.47 x I0 ~t " 

3.46 x 10 II 
2.50 x 10 It 

3.46 x 10 II 

2.51 x 10 It 

3.28 x l0 LI 

2.47 x 10 jl " 

" The op t imiza t ion  a lgor i thm stops af ter  2000 iterations.  
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Table 2 

Condi t ion  estimates for test matrices of  order 12 

Method Frank  Pascal 

R S R S 

Bhatia 4.89 x 109 6.78 x 109 2.54 X 1014 

newl 2.09 x 10 ~ 6.78 x 109 2.93 x l0  s 
opt i l  1.97 x 105 4.80 × 10 9 1.23 x l0 s '~ 

new2 2.06 x 10 ~ 6.78 x 109 8.85 x 10 s 

opti2 1.98 x 105 4.80 x 109" 1.31 x l0 s" 

new3 2.04 x IO s 6.78 x 109 2.93 × 10 s 

opti3 1.97 x 105 4.80 x 109 1.23 x 10 s " 

new4 2.07 x IO s 6.78 × 109 8.85 x l0 s 

opti4 !.98 × l0 s 4.80 x 109 ~ 1.31 x I0 ~" 

2.33 x 1014 
2.33 x 1014 

1.79 x 1014 a 

2.63 x 1014 

1.75 x 1014 

2.63 x 1014 

1.75 x I0 I~ 
2.33 x lO 14 

1.79 × IO 14 ~ 

a The opt imizat ion algorithm stops after 2400 iterations. 

Table  3 

Condi t ion  estimates for test matrices of  order 14 

Method Frank  

R 

Pascal 

S R S 

Bhatia 1.01 

newl 3.32 

opti 1 3.15 

new2 3.24 

opti2 3.15 

new3 3.26 

opti3 3.16 

new4 3.27 

opti4 3.18 

X 012 
x 06 

x 11 ~' 

x 1) ~' 

X 0 t'a 

x (1 t' 

x 0 ' a  

x I ( )  ~' 

X I l l  ~' " 

1.39 x 10 I-" i.90 × 1017 1.75 x 1017 

1.39 x 101-" 1.75 x 101~' 1.75 × 1017 

9.81 x 10 II 6.99 x 109 ~ !.34 × 1017 ,i 

1.39 x 11) I '  5.93 x I 0  m 2.46 × 1017 

9,81 x I t l  I I  8.16 x I t )  '~ " 1.33 × 1017 " 

1.39 x 10 L" 1.75 × I 0  " '  2 .46  x 10 D7 

9.81 x I(1 '1 6.99 x 109 " 1.33 × 1017 a 

1.39 x l0 P 5.93 × 10 m 1.75 x 10 I~ 

9.81 × 10 II '' 8.16 x 109 " 1.34 × 1017 a 

" The opt imizat ion algorithm stops after 2800 iterations. 

conditioning measure. Why is the effect of  scaling on hs(A. D) quite different 
from that on XR(A, D)? One explanation may be that R is mainly subjected to 
only a zero/nonzero structure constraint, but S has to be subjected to the con- 
straint sTJS = J. From the numerical experiments we also observe that S is 
more sensitive than R. 

4. Summary 

New first-order componentwise and norm,vise perturbation bounds have 
been presented for both R and S in the SR decomposition. The new condition 
estimates we derived are as follows: 
® ~cR (A) = infD~= ~-,2,, h'R (A, D) for  R, 
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where rR(A,D) =~1_ + ¢2~c2(D-IR ) IISII211AIIF/ IIRIIF 
(see Eqs. (25) and (26)). 

® xs(A) = info~u~ Ks(A,D) for S, 

where xs(A,D) = V ~ + ¢2x2(SD-I) IIR-'IlalI'411F /IISIIF 
(see Eqs. (34) and (35)). 

When D = I, xs (A, D) and xs(A, D) become the condition estimates essentially 
obtained by Bhatia [2]. We have shown how to choose D in practice. Our nu- 
merical examples showed that KR(A, D) with our ,:hoices of D can be signifi- 
cantly smaller than xR(A,I). But they did not suggest that the corresponding 
results would hold for the S factor. Can xs(A) be significantly smaller than 
Ks(A,I)? This question is left for future study. 

The technique.~ presented here could easily be applied to the HR decompo- 
sition (see for example [3,1]), and similar perturbation bounds could be ob- 
tained. But we chose not to do this here in order to keep the material and 
basic ideas as brief as possible. 
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