STATISTIC AND ERGODIC PROPERTIES OF MINKOWSKI'S diAgonal continued fraction

Cor KRAAIKAMP
Institure of Mathematics, Amsterdam University, Roetersstraat 15, 1018 WB Amsterdam, The Netherlands, and U.F.R. de Mathématiques, Université de Provence, 3 Place Victor Hugo, 13331 Marseille, France

Received March 1988
Revised June 1988

Abstract

Recently the author introduced a new class of continued fraction expansions, the S-expansions. Here it is shown that Minkowski's diagonal continued fraction (DCF) is an S-expansion. Due to this, statistic and ergodic properties of the DCF can be given.

Contents

1. Introduction .

2. Minkowski's diagonal expansion as an S-expansion... 203
3. The distribution of some sequences connected with Minkowski's diagonal expansion....... 205
4. The DCF-algorithm revisited . 209

References 211

1. Introduction

Let x be an irrational number between 0 and 1 , let

be its expansion as a regular continued fraction, denoted by RCF, and let $\left(p_{n} / q_{n}\right)_{n=-1}^{\infty}$ be the corresponding sequence of convergents. Here $q_{-1}=0$.
1.2. Definitions. The operator $T:[0,1] \rightarrow[0,1]$ is defined by

$$
\begin{aligned}
& T x:=x^{-1}-\left[x^{-1}\right], \quad x \neq 0, \\
& T 0:=0 .
\end{aligned}
$$

Put

$$
T_{n}:=T^{n}(x): \text { the } n \text { th-iterate of } T \text { on } x \text {, where } n \geqslant 1 \text { and } T_{0}:=x
$$

and

$$
V_{n}:=q_{n-1} / q_{n}, \quad n \geqslant 0 .
$$

Notice that $\left(T_{n}, V_{n}\right)_{n>0}$ is a sequence in Ω, where $\Omega:=[0,1] \times[0,1]$. Let the sequence of regular approximation constants $\theta_{n}=\theta_{n}(x), n \geqslant-1$, be given by

$$
\theta_{n}:=q_{n}\left|q_{n} x-p_{n}\right|, \quad n \geqslant-1 .
$$

Then we have

$$
0<\theta_{n}<1, \quad n \geqslant 0,
$$

and
(1.3) $\quad \theta_{n}=\frac{T_{n}}{1+T_{n} V_{n}}, \quad n \geqslant 0 ;$
see e.g. [7, p. 29, Eq. (11)].
Furthermore we have the following classical theorems of Legendre and Vahlen.
1.4. Theorem (Legendre). Let x be an irrational number and let $P, Q \in \mathbb{Z}$ such that $(P, Q)=1, Q>0$ and $\theta=Q|Q x-P|<\frac{1}{2}$. Then P / Q is a regular convergent of x.
1.5. Theorem (Vahlen). For all $k \in \mathbb{N}$ and $x \notin \mathbb{Q}$ we have $\min \left(\theta_{k}, \theta_{k+1}\right)<\frac{1}{2}$.
1.6. Definitions. Here and in the following, $\left[a_{0} ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \ldots\right]$ is the abbreviation of

where $a_{0} \in \mathbb{Z}, a_{i} \in \mathbb{N}, i \geqslant 1$ and $\varepsilon_{i} \in\{ \pm 1\}, i \in \mathbb{N}$. We call $\left[a_{0} ; \varepsilon_{1} a_{1}, \ldots\right]$ a semi-regular continued fraction expansion (SRCF) in case $\varepsilon_{i}+a_{i} \geqslant 1, \varepsilon_{i+1}+a_{i} \geqslant 1$ for $i \geqslant 1$ and $\varepsilon_{i+1}+a_{i} \geqslant 2$ infinitely often.

Let x be an irrational number. Consider the sequence σ of all irreducible rational fractions P / Q, with $Q>0$, satisfying

$$
\left|x-\frac{P}{Q}\right|<\frac{1}{2} \frac{1}{Q^{2}},
$$

ordered in such a way that the denominators form an increasing sequence.
From Legendre's Theorem 1.4 it follows that σ consists exactly of those regular convergents p_{k} / q_{k} for which $\theta_{k}<\frac{1}{2}$. Due to this and Vahlen's Theorem 1.5 we see that σ is an infinite subsequence of the sequence of regular convergents of x. In [13, Section 41] it is shown that there exists a unique SRCF-expansion of x such that σ is the sequence of convergents of this expansion of x. By definition, this is Minkowski's diagonal continued fraction expansion (DCF) of x; see also [10].
1.7. Definition. Let the irrational number x have the continued fraction expansion [$\left.a_{0} ; \varepsilon_{1} a_{1}, \ldots\right]$ and suppose that for a certain $k \geqslant 0$ one has $a_{k+1}=1$ and $\varepsilon_{k+1}=\varepsilon_{k+2}=1$. The operation by which this continued fraction is replaced by

$$
\left[a_{0} ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \ldots, \varepsilon_{k}\left(a_{k}+1\right),-\left(a_{k+2}+1\right), \varepsilon_{k+3} a_{k+3}, \ldots\right],
$$

which is again a continued fraction expansion of x, is called the singularization of the partial quotient a_{k+1} equal to 1 , see also [3, Section 1].
1.8. Remarks. (i) The singularization of a partial quotient equal to 1 is based upon the equality

$$
A+\frac{1}{1+\frac{1}{B+\xi}}=A+1-\frac{1}{B+1+\xi}
$$

where $B, \xi>0$.
(ii) Notice that if we repeat this singularization operation, we can never singularize two consecutive partial quotients.
(iii) Let $\left(A_{n} / B_{n}\right)_{n \geqslant-1}$ be the sequence of convergents of expansion (1.6) and $\left(C_{n} / D_{n}\right)_{n \geqslant-1}$ that of the expansion obtained by singularizing in (1.6) an a_{k+1} equal to 1 . Then the sequence $\left(C_{n} / D_{n}\right)_{n \geqslant-1}$ is obtained from the sequence $\left(A_{n} / B_{n}\right)_{n \geqslant-1}$ by skipping the term A_{k} / B_{k}.
1.9. Theorem. Minkowski's DCF-expansion of an irrational number x is obtained from the RCF-expansion of x by singularizing all those regular partial quotients b_{k+1} for which $\theta_{k}>\frac{1}{2}$.

Proof. The theorem is an immediate consequence of the observation that $\theta_{k}>\frac{1}{2}$ implies $b_{k+1}=1$ and of Vahlen's Theorem 1.5.
1.10. Definition. Let x be an irrational number and let $\left[a_{0} ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \ldots\right]$ be its DCF-expansion. We denote the sequence of DCF-convergents of x by

$$
\frac{r_{n}(x)}{s_{n}(x)}, \quad n \geqslant-1 \quad \text { or shortly by } \quad \frac{r_{n}}{s_{n}}, \quad n \geqslant-1
$$

The DCF-approximation constants $\Theta_{n}=\Theta_{n}(x), n \geqslant-1$, are defined by

$$
\Theta_{n}:=s_{n}\left|r_{n} x-s_{n}\right|, \quad n \geqslant-1
$$

In this paper we show that the one-sided shift-operator connected with the DCF-expansion comes from a certain dynamical system. Due to this, the distribution of some sequences connected with the DCF can be given. In fact, the DCF is an example of a wider class of continued fraction expansions, so called S-expansions; see also [9]. For S-expansions the underlying dynamical system can be given; a short description of these expansions will be given in Section 2. Finally, it is shown that the DCF-expansion of a quadratic surd is periodic.

We conclude this section with an example.
1.11. Example. Let $x=(-39+\sqrt{3029}) / 58=0.2764 \ldots$ One has $\operatorname{RCF}(x)=$ $[0 ; \overline{3,1,1,1,1,1,1}]$. Hence

n	-1	0	1	2	3	4	5	6	7	8	9	\ldots
b_{n}	-	0	3	1	1	1	1	1	1	3	1	\ldots
p_{n}	1	0	1	1	2	3	5	8	13	47	60	\ldots
q_{n}	0	1	3	4	7	11	18	29	47	170	217	\ldots
θ_{n}	0	x	$0.51 .$.	$0.42 .$.	$0.45 .$.	$0.45 .$.	$0.41 .$.	$0.52 .$.	$0.23 .$.	$0.52 .$.	$0.41 .$.	\ldots

Thus,

n	-1	0	1	2	3	4	5	6	7	\ldots
ε_{n}	-	-	1	-1	1	1	1	-1	-1	\ldots
a_{n}	-	0	4	2	1	1	2	5	2	\ldots
r_{n}	1	0	1	2	3	5	13	60	107	\ldots
s_{n}	0	1	4	7	11	18	47	217	387	\ldots
Θ_{n}	0	x	$0.42 .$.	0.45.	$0.45 .$.	$0.41 .$.	$0.23 .$.	$0.41 .$.	$0.45 .$.	\ldots

One finds that $\operatorname{DCF}(x)=[0 ; 4, \overline{-2,1,1,2,-5}]$. The periodicity of this expansion does not follow from the above short calculation but from the algorithm given in Section 5.

2. S-expansions

Fundamental in the theory of S-cxpansions is the following theorem; see also [11, 12].
2.1. Theorem. Let \boldsymbol{B} be the collection of Borel-subsets of Ω and μ the probability measure on (Ω, \boldsymbol{B}) with density $(\log 2)^{1}(1+x y)^{\prime 2}$. Define the operator $\mathscr{T}: \Omega \rightarrow \Omega$ by

$$
\mathscr{T}(x, y):=\left(T x,\left(y+\left[x^{-1}\right]\right)^{-1}\right), \quad(x, y) \in \Omega .
$$

Then $(\Omega, \boldsymbol{B}, \mu, \mathscr{T})$ forms an ergodic system.
A simple way to derive a strategy for singularization is given by a singularization area S.
2.2. Definition. A subset S from Ω is called a singularization area when it satisfies
(i) $S \in \boldsymbol{B}$ is μ-continuous;
(ii) $S \subseteq\left[{ }_{2}^{1}, 1\right] \times[0,1]$;
(iii) $(\mathscr{T} S) \cap S=\emptyset$.
2.3. Theorem. Let S be a singularization area. Then

$$
0 \leqslant \mu(S) \leqslant \frac{\log 2 g}{\log 2}=1-\frac{\log G}{\log 2}=0.30575 \ldots
$$

For a proof of this, see [9].
Here and in the sequel we put

$$
g:=\frac{\sqrt{5}-1}{2}, \quad G:=\frac{\sqrt{5}+1}{2}=g+1=g^{-1} .
$$

2.4. Definition. Let S be a singularization area and x an irrational number. The S-expansion of x is obtained from the regular expansion of x by singularizing b_{n+1} if and only if $\left(T_{n}, V_{n}\right) \in S$. Here T_{n} and V_{n} are defined as in Definition 1.2.
2.5. Definition. Let S be a singularization area, x an irrational number and let [$a_{0} ; \varepsilon_{1} a_{1} . \varepsilon_{2} a_{2}, \ldots$] be the S-expansion of x. The shift t which acts on $x-a_{0}$ is defined by

$$
t\left(\left[0 ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \ldots\right]\right):=\left[0 ; \varepsilon_{2} a_{2}, \varepsilon_{3} a_{3}, \ldots\right] .
$$

Moreover, let t_{k} be the k th iterate of t on $x-a_{0}$ and let $v_{k}:=s_{k-1} / s_{k}, k \geqslant 0$, where s_{k} is the denominator of the k th S-convergent of x.
2.6. Remark. By definition, $t_{k}=\left[0 ; \varepsilon_{k+1} a_{k+1}, \varepsilon_{k+2} a_{k+2}, \ldots\right]$. One easily sees that $v_{k}=\left[0 ; a_{k}, \varepsilon_{k} a_{k-1}, \ldots, \varepsilon_{2} a_{1}\right]$ and that the numerators and denominators of the sequence $\left(r_{k} / s_{k}\right)_{k \geqslant 1}$, the sequence of S-convergents, satisfy the following recurrence relations:

$$
\begin{array}{llll}
r_{-1}:=1, & r_{0}:=a_{0}, & r_{n}:=a_{n} r_{n-1}+\varepsilon_{n} r_{n-2}, & n \geqslant 1, \\
s_{-1}:=0, & s_{0}:=1, & s_{n}:=a_{n} s_{n-1}+\varepsilon_{n} s_{n-2}, & n \geqslant 1 .
\end{array}
$$

2.7. Lemma. With S and x as in Definition 2.5, $\left(p_{n} / q_{n}\right)_{n-1}$ the sequence of regular convergents and $\left(r_{k} / s_{k}\right)_{k-1}$ the sequence of S-convergents of x, we have

$$
x=\frac{p_{n-1}\left(b_{n}+T_{n}\right)+p_{n-2}}{q_{n-1}\left(b_{n}+T_{n}\right)+q_{n-2}}=\frac{p_{n}+T_{n} p_{n-1}}{q_{n}+T_{n} q_{n-1}}, \quad n \geqslant 1
$$

and

$$
x=\frac{r_{k-1}\left(a_{k}+t_{k}\right)+\varepsilon_{k} r_{k-2}}{s_{k-1}\left(a_{k}+t_{k}\right)+\varepsilon_{k} s_{k-2}}=\frac{r_{k}+t_{k} r_{k-1}}{s_{k}+t_{k} s_{k-1}}, \quad k \geqslant 1 .
$$

From Remark 1.8(iii), Definition 2.4 and Lemma 2.7 one easily derives the following theorem.
2.8. Theorem. Using the same notation as in Definition 2.5 and putting $\Delta:=\Omega \backslash S$, $\Delta^{-}:=\mathscr{T} S$ and $\Delta^{+}:=\Delta \backslash \Delta^{-}$, we have
(i) $\left(T_{n}, V_{n}\right) \in S \Leftrightarrow p_{n} / q_{n}$ is not an S-convergent;
(ii) $\quad p_{n} / q_{n}$ is not an S-convergent \Rightarrow both p_{n-1} / q_{n-1} and p_{n+1} / q_{n+1} are S-convergents;
(iii)

$$
\begin{aligned}
&\left(T_{n}, V_{n}\right) \in \Delta^{+} \Leftrightarrow \exists k:\left\{\begin{array}{l}
r_{k-1}=p_{n-1}, r_{k}=p_{n} \\
s_{k-1}=q_{n-1}, s_{k}=q_{n}
\end{array}\right. \text { and } \\
&\left\{\begin{array}{l}
t_{k}=T_{n} \quad\left(\text { hence } \varepsilon_{k+1}:=\operatorname{sgn}\left(t_{k}\right)=+1\right) \\
v_{k}=V_{n} ;
\end{array}\right.
\end{aligned}
$$

(iv) $\quad\left(T_{n}, V_{n}\right) \in \Delta^{-} \Leftrightarrow \exists k:\left\{\begin{array}{l}r_{k-1}=p_{n-2}, r_{k}=p_{n} \\ s_{k-1}=q_{n-2}, s_{k}=q_{n}\end{array}\right.$ and

$$
\left\{\begin{array}{l}
t_{k}=-T_{n} /\left(1+T_{n}\right) \quad\left(\text { hence } \varepsilon_{k+1}=-1\right) \\
v_{k}=1-V_{n} .
\end{array}\right.
$$

2.9. Remarks. Define the transformation $\mathscr{S}: \Delta \rightarrow \Delta$ by

$$
\mathscr{F}(x, y):= \begin{cases}\mathscr{T}(x, y), & \mathscr{T}(x, y) \in \Delta, \\ \mathscr{T}^{2}(x, y), & \mathscr{T}(x, y) \in S,\end{cases}
$$

where Δ is defined as in Theorem 2.8. Due to the fact that \mathscr{F} is an induced transformation, we now have that $(\Delta, \boldsymbol{B}, \rho, \mathscr{P})$ forms an ergodic system. Here ρ is the probability measure on (Δ, \boldsymbol{B}) with density

$$
\frac{1}{\mu(\Delta) \log 2} \frac{1}{(1+t v)^{2}}
$$

see e.g. [14]. Since $h(T)$, the entropy of the RCF, equals

$$
h(T)=\frac{\pi^{2}}{6 \log 2}
$$

see [11], we have, due to a formula of Abramov, $h(\mathscr{F})=h(T) / \mu(\Delta)$, see [1]. It is now natural to consider the following definition.
2.10. Definition. Let the map $M: \Delta \rightarrow \mathbb{R}^{2}$ be defined by

$$
M(T, V):= \begin{cases}(T, V), & (T, V) \in \Delta^{+} \\ (-T /(1+T), 1-V), & (T, V) \in \Delta^{-}\end{cases}
$$

2.11. Theorem. Let S be a singularization area and put $\Omega_{S}:=M(\Delta)=\Delta^{+} \cup M\left(\Delta^{-}\right)$. Let again \boldsymbol{B} be the collection of Borel-subsets of Ω_{S} and let ρ be the probability measure on $\left(\Omega_{S}, B\right)$ with density $(\mu(\Delta) \log 2)^{-1}(1+t v)^{-2}$. Define the map $\tau: \Omega_{S} \rightarrow \Omega_{S}$ by $\tau(t, v):=M\left(\mathscr{F}\left(M^{-1}(t, v)\right)\right)$. Then τ is conjugate to \mathscr{T} by M and we have
(i) $\left(t_{k}, v_{k}\right) \in \Omega_{s}, \forall k \geqslant 0$;
(ii) ($\left.\Omega_{s}, \boldsymbol{B}, \rho, \tau\right)$ forms an ergodic system;
(iii) $h(\tau)=h(\mathscr{P})$.

Moreover we have the following theorem.
2.12. Theorem. Let the map $f: \Omega_{S} \rightarrow \mathbb{R}$ be defined by

$$
f(t, v):=\left|t^{-1}\right|-\tau_{1}(t, v), \quad(t, v) \in \Omega_{S}
$$

where τ_{1} is the first coordinate function of τ. Let $b(t):=\left[t^{-t}\right], \forall t \in \mathbb{R}, t \neq 0$. Using the same notations as in Theorem 2.11 we now have
(i) $f(t, v)= \begin{cases}b(t), & \text { when } \operatorname{sgn}(t)=1, \mathscr{T}(t, v) \notin S, \\ b(t)+1, & \text { when } \operatorname{sgn}(t)=1, \mathscr{T}(t, v) \in S, \\ b(-t(1+t))+1, & \text { when } \operatorname{sgn}(t)=-1, \mathscr{T}\left(M^{-1}(t, v)\right) \notin S, \\ b(-t /(1+t))+2, & \text { when } \operatorname{sgn}(t)=-1, \mathscr{T}\left(M^{-1}(t, v)\right) \in S ;\end{cases}$

$$
\begin{equation*}
\tau(t, v)=\left(\left|t^{-1}\right|-f(t, v),(\operatorname{sgn}(t) v+f(t, v))^{-1}\right), \quad \forall(t, v) \in \Omega_{S} . \tag{ii}
\end{equation*}
$$

A consequence of this is the following corollary.

2.13. Corollary

(i) $f(t, v) \in \mathbb{N}, \forall(t, v) \in \Omega_{S}$.
(ii) $a_{k+1}=f\left(t_{k}, v_{k}\right), \forall k \geqslant 0$, where $\left(t_{0}, v_{0}\right)=\left(x-a_{0}, 0\right)$.

For proofs and more results on S-expansions, see [9].

3. Minkowski's diagonal expansion as an \boldsymbol{S}-expansion

From the definition of Minkowski's diagonal continued fraction (DCF) and formula (1.3) it follows at once that the DCF is an S-expansion with

$$
S=S_{\mathrm{DCF}}:=\left\{(T, V) \in \Omega ; \frac{T}{1+T V}>\frac{1}{2}\right\}
$$

(see Fig. 1). Notice that we now have

$$
\Delta^{+}=\left\{(T, V) \in \mathbb{R}^{2} ; \frac{T}{1+T V}<\frac{1}{2}, \frac{V}{1+T V}<\frac{1}{2}, T>0, V>0\right\}
$$

Fig. 1.
and

$$
M\left(\Delta^{\prime}\right)=\left\{(T, V) \in \mathbb{R}^{2} ; \frac{(1+T)(1-V)}{1+T V}<\frac{1}{2},-\frac{1}{2}<T<0, V>0\right\}
$$

(see also Fig. 1) where Δ^{+}, Δ^{-}are defined as in Theorem 2.8 and M is defined as in Definition 2.10. Since $\mu\left(S_{\text {DCF }}\right)=1-1 /(2 \log 2)$ (see [4, p. 286]) we find the following theorem (see also Definition 2.5).
3.1. Theorem. The two-dimensional ergodic system for the DCF is $\left(\Omega_{S_{1 x 1}}, \boldsymbol{B}, \rho, \tau\right)$ where ρ is the probability measure on $\Omega_{S_{\mathrm{IC}}}$ with density $2 /(1+w)^{2}$.

In some cases, e.g. Nakada's α-expansions, Bosma's OCF, which are all examples of S-expansions, it is possible to obtain an explicit expression for $f(t, v)$. See also $[9,5]$. In these cases, one no longer depends on the RCF to obtain the S-expansion of x. Since S_{DCY} has relatively smooth boundaries, it is possible to obtain an explicit expression for $f=f_{\text {DCF }}$, using Remark 2.6 and Lemma 2.7. Indeed we have the following theorem.
3.2. Theorem. For all $(t, v) \in \Omega_{S_{|x| l}}$,

$$
f(t, v)=\left[\left|t^{-1}\right| 1 \frac{\left[\left|t^{\prime}\right|\right]+\operatorname{sgn}(t) \cdot v-1}{2\left(\left[\left|t^{\prime}\right|\right]+\operatorname{sgn}(t) \cdot v\right)-1}\right] .
$$

Proof. Let $n \in \mathbb{N}$. Put

$$
\begin{aligned}
& A_{n}^{+}:=\left\{(t, v) \in \Delta^{+} ; \frac{1}{n \mid 1}<t<\frac{1}{n}, \mathscr{T}(t, v) \in S_{\mathrm{DCH}}\right\}, \\
& B_{n}^{+}:=\left\{(t, v) \in \Delta^{+} ; \frac{1}{n+1}<t<\frac{1}{n}, \mathscr{T}(t, v) \notin S_{\mathrm{DCF}}\right\}, \\
& A_{n}^{-}:=\left\{(t, v) \in M\left(\Delta^{-}\right) ; \frac{1}{n+1}<\frac{-t}{1+t}<\frac{1}{n}, \mathscr{T}\left(M^{-1}(t, v)\right) \in S_{\mathrm{DCF}}\right\}
\end{aligned}
$$

and

$$
B_{n}^{-}:=\left\{(t, v) \in M\left(\Delta^{-}\right) ; \frac{1}{n+1}<\frac{-t}{1+t}<\frac{1}{n}, \mathscr{T}\left(M^{-1}(t, v)\right) \notin S_{\mathrm{DCFF}}\right\} .
$$

We will only prove the theorem for $(t, v) \in B:=B_{1}^{+}$; the other cases are proved in the same way.

A simple calculation yields, using Theorem 3.1 and the definition of \mathscr{T},

$$
\begin{align*}
B & :=\left\{(t, v) \in \Omega_{\mathrm{s}_{1 \mathrm{X}}} ; \frac{(1-t)(1+v)}{1+t v}>\frac{1}{2}, \frac{t}{1+t v}<\frac{1}{2}, \frac{v}{1+t v}<\frac{1}{2}\right\} \tag{3.3}\\
& =\left\{(t, v) \in \Omega_{\mathrm{S}_{|\times|}} ; v<\frac{1-2 t}{3 t-2}, v>\frac{2 t-1}{t}, v<\frac{1}{2-t}\right\} .
\end{align*}
$$

From Theorem 2.13 we have $f(t, v)=1$; hence we must show that

$$
\left[\left|t^{-1}\right|+\frac{\left[\left|t^{-1}\right|\right]+\operatorname{sgn}(t) \cdot v-1}{2\left(\left[\left|t^{-1}\right|\right]+\operatorname{sgn}(t) \cdot v\right)-1}\right]=1
$$

Now

$$
\left[\left|t^{-1}\right|+\frac{\left[\left|t^{-1}\right|\right]+\operatorname{sgn}(t) \cdot v-1}{2\left(\left[\left|t^{-1}\right|\right]+\operatorname{sgn}(t) \cdot v\right)-1}\right]=\left[\frac{1}{t}+\frac{v}{2 v+1}\right]
$$

and we have, due to $(t, v) \in B$,

$$
\frac{1+2 v}{3 v+2}<t<\frac{1}{2-v} .
$$

Since

$$
2-v+\frac{v}{2 v+1}>1 \quad \text { for }(t, v) \in B
$$

we thus find

$$
\left[\frac{1}{t}+\frac{v}{2 v+1}\right]=1
$$

3.4. Remark. Notice that we also have that $h(\tau)=\frac{1}{3} \pi^{2}$.
4. The distribution of some sequences connected with Minkowski's diagonal expansion

Only a few metrical results are known for the DCF; they are to be found in [4]. These results are
(i) for almost all x the sequence $\left(\Theta_{k}(x)\right)_{k=0}$ is uniformly distributed over the interval [$0, \frac{1}{2}$];
(ii) let x be an irrational number and let the monotonic function $k: \mathbb{N} \rightarrow \mathbb{N}$ be such that

$$
\frac{r_{n}}{s_{n}}=\frac{p_{k(n)}}{q_{k(n)}}, \quad n=1,2, \ldots ;
$$

then one has, for almost all x,

$$
\lim _{n \rightarrow \infty} \frac{k(n)}{n}=2 \log 2=1.3862 \ldots
$$

Using the theory of S-expansions we are able to extend this considerably. For instance, we will obtain for almost all x the distribution of the sequences $\left(\Theta_{k-1}, \Theta_{k}\right)_{k>1},\left(\Theta_{k-1}+\Theta_{k}\right)_{k \geqslant 1}$ and the relative frequency of the partial quotient 1.

Let $\left[a_{0} ; \varepsilon_{1} a_{1}, \varepsilon_{2} a_{2}, \ldots\right]$ be the DCF-expansion of the irrational number x and $\left(r_{k} / s_{k}\right)_{k \geqslant 1}$ be its sequence of DCF-convergents. From Theorem 3.1 we derive, using techniques analogous to those used in $[6,8]$, the following theorem.
4.1. Theorem. For almost all irrational numbers x, the two-dimensional sequence $\left(t_{k}, v_{k}\right)_{k \geqslant 0}$ is distributed over $\Omega_{\mathrm{S}_{\mathrm{IX} \mid}}=: \Omega_{S}$ according to the density function h, given by $h(x, y)=2 /(1+x y)^{2}$.

Since

$$
\begin{aligned}
& \Theta_{k}=\Theta_{k}(x):=s_{k}\left|s_{k} x-r_{k}\right|=\frac{\left|t_{k}\right|}{1+t_{k} v_{k}}, \quad \forall k \geqslant 0 \\
& \Theta_{k-1}=\frac{v_{k}}{1+t_{k} v_{k}}, \quad \forall k \geqslant 1
\end{aligned}
$$

it is natural to consider the map $\psi: \Omega_{S} \rightarrow \mathbb{R}^{2}$, defined by

$$
\psi(t, v):=\left(\frac{v}{1+t v}, \frac{|t|}{1+t v}\right), \quad \forall(t, v) \in \Omega_{S}
$$

Let $\mathscr{A}_{1}:=\psi\left(\left\{(t, v) \in \Omega_{S} ; \operatorname{sgn}(t)=+1\right\}\right), \mathscr{A}_{2}:=\psi\left(\left\{(t, v) \in \Omega_{S} ; \operatorname{sgn}(t)=-1\right\}\right)$. A simple calculation shows that

$$
\begin{aligned}
& \mathscr{A}_{1}=\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leqslant x, y \leqslant \frac{1}{2}\right\}, \\
& \mathscr{A}_{2}=\left\{(x, y) \in \mathbb{R}^{2} ; 0 \leqslant x \leqslant \frac{1}{2}, 0 \leqslant y \leqslant \frac{1}{2}, 0 \leqslant(x-y)^{2}+(x+y) \leqslant \frac{3}{4}\right\}
\end{aligned}
$$

(see also Fig. 2).
Moreover, the absolute value of the Jacobian J of ψ on Ω equals

$$
\frac{1-t v}{(1+t v)^{3}}
$$

Fig. 2.
and

$$
|J|^{-1} \frac{2}{(1+t v)^{2}}=\frac{2}{\sqrt{1-4 t v /(1+t v)^{2}}} .
$$

Hence we have proved the following theorem.
4.2. Theorem. For all irrational numbers x the sequence $\left(\Theta_{k-1}, \Theta_{k}\right)_{k>1}$ is a sequence in $\mathscr{A}:=\mathscr{A}_{1} \cup \mathscr{A}_{2}$ and for almost all x this sequence is distributed over \mathscr{A} according to the density function d, where $d:=d_{1}+d_{2}$ and

$$
\begin{aligned}
& d_{1}(x, y):= \begin{cases}\frac{2}{\sqrt{(1-4 x y)},}, & (x, y) \in \mathscr{A}_{1}, \\
0, & (x, y) \notin \mathscr{A}_{1}\end{cases} \\
& d_{2}(x, y):= \begin{cases}\frac{2}{\sqrt{(1+4 x y)},}, & (x, y) \in \mathscr{A}_{2} \\
0, & (x, y) \notin \mathscr{A}_{2}\end{cases}
\end{aligned}
$$

Using techniques analogous to the ones used in [8, Section 4], we find the following corollary.
4.3. Corollary. For almost all x the sequence $\left(\Theta_{k-1}+\Theta_{k}\right)_{k \geqslant 0}$ is distributed over the interval $[0,1]$ according to the density function m, where $m:=m_{1}+m_{2}$ and

$$
\begin{aligned}
& m_{1}(a)= \begin{cases}\log \frac{1+a}{1-a}, & 0<a<\frac{1}{2}, \\
2 \log \frac{\sqrt{2}+\sqrt{(1-a)}}{\sqrt{(1+a)}}, & \frac{1}{2}<a<1,\end{cases} \\
& m_{2}(a)= \begin{cases}2 \operatorname{arctg} a, & 0<a<\frac{1}{2}, \\
2 \operatorname{arctg} \sqrt{\left(\frac{3-4 a}{2+4 a}\right)}, & \frac{1}{2}<a<\frac{3}{4} .\end{cases}
\end{aligned}
$$

For a picture of m_{1} and m_{2}, see Fig. 3.
In a similar way one could determine the distribution of the sequence $\left(\Theta_{k-1}-\Theta_{k}\right)_{k \geqslant 0}$ over the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$.

A classical result (see [2]) states that for the RCF one has, for almost all x,

$$
\lim _{N \rightarrow \infty} N^{-1} \#\left\{j \leqslant N ; b_{j}=1\right\}=\frac{1}{\log 2} \log \frac{4}{3}=0.41503 \ldots
$$

In Example 1.11 we saw that not every regular partial quotient b_{k+1} equal to 1 disappears in the diagonal expansion of x, as is e.g. the case in the nearest integer continued fraction expansion of x. One may ask how many partial quotients equal

Fig. 3.
to 1 "survive" in the DCF. Note that a regular partial quotient b_{k+1} equal to 1 does not disappear in the diagonal expansion of x if and only if $\left(T_{k}, V_{k}\right) \in \Delta^{+}$and $\mathscr{T}\left(T_{k}, V_{k}\right) \notin S_{\mathrm{DCFF}}$. Hence we find the following theorem.
4.4. Theorem. A regular partial quotient b_{k+1} equal to 1 does not disappear in the diagonal expansion of x if and only if $\left(T_{k}, V_{k}\right) \in B$, with B as in (3.3).

For a picture of B, see Fig. 1.
Note that the hyperbolae

$$
\frac{(1-t)(1+v)}{1+t v}=\frac{1}{2} \quad \text { and } \quad \frac{t}{1+t v}=\frac{1}{2}
$$

are tangent to each other in $\left(\frac{1}{2}, 0\right)$ and that

$$
\begin{aligned}
& \mu(B)= \frac{1}{\log 2}(\\
& \int_{1 / 2}^{1}\left(\int_{(2 t-1) / t}^{1 / 2 t} \frac{\mathrm{~d} v}{(1+t v)^{2}}\right) \mathrm{d} t \\
&\left.\quad \int_{1 / 2}^{2-\sqrt{2}}\left(\int_{(2 t-1) /(2-3 t)}^{1 /(2-t)} \frac{\mathrm{d} v}{(1+t v)^{2}}\right) \mathrm{d} t\right) \\
&= \frac{1}{\log 2}\left(\log (\sqrt{2}-1)+\sqrt{2}-\frac{1}{2}\right)=0.0473 \ldots
\end{aligned}
$$

Thus we see that in the singularization process leading to the DCF, only 4.7% of the original 41% of partial quotients equal to 1 is saved (for almost all x). After a normalization we therefore find this result.
4.5. Theorem. Let x be an irrational number and let $\left(a_{k}\right)_{k>0}$ be the sequence of DCF-partial quotients of x. Then,

$$
\lim _{N \rightarrow x} N^{-1} \nexists\left\{j \leqslant N ; a_{j}=1\right\}=2\left(\log (\sqrt{2}-1)+\sqrt{2}-\frac{1}{2}\right)=0.0656 \ldots \quad \text { a.e. }
$$

5. The DCF-algorithm revisited

In this section we study the values of θ_{n} corresponding to a block of m consccutive partial quotients equal to 1 in the regular expansion of an irrational number x. The result, a simplification of a method described in [13, p. 183-184], enables us to obtain the diagonal expansion of x from the sequence $\left(b_{n}\right)_{n \geqslant 0}$ of regular partial quotients of x. We show that the DCF-expansion of a quadratic surd is periodical.

Before stating the main result Theorem 5.3 of this section, we mention two useful tools. A simple consequence of Definition 1.2 of the RCF-operator T is the following lemma.
5.1. Lemma. Let $\operatorname{RCF}(x)=\left[b_{0} ; b_{1}, \ldots, b_{k}, \ldots\right], \quad \operatorname{RCF}\left(x^{\prime}\right)=\left[b_{0} ; b_{1}, \ldots, b_{k}^{\prime}, \ldots\right]$, where $b_{k} \neq b_{k}^{\prime}$.

- If k is even, then

$$
b_{k}<b_{k}^{\prime} \Leftrightarrow x<x^{\prime}
$$

- if k is odd, then

$$
b_{k}<b_{k}^{\prime} \Leftrightarrow x>x^{\prime} .
$$

From Definition 1.7 and Remark 1.8(i) the next lemma follows at once.
5.2. Lemma. Let $\xi \in(0,1)$ and $\operatorname{RCF}(\xi)=\left[0 ; B_{1}, B_{2}, \ldots\right]$, where $B_{1} \neq 1$. Then $1-\xi=$ $\left[0 ; 1, B_{1}-1, B_{2}, \ldots\right]$.

In the following we denote a block of m consecutive 1 's by 1^{m}.
5.3. Theorem. Let $0<x<1$ be an irrational number, $\operatorname{RCF}(x)=$ $\left[0 ; b_{1}, \ldots, b_{n}, 1^{m}, b_{n+m+1}, \ldots\right]$, where $b_{n}, b_{n+m+1} \neq 1$ for $n \geqslant 1$, and $b_{m+1} \neq 1$ for $n=0$. - If $m=1$ or $n=0$, then

$$
\theta_{n}>\frac{1}{2} .
$$

- If $m>1$ and $n \geqslant 1$, then

$$
\theta_{n}>\frac{1}{2} \text { if and only if }\left[0 ; 1^{m-1}, b_{n+m+1}, \ldots\right]<\left[0 ; 1, b_{n}-1, \ldots, b_{1}\right]
$$

$$
\theta_{n+m-1}>\frac{1}{2} \text { if and only if }\left[0 ; 1^{m-1}, b_{n}, \ldots, b_{1}\right]<\left[0 ; 1, b_{n+m+1}-1, \ldots\right]
$$

and

$$
\theta_{n+e}<\frac{1}{2} \text { for } 0<e<m-1 .
$$

Proof. From the definition of \mathscr{T} one easily derives the following (see also Theorem 2.1).

- In case $m=1,\left(T_{n}, V_{n}\right) \in\left\lceil\frac{2}{3}, 1\right\rceil \backslash \mathbb{Q} \times\left\lceil 0,{ }_{2}^{1}\right\rceil \subset S_{\mathrm{DCF}}$. Hence,
(5.4) $\theta_{n}>\frac{1}{2}$.
- In case $m>1$, we find for $0<e<m-1,\left(T_{n+e}, V_{n+e}\right) \in\left[\begin{array}{l}1 \\ 2\end{array}, \frac{2}{3}\right] \backslash \mathbb{Q} \times\left[\frac{1}{2}, 1\right]$. Since $\left[\begin{array}{c}1 \\ 2\end{array}, \frac{2}{3}\right] \backslash \mathbb{Q} \times\left[\begin{array}{l}1 \\ 2\end{array}, 1\right] \cap S_{\mathrm{DCF}}=\emptyset$, we find
(5.5) $\theta_{n}<\frac{1}{2}$ for $0<e<m-1$.

In general we have, for $0 \leqslant e \leqslant m-1$, due to Definition 1.2 and formula (1.3),

$$
\begin{align*}
\theta_{n+e} & =\left(\frac{1}{T_{n+e}}+V_{n+e}\right)^{-1}=\left(1+T_{n+e+1}+V_{n+e}\right)^{-1} \tag{5.6}\\
& =\left(1+\left[0 ; 1^{m-e-1}, b_{n+m+1}, \ldots\right]+\left[0 ; 1^{e}, b_{n}, \ldots, b_{1}\right]\right)^{-1}
\end{align*}
$$

Notice that (5.4) and (5.5) are immediate consequences of (5.6). We now have, due to Lemma 5.2, eq. (5.6) and $b_{n}, b_{n+m+1} \neq 1$,

$$
\theta_{n}>\frac{1}{2} \text { iff }\left[0 ; 1^{m} 1, b_{n+m+1}, \ldots\right]<\left[0 ; 1, b_{n}-1, b_{n-1}, \ldots, b_{1}\right],
$$

and

$$
\theta_{n+m-1}>\frac{1}{2} \mathrm{iff}\left[0 ; 1^{m-1}, b_{n}, \ldots, b_{1}\right]<\left[0 ; 1, b_{n+m+1}-1, b_{n+m+2}, \ldots\right]
$$

which proves the theorem.

From Theorem 1.9 and Theorem 5.3 we have a corollary.
5.7. Corollary. Minkowski's DCF-expansion of an irrational number $0<x<1$ is obtained from $\mathrm{RCF}(x)$ by singularizing each regular partial quotient b_{k+1} equal to 1 which satisfies one of the four following conditions:

- $b_{k+1}=b_{1}$; that is, the case $k=0$,
- $b_{k}, b_{k+2} \neq 1, k>0$,
- $b_{k} \neq 1, b_{k+2}=1$ and $\left[0 ; b_{k+3}, \ldots\right]>\left[0 ; b_{k}-1, b_{k-1}, \ldots, b_{1}\right], k>0$,
- $b_{k}=1, b_{k+2} \neq 1$ and $\left[0 ; b_{k-1}, \ldots, b_{1}\right]>\left[0 ; b_{k+2}-1, b_{k+3}, \ldots\right], k>0$.
5.8. Remark. Since the conditions

$$
\begin{aligned}
& {\left[0 ; b_{k+3}, \ldots\right]>\left[0 ; b_{k}-1, \ldots, b_{1}\right] \text { and }} \\
& {\left[0 ; b_{k-1}, \ldots, b_{1}\right]>\left[0 ; b_{k+2}-1, b_{k+3}, \ldots\right]}
\end{aligned}
$$

are easily checked, due to Lemma 5.1 , it is relatively easy to obtain the diagonal expansion of x from its sequence of regular convergents.

Let $0<x<1$ be a quadratic irrational number. Then, by a classical theorem of Lagrange, the regular expansion of x is ultimately periodic, i.e.

$$
\operatorname{RCF}(x)=\left[0 ; b_{1}, \ldots, b_{n_{0}}, \overline{b_{n_{0}+1}, \ldots, b_{n_{0}+L}}\right]
$$

We take n_{0} and the period length $L \geqslant 1$ both minimal. Put $b_{j . k}=b_{n_{0}+j+k L}$, where $k \in \mathbb{N}, j \geqslant 0$. Suppose that for some $i \in\{1, \ldots, L\}$ we have: $b_{n_{v}+i}=1$. Now if we want to obtain the $\operatorname{DCF}(x)$ from the $\operatorname{RCF}(x)$ we have to distinguish the following cases, due to Corollary 5.7.
(i) If $b_{i-1, k}, b_{i+1, k} \neq 1$, then $b_{i, k}$ must be singularized, for all $k \in \mathbb{N}$.
(ii) If $b_{i-1, k}=b_{i+1, k}=1$, then $b_{i, k}$ must not be singularized, for all $k \in \mathbb{N}$.
(iii) If $b_{i-1, k} \neq 1, b_{i+1, k}=1$, then $b_{i, k}$ must be singularized if and only if
(5.9) $\left[0 ; c_{1}, c_{2}, \ldots\right]>\left[0 ; d_{1}, \ldots, d_{n_{1}+i+k L}\right]$
where

$$
\left[0 ; c_{1}, \ldots\right]=\left[0 ; \overline{b_{n_{1}+i+2}}, \ldots, b_{n_{1}+L}, b_{n_{1}+1}, \ldots, b_{n_{0}+i+1}\right]
$$

and

$$
\left[0 ; d_{1}, \ldots, d_{n_{0}+i+k L}\right]=\left[0 ; b_{i-1, k}-1, \ldots, b_{i, k-1}, \ldots, b_{1}\right]
$$

In particular we have, in case $L=3, c_{1}=d_{1}+1$ and in case $L>3$,

$$
c_{1}=b_{n_{1}+i+2}, \quad c_{L-2}=b_{n_{1}+i-1}, \quad d_{1}=b_{n_{0}+i-1}-1 \quad \text { and } \quad d_{L-2}=b_{n_{1}+i+2} .
$$

Therefore it follows from Lemma 5.1 that (5.9) is equivalent to
(5.10) $\left[0 ; b_{n_{1}+i+2}, \ldots, b_{n_{0}+L}, b_{n_{0}+1}, \ldots, b_{n_{0}+i-1}\right]$

$$
>\left[0 ; b_{n_{0}+i-1}-1, \ldots, b_{n_{0}+L}, b_{n_{0}+1}, \ldots, b_{n_{0}+i+2}\right]
$$

which is independent of k.
Thus we see that $b_{i, k}$ must be singularized, for all $k \in \mathbb{N}$, if and only if (5.10) holds.
(iv) If $b_{i-1, k}-1, b_{t+1, k} \neq 1$, then we find, in the same way as in (iii), that $b_{i, k}$ must be singularized for all $k \in \mathbb{N}$ if and only if it holds that

$$
\begin{aligned}
& {\left[0 ; b_{n_{0}+i-2} \ldots \ldots, b_{m_{1}+1}, b_{n_{n}+1}, \ldots, b_{n_{0}+i+1}\right]} \\
& \quad>\left[0 ; b_{n_{1}+i+1}-1, b_{n_{0}+i+2}, \ldots, b_{n_{0}+i-2}\right] .
\end{aligned}
$$

A direct consequence of (i)-(iv) and Corollary 5.7 is the following theorem.
5.11 Theorem. The Minkowski DCF-expansion of a quadratic irrational number is periodic.
5.12. Remark. A different proof of this theorem can be found in [13, Section 41].

References

[1] L.M. Abramov, Entropy of induced automorphisms, Dokl. Akad. Nauk SSSR 128 (1959) 647-650.
[2] P. Billingsley, Ergodic Theory and Information (Wiley and Sons, New York, 1965).
[3] W. Bosma, Optimal continued fractions, Indag. Math. 50 (1988) 353-379.
[4] W. Bosma, H. Jager and F. Wiedijk, Some metrical observations on the approximation by continued fractions, Indag. Math. 45 (1983) 281-299.
[5] W. Bosma and C. Kraaikamp, Metrical theory for optimal continued fractions, J. Number Theory, to appear.
[6] H. Jager, Continued fractions and ergodic theory, in: Transcendental Numbers and Related Topics, RIMS Kokyuroku, Vol 599 (K yoto IIniversity, Kyoto, 1986) 55-59.
[7] J.F. Koksma, Diophantische Approximation (Springer, Berlin, 1936).
[8] C. Kraaikamp, The distribution of some sequences connected with the nearest integer continued fraction, Indag. Mahh. 49 (1987) 177-191.
[9] C. Kraaikamp, On a new class of continued fraction expansions, to appear.
[10] H. Minkowski, Über die Annäherung an eine reelle Grösse durch rationale Zahlen, Math. Ann. 54 (1901) 91-124.
[11] H. Nakada, Metrical theory for a class of continued fraction transformations and their natural extensions, Tokyo J. Math. 4 (1981) 399-426.
[12] H. Nakada, S. Ito and S. Tanaka, On the invariant measure for the transformations associated with some real continued fractions, Keio Engrg. Reports 30 (1977) 159175.
[13] O. Perron, Die Lehre von den Kettenhrüchen, Band I (Teubner, Stuttgart, 1954).
[14] K. Petersen, Ergodic Theory (Cambridge University Press, 1983).

