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Abstract

From the irreducible decompositions’ point of view, the structure of the cyclic GLn(C)-module generated
by the α-determinant degenerates when α = ± 1

k
(1 � k � n − 1) (see [S. Matsumoto, M. Wakayama,

Alpha-determinant cyclic modules of gln(C), J. Lie Theory 16 (2006) 393–405]). In this paper, we show
that − 1

k
-determinant shares similar properties which the ordinary determinant possesses. From this fact,

one can define a new (relative) invariant called a wreath determinant. Using (GLm,GLn)-duality in the
sense of Howe, we obtain an expression of a wreath determinant by a certain linear combination of the
corresponding ordinary minor determinants labeled by suitable rectangular shape tableaux. Also we study
a wreath determinant analogue of the Vandermonde determinant, and then, investigate symmetric functions
such as Schur functions in the framework of wreath determinants. Moreover, we examine coefficients which
we call (n, k)-sign appeared at the linear expression of the wreath determinant in relation with a zonal
spherical function of a Young subgroup of the symmetric group Snk .
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1. Away from the multiplication law

There is a notion called the α-determinant for a square matrix in probability theory. It was
first introduced in [11] and actually appeared as coefficients of the Taylor expansion of det(I −
αA)−1/α . This expansion has applications, in particular, to multivariate binomial and negative
binomial distributions. Moreover, recently in [9], the α-determinant is use to define a random
point process through a study of the Fredholm determinants of certain integral operators.

The α-determinant det(α)(X) for a matrix X (see (2.1) for the definition) does not have the
multiplication property which the ordinary determinant det(X) possesses. It is, however, interest-
ing from a viewpoint of invariant theory because the α-determinant is regarded as an interpolation
of the determinant (α = −1) and permanent (α = 1)—recall that each of them generates an ir-
reducible representation of the general linear group GLn(C); as representations of the special
linear group SLn(C), the former defines the trivial representation and the latter generates the
representation on the space of symmetric n-tensors of (the natural representation on) C

n. These
facts raise naturally the following question:

“Where had the multiplication law gone when α moved away from −1?”

The multiplication law of the determinant is equivalent to the fact that GLn(C) · det(X) ⊂
C

× det(X). Hence, it is natural to ask the question what the smallest invariant space contain-
ing GLn(C) · det(α)(X) is. From this point of view, Matsumoto and the second author [8]
have studied recently the irreducible decomposition of the cyclic module U(gln) · det(α)(X)

and showed that the structure of the module changes drastically when α is contained in the
set {±1,± 1

2 , . . . ,± 1
n−1 }. In fact, one can see that the irreducible decomposition of the cyclic

module U(gln) · det(α)(X) degenerates when α is one of such values. More precisely, if we
denote by mλ(α) the multiplicity of the irreducible highest weight U(gln)-module correspond-
ing to a partition λ appeared in the decomposition, then, for instance, we have mλ(− 1

k
) = 0

when the first component of λ is greater than k (see (3.1)). Therefore, we shall call α sin-
gular if α ∈ {±1,± 1

2 , . . . ,± 1
n−1 }. This result indicates that if α is singular, then det(α)(X)

may share some distinguished feature which explains why such a drastic change of the mod-
ule structure happens. The special emphasis in this paper is laid on the study of the case α = − 1

k

(k ∈ Z>0). Actually, we first show that det(− 1
k
)(X) has a certain alternating property which is

considered as a generalization of the alternating property of the ordinary determinant (as well as
its multilinearity) in Section 2. We also show that such an alternating property characterizes the

− 1
k

-determinants through the cyclic module U(gln) ·det(− 1
k
)(X) by the effective use of the Young

symmetrizer (Section 3). We note that a quantum analogue of the α-determinant (which we call
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quantum α-determinant) is introduced and studied in [6], however, it is much more difficult to
describe the singular values in the quantum case.

Under these studies, one of the main purpose of the present paper is to construct an invariant,
which we will call a wreath determinant, defined by means of a singular α-determinant. In order
to obtain this new invariant for a rectangular matrix, we consider a kn × kn matrix gotten from
multiplexing a given kn × n matrix A by tensoring the 1 × k matrix (1,1, . . . ,1). By using the
property of α-determinants developed in Section 2 for α = − 1

k
, we show that the wreath deter-

minant is a relative invariant for the action of the wreath product of symmetric groups Sk � Sn

(see [7]) in Section 4. Furthermore, in Section 5, we give an expression of the wreath determinant
of kn×n-matrix A by a linear sum of the nth minor determinants of A labeled by the correspond-
ing rectangular shaped tableaux. In the derivation of this expression, (GLm,GLn)-duality in the
sense of [3] provides a guiding principle. We then, beside the expression above, derive another
expression of such a wreath determinant conceptually by the Frobenius reciprocity. As a corol-
lary of the proof, we find that the wreath determinant is a relative invariant of (Sk � Sn) × GLn.
We also give one remark on the background which explains how to get this expression and to un-
derstand a structure of the cyclic module U(gln) ·det(α)(X)� for a general positive integer � in the
framework of (GLm,GLn)-duality. Note that the latter closely relates a problem for calculating a
certain plethysm [4,7].

The Cauchy determinant formula (see, e.g. [12])

det

(
1

xi + yj

)
1�i,j�n

= Δn(x)Δn(y)∏n
i,j=1(xi + yj )

can be considered as one of the most important determinant formula from the representation
theoretic point of view. In Section 6, we prove an analogue of the Cauchy determinant formula for
the wreath determinants. It naturally leads us to study the wreath determinant of a Vandermonde
type. The aforementioned study enables us to deduce a formula for the Schur functions in terms
of the − 1

k
-determinants of the Vandermonde type, which is regarded as a − 1

k
-analogue of the

expression

sλ(x1, . . . , xn) = det(x
λj +n−j

i )1�i,j�n

det(xn−j
i )1�i,j�n

.

The proof is to be done first for the corresponding expressions for the monomial symmetric
functions mλ(x), and then, it can be completed immediately by the well-known linear expression
of the Schur function by mλ(x) using the Kostka numbers (Section 6).

We further try to understand the coefficients which we call (n, k)-sign appeared at the afore-
mentioned linear expression of the wreath determinant in relation with a zonal spherical function
of a Young subgroup of the symmetric group Snk . At this point, we shall provide one conjec-
ture about a positive definiteness of a certain symmetric matrix formed by the spherical function
(see Conjecture 7.8). We do not treat the remaining singular case α = 1

k
(k ∈ Z>0). Note that,

however, one can deduce the fact mλ( 1
k
) = mλ′

(− 1
k
) from the result in [8], where λ′ denotes the

transposition of the partition λ as a Young diagram.
We give an α-analogue of the Laplace expansion formula for α-determinants in Appendix A.

1.1. Conventions

As usual, N is the set of positive integers and C is the complex number field. For n ∈ N,
we denote by Sn the symmetric group of degree n. The cycle number of an element σ ∈ Sn is
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written by νn(σ ). Since the conjugacy classes of Sn are parametrized by the cycle type, νn is a
class function on Sn. In particular, we notice that νn(σ

−1) = νn(σ ) for any σ ∈ Sn because σ

and σ−1 are always Sn-conjugate.
We denote by Matm,n the set of m×n matrices whose entries belong to a certain commutative

C-algebra, and we put Matn = Matn,n. We also denote by In = (δij )1�i,j�n the identity matrix
of size n and 1n = (1)1�i,j�n the all-one matrix of size n. For a permutation σ ∈ Sn, P(σ) =
(δiσ (j))1�i,j�n is the permutation matrix for σ .

The (complex) general linear group GLn(C) is the group consisting of invertible matrices in
Matn(C). We exclusively deal with the complex vector spaces so that we often omit the symbol
C and simply write GLn instead of writing GLn(C).

Let us put [N ] := {1,2, . . . ,N} for N ∈ N. For a given partition (or Young diagram) λ of
size N , we denote by SSTabN(λ) the set of all semistandard tableaux with shape λ whose entries
are in [N ], and we also denote by STab(λ) the set of all standard tableaux with shape λ. For a
semistandard tableau T ∈ SSTabN(λ), we associate a sequence wt(T ) := (μ1,μ2, . . . ,μN) of
nonnegative integers where μk = |{tij = k}| is the number of entries in T which is equal to k.
We call wt(T ) the weight of T . Notice that a semistandard tableau T ∈ SSTabN(λ) is standard if
and only if wt(T ) = (1,1, . . . ,1). For a given partition λ,μ � N of the same size N , we denote
by Kλμ the number of semistandard tableaux T with shape λ such that wt(T ) = μ. Namely,

Kλμ = ∣∣{T ∈ SSTabN(λ)
∣∣wt(T ) = μ

}∣∣.
We call Kλμ the Kostka number. We also put f λ = |STab(λ)| = Kλ,(1,...,1), and denote by �(λ)

the depth of the diagram λ. See [1,7] for detailed information on partitions and tableaux.
The irreducible polynomial representations of GLm are highest weight modules and the high-

est weights are identified with partitions such that �(λ) � m. We denote by Mλ
m the irreducible

GLm-module corresponding to the partition λ. The irreducible representations of Sn are also
parametrized by partitions of n. We denote by J λ

n the irreducible Sn-module corresponding to
the partition λ � n. See [12] (or [1]) for detailed information on representation theory of GLm

and Sn.

2. Basic properties of general α-determinants

Let α be a complex parameter. The α-determinant det(α) A of a square matrix A =
(aij )1�i,j�n ∈ Matn is defined by

det(α) A :=
∑

w∈Sn

αn−νn(w)aw(1)1 · · ·aw(n)n. (2.1)

We note that det(α)(tA) = det(α)(A) because νn(w
−1) = νn(w) for any w ∈ Sn. We also notice

that det(α) is multilinear with respect to the column (and/or row) vectors. We mainly deal with
the − 1

k
-determinants for k ∈ N below, so it is convenient to put

detk A = |A|k := det(−1/k) A.

We note that det1 = det(−1) is the ordinary determinant.
The α-determinant of the all-one matrix 1n (i.e. every element equals 1) is calculated as

det(α) 1n =
∑

αn−νn(w) =
∏

(1 + iα). (2.2)

w∈Sn 1�i<n



K. Kimoto, M. Wakayama / Journal of Combinatorial Theory, Series A 115 (2008) 1–31 5
We note that this is the generating function of the Stirling numbers of the first kind (see, e.g. [10]).
The following lemma is the (shifted) partial sum generalization of the identity above.

Lemma 2.1. For a subset I of [n] = {1,2, . . . , n}, put

Sn(I ) := {
w ∈ Sn

∣∣ x /∈ I ⇒ w(x) = x
}
.

Then, for any g ∈ Sn, there exists a nonnegative integer m(g, I) such that∑
w∈Sn(I )

αn−νn(gw) = αm(g,I)
∏

1�i<k

(1 + iα),

where k = |I |. The integer m(g, I) is given by n − νn(gw0) where w0 ∈ Sn(I ) is the unique
element such that νn(gw0) � νn(gw) for any w ∈ Sn(I ).

Proof. Take an element h ∈ Sn such that h · I = [k]. We identify Sk and Sn([k]) naturally.
Since w ∈ Sn(I ) if and only if hwh−1 ∈ Sk , it follows that∑

w∈Sn(I )

αn−νn(gw) =
∑

w∈Sk

αn−νn(gh−1wh) =
∑

w∈Sk

αn−νn(gh−1(hw0h
−1)wh)

=
∑

w∈Sk

αn−νn(g′w)

where g′ = hgw0h
−1. By the definition of w0 and g′, it is easy to see that

νn(g
′) � νn(g

′w) (w ∈ Sk). (2.3)

Assume that g′ contains a cycle of the form (j2, i2,j1, i1) (i1, i2 ∈ {1,2, . . . , k}, i1 �= i2 and
j1,j2 stand for certain disjoint strings in {1,2, . . . , n} which are possibly empty). Then it follows
that νn(g

′ · (i1, i2)) = νn(g
′) + 1 because

(j2, i2,j1, i1) · (i2, i1) = (j2, i2) · (j1, i1).

This contradicts the inequality (2.3). Therefore, each cycle in the cycle decomposition of g′
contains at most one element in {1,2, . . . , k}. Namely, g′ is of the form

g′ = (j k, k) · · · · · (j2,2) · (j1,1) · h
for certain (possibly empty) disjoint strings j1, . . . ,j k in {k + 1, . . . , n} and h ∈ Sn({k +
1, . . . , n}).

For distinct elements i1, . . . , il ∈ {1,2, . . . , k}, we have

(j il
, il) · · · · · (j i2

, i2) · (j i1
, i1) · (il, . . . , i2, i1) = (j il

, il , . . . ,j i2
, i2,j i1

, i1).

This implies that l distinct cycles in g′ turn into one cycle in g′ · (il, . . . , i2, i1), that is,

νn(g
′) − νn

(
g′ · (il, . . . , i2, i1)

)= l − 1.

Hence, if w ∈ Sk is of the type 1r12r2 · · · krk , then we have

νn(g
′) − νn(g

′w) =
k∑

l=1

rl(l − 1) = k − νk(w).

Therefore it follows that∑
w∈Sk

αn−νn(g′w) = αn−νn(g′) ∑
w∈Sk

αk−νk(w) = αn−νn(gw0)
∏

1�i<k

(1 + iα).

This completes the proof. �
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Let us define the left action of Sm (respectively the right action of Sn) on the set Matm,n as
permutations of row (respectively column) vectors:

σ · (aij ) 1�i�m
1�j�n

:= (
aσ−1(i)j

)
1�i�m
1�j�n

(σ ∈ Sm),

(aij ) 1�i�m
1�j�n

· τ := (
aiτ(j)

)
1�i�m
1�j�n

(τ ∈ Sn).

Notice that σ · A = P(σ)A and A · τ = AP(τ) for σ ∈ Sm, τ ∈ Sn and A ∈ Matm,n. If m = n,
then we have

det(α)(w · A) = det(α)(aw−1(i)j ) =
∑

g∈Sn

αn−νn(g)
n∏

i=1

aw−1g(i)i

=
∑

g∈Sn

αn−νn
(
wgw−1) n∏

i=1

ag(i)w(i) = det(α)(aiw(j)) = det(α)(A · w)

for any w ∈ Sn and any A = (aij ) ∈ Matn.

Lemma 2.2. The equality∑
w∈Sn(I )

det(α)(A · w) =
∏

1�i<k

(1 + iα)
∑

g∈Sn

αm(g,I )

n∏
i=1

ag(i)i

holds for A = (aij )1�i,j�n ∈ Matn and I ⊂ [n] such that |I | = k.

Proof. Using Lemma 2.1, we have∑
w∈Sn(I )

det(α)(A · w) =
∑

w∈Sn(I )

∑
g∈Sn

αn−νn(g)
n∏

i=1

ag(i)w(i)

=
∑

g∈Sn

∑
w∈Sn(I )

αn−νn(g)

n∏
i=1

agw−1(i)i

=
∑

g∈Sn

{ ∑
w∈Sn(I )

αn−νn(gw)

} n∏
i=1

ag(i)i

=
∏

1�i<k

(1 + iα)
∑

g∈Sn

αm(g,I )
n∏

i=1

ag(i)i

as we desired. �
As a corollary, we have the following lemma.

Lemma 2.3. For I ⊂ [n] such that |I | > k and A ∈ Matn, the equalities∑
w∈Sn(I )

detk(A · w) =
∑

w∈Sn(I )

detk(w · A) = 0

hold. In particular, if k + 1 column (row) vectors in A are equal, then detk A = 0.
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Lemma 2.3 and the multilinearity of detk yield immediately the

Lemma 2.4. Let A = (a1, . . . ,an) ∈ Matn. If ai1 = · · · = aik = b for some 1 � i1 < · · · < ik � n,
then

detk(a1, . . . ,aj + b, . . . ,an) = detk(a1, . . . ,aj , . . . ,an)

for any j ∈ [n] \ {i1, . . . , ik}.

When we regard σ ∈ Sn as an element in Sn+m (m ∈ N) in natural way, we notice that
νn+m(σ) = νn(σ ) + m. Further, if we take a permutation τ ∈ Sm and regard τ as an element
in Sn+m which leave each letter in [n] invariant, then νn+m(στ) = νn(σ ) + νm(τ). This fact
readily implies the following simple consequence which will be used in the proof of Lemma 4.6
(see also Appendix A).

Lemma 2.5. The equality

det(α)

(
A11 A12
O A22

)
= det(α)(A11)det(α)(A22)

holds. In particular, det(α)(A11 ⊕ A22) = det(α)(A11)det(α)(A22).

Proof. Suppose that A = (aij ) ∈ Matn+m and A11 = (aij )1�i,j�n, A22 = (aij )n+1�i,j�n+m. We
also assume that aij = 0 if n + 1 � i � n + m and 1 � j � n. Then it follows that

det(α) A =
∑

σ∈Sn+m

αn+m−νn+m(σ)
n+m∏
i=1

aiσ(i)

=
∑

σ∈Sn+m
([n])

τ∈Sn+m(n+[m])

αn+m−νn+m(στ)

n∏
i=1

aiσ(i)

m∏
i=1

an+i,τ (n+i)

=
∑

σ∈Sn
τ∈Sm

αn+m−νn(σ )−νm(τ)

n∏
i=1

aiσ(i)

m∏
i=1

an+i,n+τ(i) = det(α)(A11)det(α)(A22).

This proves the claim. �
3. Characterization of − 1

k -determinants

In Lemma 2.3, we prove that detk has an alternating property among k + 1 column (and/or
row) vectors. In this section, we show, conversely, this property essentially characterizes detk .

We denote by P(Matn(C)) the commutative C-algebra consisting of polynomial functions
on Matn(C). The Lie algebra of GLn is denoted by gln, and its universal enveloping algebra is
denoted by U(gln). The algebra P(Matn(C)) has a U(gln) × Sn-module structure by defining

(Eij · f )(X) =
n∑

k=1

xik

∂f

∂xjk

(X) (1 � i, j � n), (σ · f )(X) = f (X · σ) (σ ∈ Sn)

for f ∈ P(Matn(C)) where Eij are the standard basis of gln and xij are the standard coordi-
nate functions on Matn(C). We note that this action of U(gln) is obtained as the differential
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representation of GLn given by (g · f )(X) = f (tgX) for g ∈ GLn, which is the contragradient
representation of the left regular representation on P(Matn(C)). Here tg denotes the transposed
matrix of g.

Let MLn be a subspace of P(Matn(C)) consisting of functions which are multilinear with
respect to column vectors. Clearly, we have

MLn =
⊕

1�i1,...,in�n

C · xi11 · · ·xinn.

The subspace MLn is a U(gln) × Sn-submodule of P(Matn(C)). For each k ∈ N, we put

ALk
n :=

{
f ∈ MLn

∣∣∣ I ⊂ [n], |I | > k ⇒
∑

τ∈Sn(I )

f (X · τ) = 0

}
where X = (xij )1�i,j�n. This subspace ALk

n is also U(gln)-invariant because the actions of
U(gln) and Sn on P(Matn(C)) commute each other. We also see that ALk

n is Sn-invariant since∑
τ∈Sn(I )

(σ · f )(X · τ) =
∑

τ∈Sn(I )

f (X · τσ ) =
∑

τ∈Sn(σ−1I )

f (Y · τ)

∣∣∣
Y=X·σ = 0

for any I ⊂ [n], |I | > k if f ∈ ALk
n and σ ∈ Sn. Since detk ∈ ALk

n by Lemma 2.3, it follows that
ALk

n ⊃ U(gln) · detk(X).

Theorem 3.1. The equality ALk
n = U(gln) · detk(X) holds for k = 1,2, . . . , n − 1.

Proof. In [8], it is shown that

U(gln) · detk(X) ∼=
⊕
λ�n
λ1�k

(Mλ
n)

⊕f λ

, (3.1)

where Mλ
n denotes the highest weight U(gln)-module of highest weight λ, which is the differ-

ential representation of Mλ
n and we use the same symbol to indicate it. The irreducible module

Mλ
n is realized in U(gln) · detk(X) as an image of the Young symmetrizer

cT =
∑

q∈C(T )
p∈R(T )

sgn(q)qp ∈ C[Sn]
(
T ∈ STab(λ)

)
.

Here C(T ) and R(T ) are the column group and row group of T respectively (see, e.g. [12]).
Hence, to prove the opposite inclusion ALk

n ⊂ U(gln) · detk(X), it is enough to show that each
element f in ALk

n is killed by the Young symmetrizer cT when T ∈ STab(λ) and λ1 > k. We
now prove this. The image cT · f of f ∈ ALk

n by cT is calculated as

(cT · f )(X) =
∑

q∈C(T )

sgn(q)
∑

p∈R(T )

f
(
X · qpq−1q

)=
∑

q∈C(T )

sgn(q)
∑

p∈R(qT )

f (X · pq).

For each q ∈ C(T ), we see that∑
p∈R(qT )

f (X · pq) =
∑

p′∈R′
1(qT )

{ ∑
p∈R1(qT )

(p′q · f )(X · p)

}
= 0

since p′q ·f ∈ ALk
n by Sn-invariance of ALk

n. Here R1(qT ) is the subgroup of R(qT ) consisting
of permutations which moves only the entries in the first row of qT , and R′ (qT ) is the subgroup
1
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of R(qT ) which leaves the first row of qT invariant so that R(qT ) = R1(qT ) × R′
1(qT ). This

completes the proof. �
4. Determinants from a variation on wreath product groups

Let m,n, k ∈ N. For a matrix A = (a1, . . . ,an) ∈ Matm,n, we define the column k-plexing
A[k] ∈ Matm,kn of A by

A[k] := (

k︷ ︸︸ ︷
a1, . . . ,a1, . . . ,

k︷ ︸︸ ︷
an, . . . ,an ).

This is nothing but the Kronecker product matrix A ⊗ (1, . . . ,1) of A and (1, . . . ,1) ∈ Mat1,k .
The row k-plexing A[k] ∈ Matkm,n of A is also defined in a similar way.

Example 4.1. If

A =
(

a1 b1
a2 b2
a3 b3

)
∈ Mat3,2,

then

A[2] =
(

a1 a1 b1 b1
a2 a2 b2 b2
a3 a3 b3 b3

)
∈ Mat3,4,

A[3] =
(

a1 a1 a1 b1 b1 b1
a2 a2 a2 b2 b2 b2
a3 a3 a3 b3 b3 b3

)
∈ Mat3,6 .

We notice that

A[k] = A · (In)
[k], A[k] = (Im)[k] · A

for A ∈ Matm,n. Hence one has the

Lemma 4.2. Let A ∈ Matm,n. Then the equalities

(PA)[k] = P · A[k], (AQ)[k] = A[k] · Q
hold for P ∈ Matm, Q ∈ Matn. In particular, we have

σ · A[k] = (σ · A)[k], A[k] · τ = (A · τ)[k]
for σ ∈ Sm, τ ∈ Sn.

Definition 4.3. For a rectangular matrix A = (aij ) 1�i�kn
1�j�n

∈ Matkn,n, we define the kth wreath

determinant of A by

wrdetk A := detk
(
A[k])=

∑
σ∈Skn

(
−1

k

)kn−νkn(σ ) n∏
p=1

k∏
l=1

aσ((p−1)k+l),p.
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By Lemma 2.4, it is immediate to see that the equalities

wrdetk(a1, . . . ,ai−1,ai + caj ,ai+1, . . . ,an)

= wrdetk(a1, . . . ,ai−1,ai ,ai+1, . . . ,an) (i �= j),

wrdetk(a1, . . . , cai , . . . ,an) = ck wrdetk(a1, . . . ,ai , . . . ,an)

hold for A = (a1, . . . ,an) ∈ Matkn,n and c ∈ C. Then it also follows that

wrdetk(A · σ) = (sgnσ)k wrdetk A (σ ∈ Sn). (4.1)

In general, we have the

Lemma 4.4. If A ∈ Matkn,n and P ∈ Matn, then

wrdetk(AP ) = (detP)k wrdetk(A).

Namely, wrdetk is a relative invariant of GLn in P(Matkn,n(C)) with respect to the (right) regular
representation (see also Section 5).

Example 4.5. Lemma 4.4 says that the equality

det(α)
(
(AP )[k])= (detP)k det(α)

(
A[k]) (4.2)

holds when α = −1/k. When k = 1 and α = −1, this is nothing but the multiplicativity of
the ordinary determinant. We also notice that (4.2) becomes trivial when α = −1,−1/2, . . . ,

−1/(k−1). Actually, because of Lemma 2.3, each side of (4.2) vanishes for such values. Further,
we notice that (4.2) holds only if α = −1,−1/2, . . . ,−1/k. Actually, if det(α)(X[k]) satisfies
(4.2), then the ratio det(α)(X[k])/wrdetk(X) gives an absolute invariant of GLn, which must be
a constant. If the constant is 0, then it follows from (2.2) that α = −1,−1/2, . . . ,−1/(k − 1).
If the constant is not 0, then we immediately have α = −1/k. Here we give a simple and direct
example. When n = k = 2 and P = ( 1 1

0 1

)
, we have

det(α)
(
(AP )[2])− (detP)2 det(α)

(
A[2])

= (1 + α)(1 + 2α)
(
(1 + 3α)a11a21a31a41 + 2α(a12a21 + a11a22)a31a41

+ (1 + α)a11a21(a32a41 + a31a42)
)

which is identically zero only if α = −1,− 1
2 . See also Corollary 5.8.

Lemma 4.6. If A ∈ Matn, then the equality

detk
(
A

[k]
[k]
)= wrdetk(A[k]) =

(
k!
kk

)n

(detA)k

holds for any k ∈ N.

Proof. By Lemmas 4.2 and 4.4, we have

detk
(
A

[k]
[k]
)= wrdetk(A[k]) = wrdetk

(
(In)[k] · A)

= wrdetk
(
(In)[k]

) · (detA)k = detk
(
(In)

[k]) · (detA)k.
[k]
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Since (In)
[k]
[k] =

n︷ ︸︸ ︷
1k ⊕ · · · ⊕ 1k and detk(1k) = ∏

1�i<k(1 − i
k
) = k!

kk , we have detk((In)
[k]
[k]) =

( k!
kk )n by Lemma 2.5. This completes the proof. �

This lemma will be used in Section 7.
We consider the two injective homomorphisms φ :Sn

k → Skn and ψ :Sn → Skn defined as

φ(σ1, . . . , σn) : [kn] � (i − 1)k + j �→ (i − 1)k + σi(j) ∈ [kn] (1 � i � n,1 � j � k),

ψ(τ) : [kn] � (i − 1)k + j �→ (
τ(i) − 1

)
k + j ∈ [kn] (1 � i � n,1 � j � k)

for (σ1, . . . , σn) ∈ Sn
k and τ ∈ Sn. To avoid the confusion, we put Sn

k := φ(Sn
k) and Sn :=

ψ(Sn). We note that Sn
k is the Young subgroup S(kn) of Skn corresponding to the partition

(kn) � kn.
By the definition of k-plexing, one finds that A[k] · σ = A[k] for A ∈ Matkn,n and σ ∈ Sn

k ,
whence it follows that

wrdetk(σ · A) = detk
(
σ · A[k])= detk

(
A[k] · σ )= detk

(
A[k])= wrdetk A

(
σ ∈ Sn

k

)
.

We also see that A[k] · ψ(τ) = (A · τ)[k] for any τ ∈ Sn. Hence we have

wrdetk
(
ψ(τ) · A)= detk

(
ψ(τ) · A[k])= detk

(
A[k] · ψ(τ)

)
= wrdetk(A · τ) = (sgn τ)k wrdetk A (τ ∈ Sn)

by (4.1). Consequently, we obtain the

Lemma 4.7. If A ∈ Matkn,n, then

wrdetk(g · A) = χn,k(g)k wrdetk A

for any g ∈ Sk � Sn. In other words, C · wrdetk ⊂ P(Matkn,n) defines a one-dimensional rep-
resentation of Sk � Sn. Here Sk � Sn := Sn

k � Sn is the wreath product group (see [7]). The
character χn,k of Sk � Sn is defined by

χn,k(g) = sgn τ

for g = (φ(σ1, . . . , σn);ψ(τ)) (σi ∈ Sk, τ ∈ Sn).

5. Expressions of wreath determinants and (GLkn,GLn)-duality

For given two linear spaces V and W , as a GL(V ) × GL(W)-module, the multiplicity-free
decomposition

S(V ⊗ W) ∼=
⊕

λ

Mλ
V �Mλ

W (5.1)

of the symmetric algebra S(V ⊗ W) holds. Here λ runs over the partitions such that �(λ) �
min{dimV,dimW }. This fact is referred as (GL(V ),GL(W))-duality (see [3] and [12]).

The algebra P(Matkn,n) has a GLkn × GLn-module structure given by(
(g,h).f

)
(A) := f

(
tgAh

)
(g ∈ GLkn, h ∈ GLn, A ∈ Matkn,n),

where tg denotes the transposition of g with respect to the standard coordinate. We see that
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P(Matkn,n) ∼= P
((

C
kn
)∗ ⊗ (

C
n
)∗)∼= S

(
C

kn ⊗ C
n
)

as GLkn ×GLn-module. Here V ∗ indicates the contragradient representation of V . We notice that
if (ρ,V ) is a representation of GLm, then ρ̃(g) = ρ(tg−1) (g ∈ GLm) defines a representation on
V which is equivalent to V ∗.

Remark 5.1. It is standard to define a representation of GLkn × GLn on the algebra
P(Matkn,n(C)) by(

(g,h).f
)
(A) := f

(
g−1Ah

)
(g ∈ GLkn, h ∈ GLn, A ∈ Matkn,n),

which is a combination of the left regular action of GLkn and the right regular action of GLn.
If we adopt this one, however, then it is no longer a polynomial representation. Instead, in our
argument, we adopt the contragradient of the left regular action of GLkn so that each (irreducible)
factor of the GLkn × GLn-module P(Matkn,n(C)) is polynomial.

By (GLkn,GLn)-duality, one has the multiplicity-free decomposition of P(Matkn,n):

P(Matkn,n) ∼=
⊕

�(λ)�n

Mλ
kn �Mλ

n.

If we look at the det-eigenspace with respect to the left action of the diagonal torus Tkn
∼= (C×)kn

of GLkn, then we have

P(Matkn,n)
Tkn,det ∼=

⊕
�(λ)�n

(
Mλ

kn

)Tkn,det �Mλ
n.

Here, for a GLkn-module V , we denote by V Tkn,det the det-eigenspace

V Tkn,det = {
v ∈ V

∣∣ t.v = det(t)v (t ∈ Tkn)
}

with respect to Tkn. Since the symmetric group Skn is the normalizer of Tkn in GLkn, each det-
eigenspace (Mλ

kn)
Tkn,det becomes a Skn-module. It is known that the equivalence (Mλ

kn)
Tkn,det ∼=

J λ
kn holds as Skn-modules if λ is a partition of kn (see, e.g. [3]).

Let us denote by Mn,k the irreducible GLkn × GLn-submodule of P(Matkn,n) corresponding

to the partition (kn), that is, Mn,k
∼= M(kn)

kn �M(kn)
n . As Skn-modules, we have the equivalence

M
Tkn,det
n,k

∼= (
M(kn)

kn

)Tkn,det �M(kn)
n

∼= (
M

(
kn
)

kn

)Tkn,det ∼= J (kn)
kn

since the multiplicity space M(kn)
n is of dimension one. In particular, we have dimM

Tkn,det
n,k =

f (kn).
By Lemma 4.4 and (GLkn,GLn)-duality, it follows that wrdetk ∈ Mn,k . Moreover, since

(
diag(c1, . . . , ckn).wrdetk

)
(A) = wrdetk

(
tdiag(c1, . . . , ckn)A

)=
(

kn∏
i=1

ci

)
wrdetk A,

it follows that wrdetk belongs to M
Tkn,det
n,k .

For each standard tableau T = (tij ) 1�i�n
1�j�k

∈ STab((kn)), we define the function detT on

Matkn,n by
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detT (A) :=
k∏

l=1

det(atil ,j )1�i,j�n

(
A = (aij ) 1�i�kn

1�j�n

∈ Matkn,n

)
.

We also define the matrix I (T ) ∈ Matkn,n so that tij th row vector of I (T ) is equal to the ith

fundamental row vector ei = (0, . . . ,0,
ith
1 ,0, . . . ,0) for each i = 1, . . . , n and j = 1, . . . , k. In

other words, if we define g(T ) ∈ Skn for T ∈ STab((kn)) by

g(T )
(
(i − 1)k + j

)= tij (1 � i � n,1 � j � k), (5.2)

then I (T ) = g(T ) · (In)[k]. Denote by T0 the standard tableau with shape (kn) whose (i, j)-entry
is (i − 1)k + j . We note that g(T ) ∈ Skn is the permutation determined by g(T ) · T0 = T for
each T ∈ STab((kn)).

Lemma 5.2. For T ,U ∈ STab((kn)), the equality

detT
(
I (U)

)=
{

1 T = U,

0 T �= U

holds.

Proof. When T = U , the til th row vector I (T )til of I (T ) is equal to ei if i ∈ [n] and l ∈ [k], and
hence detT (I (T )) = 1. When T = (tij ) and U = (uij ) are distinct standard tableaux of shape
(kn), there exists a pair (s1, s2) of distinct elements in [kn] such that s1 and s2 are in the same
column of T and in the same row of U , say s1 = ti1c = urj1 and s2 = ti2c = urj2 (i1 �= i2, j1 �= j2).
Then we have

I (U)ti1
= I (U)ti2

= er ,

which implies that det(I (U)tic,j )1�i,j�n = 0, and hence detT (I (U)) = 0. �
Theorem 5.3. The wreath determinant wrdetk A of a matrix A ∈ Matkn,n is expressed as a linear
combination

wrdetk A =
∑

T ∈STab((kn))

wrdetk I (T ) · detT (A)

of detT (A) for T ∈ STab((kn)). The coefficient wrdetk I (T ) is given by the sum

wrdetk I (T ) =
∑
σ∈Sn

k

(
−1

k

)kn−νkn(g(T )σ )

,

where g(T ) ∈ Skn is a permutation defined by (5.2).

Proof. We observe that detT (A) is a homogeneous polynomial in aij of degree kn satisfying the
condition that detT (AP ) = (detP)k detT (A) for any P ∈ Matn. We also see that

(
diag(c1, . . . , ckn).detT

)
(A) = detT

(
tdiag(c1, . . . , ckn)A

)=
(

kn∏
i=1

ci

)
detT A.

Thus, it follows that every detT belongs to M
Tkn,det by (GLkn,GLn)-duality.
n,k
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We show that {detT }T ∈STab((kn)) are linearly independent. Suppose that∑
T ∈STab((kn))

CT detT (A) = 0

for any A ∈ Matkn,n. Then, by Lemma 5.2, we have

0 =
∑

T ∈STab((kn))

CT detT
(
I (U)

)= CU

for each U ∈ STab((kn)), which assures the linear independence of {detT }T ∈STab((kn)). Since

dimM
Tkn,det
n,k = f (kn), it follows that {detT }T ∈STab((kn)) is a basis of M

Tkn,det
n,k . Hence wrdetk is

written as

wrdetk A =
∑

T ∈STab((kn))

C′
T detT (A) (A ∈ Matkn,n).

By Lemma 5.2 again, the coefficient C′
U for U ∈ STab((kn)) is calculated as

wrdetk I (U) =
∑
T

C′
T detT

(
I (U)

)= C′
U detU

(
I (U)

)= C′
U .

This completes the proof of the theorem. (The coefficient wrdetk I (U) is calculated later in Sec-
tion 7.) �
Example 5.4. When n = 3 and k = 2, there are five standard tableaux with shape (23):

U1 =
1 2
3 4
5 6

, U2 =
1 2
3 5
4 6

, U3 =
1 3
2 4
5 6

, U4 =
1 3
2 5
4 6

, U5 =
1 4
2 5
3 6

.

(We remark that T0 = U1 in this case.) The corresponding matrices I (Up) are given by

I (U1) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎞⎟⎟⎟⎟⎟⎠ , I (U2) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎠ , I (U3) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

I (U4) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
1 0 0
0 0 1
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎠ , I (U5) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎠ ,

and their 2-wreath determinants are calculated as

wrdet2 I (U1) = 1

8
, wrdet2 I (U2) = wrdet2 I (U3) = − 1

16
,

wrdet2 I (U4) = wrdet2 I (U5) = 1

32
.

Thus we have
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wrdet2 A = 1

8
detU1(A) − 1

16
detU2(A) − 1

16
detU3(A) + 1

32
detU4(A) + 1

32
detU5(A)

for A ∈ Mat6,3.

As a corollary of the theorem, we obviously have the

Corollary 5.5. For A ∈ Matp,n and B ∈ Matq,n, we denote by A � B ∈ Matp+q,n the matrix
obtained by piling A on B . If A1, . . . ,Ak ∈ Matn,n, then the equality

wrdetk(A1 � · · · � Ak) =
∑

T ∈STab((kn))

wrdetk I (T )

k∏
i=1

detBi(T )

holds, where Bj (T ) is a matrix whose ith row is equal to the tij th row of A1 � · · · � Ak .

Example 5.6. If

A =
(

a11 a12
a21 a22

)
and B =

(
b11 b12
b21 b22

)
,

then we have

wrdet2(A � B) = wrdet2

⎛⎜⎝
a11 a12
a21 a22
b11 b12
b21 b22

⎞⎟⎠
= 1

4

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ ∣∣∣∣b11 b12
b21 b22

∣∣∣∣− 1

8

∣∣∣∣a11 a12
b11 b12

∣∣∣∣ ∣∣∣∣a21 a22
b21 b22

∣∣∣∣ .
Recall that the wreath determinant wrdetk is Sn

k -invariant. By the Frobenius reciprocity, it
follows that

dim
(
M

Tkn,det
n,k

)Sn
k = 〈

res
Sn

k

Skn

(
M

Tkn,det
n,k

)
,1Sn

k

〉
Sn

k
= 〈

M
Tkn,det
n,k , indSkn

Sn
k

1Sn
k

〉
Skn

= K(kn)(kn) = 1,

where 〈V,W 〉G denotes the intertwining number of two G-modules V and W , and 1G is the
trivial representation of G. Hence we have(

M
Tkn,det
n,k

)Sn
k = C · wrdetk(X). (5.3)

This fact implies that
∑

σ∈Sn
k
f (σ · X) is proportional to wrdetk(X) for any f ∈ M

Tkn,det
n,k . There-

fore, we have∑
σ∈Sn

k

detT0(σ · X) = C wrdetk(X)

for a certain constant C. If we set X = (In)[k], then we have

C = 1

wrdetk(In)[k]

∑
σ∈Sn

k

detT0

(
σ · (In)[k]

)=
(

kk

k!
)n ∑

σ∈Sn
k

1 = kkn.

Consequently, we obtain another (symmetric) expression of wrdetk(X) as follows.
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Corollary 5.7. The equality

wrdetk(A) = 1

kkn

∑
σ∈Sn

k

detT0(σ · A)

holds for any A ∈ Matkn,n.

As a corollary of the discussion above, we obtain the

Corollary 5.8 (Characterization of the wreath determinant). Put

P(Matkn,n)
χk

n,k,detk

= {
f ∈ P(Matkn,n)

∣∣ f (σXP) = χn,k(σ )k(detP)kf (X), σ ∈ Sk � Sn, P ∈ GLn

}
.

Then P(Matkn,n)
χk

n,k,detk is a one-dimensional subspace spanned by wrdetk . Namely, the equality

P(Matkn,n)
χk

n,k,detk = C · wrdetk(X)

holds.

Corollary 5.8 and Example 4.5 suggest the following problem: Describe the irreducible
decomposition and singular values of the cyclic module U(glkn) · det(α)

(
X[k]) ⊂ P(Matkn,n)

(X = (xij )1�i�kn,1�j�n). This is solved in the following way. If α = 0, then we see that

U(glkn) · det(0)(X[k]) ∼= Sk
(
C

kn
)⊗n ∼=

⊕
λ�kn

(
Mλ

kn

)⊕Kλ,(kn)

by a similar discussion in [5] (we also refer to [8] for the case where k = 1). By [8], the λ-isotypic
component of the module U(glkn) ·det(α)(X̃) ⊂ P(Matkn) does have a positive multiplicity if and
only if fλ(α) �= 0 and is given by U(glkn) · Immλ(X̃) (we put X̃ = (xij )1�i,j�kn in order to avoid
confusion). Here Immλ(X̃) is the immanant of X̃ for λ and fλ(α) :=∏

(i,j)∈λ(1+ (j − i)α) is the

(modified) content polynomial for λ. Since the map P(Matkn) � f (X̃) �→ f (X[k]) ∈P(Matkn,n)

defines a GLkn-intertwiner, we see that

the λ-isotypic component of U(glkn) · det(α)
(
X[k])∼=

{
U(glkn) · Immλ(X

[k]) fλ(α) �= 0,

0 otherwise

for λ � kn. Thus it follows that U(glkn) · Immλ(X
[k]) ∼= (Mλ

kn)
⊕Kλ,(kn) . Hence we obtain the

following theorem which is regarded as a generalization of the result in [8].

Theorem 5.9. The irreducible decomposition of the cyclic module generated by det(α)(X[k]) is
given by

U(glkn) · det(α)
(
X[k])∼=

⊕
λ�kn

fλ(α) �=0

(
Mλ

kn

)⊕Kλ,(kn) .

In particular, the singular values are given as roots of the content polynomials.
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5.1. Remarks on this section

Let S(Cn) = ∑
k�0 Sk(Cn) be the homogeneous decomposition of S(Cn). Each symmetric

power Sk(Cn), that is, the space of kth symmetric tensors defines an irreducible GLn(C)-
module [1]. We see that the eigenspace decomposition of the GLm × GLn-module S(Cm ⊗ C

n)

with respect to the diagonal torus Tm of GLm(C) is given by

S
(
C

m ⊗ C
n
)∼=

⊕
k1,...,km�0

Sk1
(
C

n
)⊗ · · · ⊗ Skm

(
C

n
)
.

Hence the mth tensor product Sk(Cn)⊗m can be identified to the detk-eigenspace

S
(
C

m ⊗ C
n
)Tm,detk = {

v ∈ S
(
C

m ⊗ C
n
) ∣∣ t.v = (det t)kv (t ∈ Tm)

}
for Tm [3]. By (GLm,GLn)-duality (5.1), we see that

Sk
(
C

n
)⊗m ∼= S

(
C

m ⊗ C
n
)Tm,detk ∼=

∑
�(λ)�min{m,n}

(
Mλ

m

)Tm,detk �Mλ
n. (5.4)

We notice that (Mλ
m)Tm,detk = {0} unless λ � km, and hence the last sum (5.4) is effectively over

the partitions of km. Note also that dim(Mλ
m)Tm,detk = Kλ(km) and (Mλ

m)Tm,detk is stable under
the action of the Weyl group Sm of GLm(C). We note that the decomposition (5.4) for k = 1
gives (Sm,GLn)-duality (Schur duality)(

C
n
)⊗m ∼=

∑
λ�m,�(λ)�n

J λ
m �Mλ

n. (5.5)

Suppose now λ � km. The group Sk � Sm acts on the weight space (Mλ
m)Tm,detk because the

wreath product Sk � Sm = Sm
k � Sm is obviously acting on the space Sk(Cn)⊗m. Since Sk acts

on Sk(Cn)⊗m trivially, its action on the weight space (Mλ
m)Tm,detk is also trivial. Hence, (5.4)

does not provide the irreducible decomposition as a bi-module of (Sk � Sm,GLn(C)). Then, the
question how the space (Mλ

m)Tm,detk decomposes as a Sm-module comes into being. Now we
establish this question in a concrete way. From Schur duality, as a Sm × GL(Sk(Cn))-module,
we obtain

Sk
(
C

n
)⊗m ∼=

∑
μ�m,�(μ)�N

J μ
m �Mμ

N,

where N = dimSk(Cn) = (
n+k−1

k

)
� n. Decompose the module Mλ

N of GL(Sk(Cn)) into irre-
ducible ones as a representation of the subgroup GLn(C) of GL(Sk(Cn)):

Mμ
N

∣∣
GLn(C)

∼=
∑

λ,�(λ)�n

(
Mλ

n

)⊕mλ(μ)
,

mλ(μ) being the multiplicity of Mλ
n in the irreducible summands of the restriction. Then we

have

Sk
(
C

n
)⊗m ∼=

∑ ∑(
J μ

m �Mλ
n

)⊕mλ(μ)
.

λ,�(λ)�n μ�m
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Therefore, it follows from (5.4) that∑
μ�m

(
J μ

m

)⊕mλ(μ) ∼= (
Mλ

m

)Tm,detk
. (5.6)

The procedure explained above is a special case of the problem for computing plethysm (or
the functorial composition of operations λ �→ Mλ) (see [4,7]). Note also that the problem for
describing the decomposition (5.6) for λ � km explicitly comes up naturally when one wants
to know the structure of the cyclic GLn(C)-module generated by det(α)(X)k (k = (1, )2,3, . . .)

(see [5]).

6. Formulas for wreath determinants à la Cauchy et van der Monde

We give an analogue of the Cauchy determinant formula in the context of wreath determinants
developed in the previous sections.

Proposition 6.1. Let n, k ∈ N and x1, . . . , xkn, y1, . . . , yn be commutative variables. Put

Cn,k(x, y) =
(

1

xi + yj

)
1�i�kn
1�j�n

, Vn,k(x) = (
x

n−j
i

)
1�i�kn
1�j�n

.

Then we have

wrdetk Cn,k(x, y) = Δn(y)k∏
1�i�kn
1�j�n

(xi + yj )
wrdetk Vn,k(x). (6.1)

Here Δn(y) denotes the difference product

Δn(y) =
∏

1�i<j�n

(yi − yj ).

Proof. For a rational function f (t) in variable t , we write

f (x�) :=
⎛⎝ f (x1)

...

f (xkn)

⎞⎠ ∈ Matkn,1 .

Using this convention, we have

Cn,k(x, y) =
(

1

x� + y1
, . . . ,

1

x� + yn

)
, Vn,k(x) = (

xn−1
� , . . . , x�,1

)
.

By Lemma 4.4, we have

wrdetk

(
1

x� + y1
, . . . ,

1

x� + yn

)
= wrdetk

(
1

x� + y1
,

1

x� + y2
− 1

x� + y1
, . . . ,

1

x� + yn

− 1

x� + y1

)
= wrdetk

(
1

x� + y1
,

y1 − y2

(x� + y1)(x� + y2)
, . . . ,

y1 − yn

(x� + y1)(x� + yn)

)
= (y1 − y2)

k · · · (y1 − yn)
k
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× wrdetk

(
1

x� + y1
,

1

(x� + y1)(x� + y2)
, . . . ,

1

(x� + y1)(x� + yn)

)
.

Iterating this procedure, we reach to the expression

wrdetk

(
1

x� + y1
, . . . ,

1

x� + yn

)
= Δn(y)k wrdetk

(
1

x� + y1
,

1

(x� + y1)(x� + y2)
, . . . ,

n∏
j=1

1

(x� + yj )

)
.

Using the multilinearity of detk with respect to the row vectors, we have

wrdetk

(
1

x� + y1
,

1

(x� + y1)(x� + y2)
, . . . ,

n∏
j=1

1

(x� + yj )

)

=
∏

1�i�kn
1�j�n

1

xi + yj

wrdetk

(
n∏

j=2

(x� + yj ),

n∏
j=3

(x� + yj ), . . . , (x� + yn),1

)
.

The last wreath determinant is equal to wrdetk(xn−1
� , . . . , x�,1) = wrdetk Vn,k(x) by Lemma 4.4.

This completes the proof. �
We note that the proof above is exactly a wreath-analogue of the one of the Cauchy formula

[12].

Example 6.2 (k = 1). When k = 1, formula (6.1) is nothing but the ordinary Cauchy determinant
formula

det

(
1

xi + yj

)
1�i,j�n

= Δn(x)Δn(y)∏n
i,j=1(xi + yj )

.

Example 6.3 (k = 2). When k = 2, (6.1) gives the formula

wrdet2

⎛⎜⎜⎜⎜⎝
1

x1+y1

1
x1+y2

. . . 1
x1+yn

1
x2+y1

1
x2+y2

. . . 1
x2+yn

...
...

. . .
...

1
x2n+y1

1
x2n+y2

. . . 1
x2n+yn

⎞⎟⎟⎟⎟⎠

=
∏

1�i<j�n(yi − yj )
2∏

1�i�2n
1�j�n

(xi + yj )
wrdet2

⎛⎜⎜⎜⎝
xn−1

1 . . . x1 1
xn−1

2 . . . x2 1
...

. . .
...

...

xn−1
2n . . . x2n 1

⎞⎟⎟⎟⎠ .

We notice that the other variant of this Cauchy-type identity also follows immediately from
(6.1). Indeed, we have

wrdetk

(
1

1 − x�y1
, . . . ,

1

1 − x�yn

)
= Δn(y)k∏

1�i�kn (1 − xiyj )
wrdetk Vn,k(x),
1�j�n
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which is a wreath determinant analogue of the formula

det

(
1

1 − xiyj

)
1�i,j�n

= Δn(x)Δn(y)∏n
i,j=1(1 − xiyj )

.

As a corollary of Theorem 5.3, we have the

Theorem 6.4. The wreath Vandermonde determinant wrdetk Vn,k(x) is given by

wrdetk Vn,k(x) =
∑

T ∈STab((kn))

wrdetk I (T ) · ΔT (x),

where ΔT (x) is the Specht polynomial for a standard tableau T = (tij ) ∈ STab((kn)) defined by
the product

ΔT (x) :=
k∏

i=1

Δn(xt1i
, . . . , xtni

)

of difference products.

Another (symmetric) expression for wrdetk Vn,k(x) also follows from Corollary 5.7.

Theorem 6.5. The equality

wrdetk Vn,k(x) = 1

kkn

∑
σ∈Sn

k

σ · Δn,k(x)

holds where Δn,k(x) is given by

Δn,k(x) :=
k∏

l=1

Δn(xl, xl+k, . . . , xl+(n−1)k) = ΔT0(x).

For a partition λ = (λ1, . . . , λN) of depth at most N , the Schur function sλ(x1, . . . , xN) of N

variables is defined as the ratio of the Vandermonde-type determinants as

sλ(x1, . . . , xN) = det(x
λj +N−j

i )1�i,j�N

det(xN−j
i )1�i,j�N

.

An arbitrary symmetric function can be written as a linear combination of the Schur functions.
We show that any symmetric function in kn variables can be written as a linear combination of
the ratios of the Vandermonde type − 1

k
-determinants analogously.

We recall the Cauchy identity concerning the Schur functions (see, e.g. [7,12]).

Lemma 6.6. For m,n ∈ N, the equality∏
1�i�m
1�j�n

1

1 − xiyj

=
∑

�(λ)�min{m,n}
sλ(x1, . . . , xm)sλ(y1, . . . , yn)

holds.
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By the multilinearity of detk with respect to column vectors, we have the following expansion
formula

wrdetk

(
1

1 − x�y1
, . . . ,

1

1 − x�yn

)
= detk

( ∑
i11�0

(x�y1)
i11 ,

∑
i21�0

(x�y2)
i21 , . . . ,

∑
ikn�0

(x�yn)
ikn

)
=

∑
i11,i21,...,ikn�0

y
i11+···+ik1
1 · · ·yi1n+···+ikn

n detk
(
xi11
� , xi21

� , . . . , xikn
�

)
.

Thus we have∑
i11,i21,...,ikn�0

y
i11+···+ik1
1 · · ·yi1n+···+ikn

n detk
(
xi11
� , xi21

� , . . . , xikn
�

)
= Δn(y)k wrdetk Vn,k(x)

∑
�(λ)�n

sλ(x1, . . . , xkn)sλ(y1, . . . , yn). (6.2)

Comparing the homogeneous terms in (6.2), we have the

Lemma 6.7. Put

Hd
n,k(x, y) :=

∑
i11,i21,...,ikn�0

i11+···+ikn=d+ kn(n−1)
2

y
i11+···+ik1
1 · · ·yi1n+···+ikn

n detk
(
xi11
� , xi21

� , . . . , xikn
�

)
.

Then, the equalities

wrdetk

(
1

1 − x�y1
, . . . ,

1

1 − x�yn

)
=

∞∑
d=0

Hd
n,k(x, y)

and

Hd
n,k(x, y) = Δn(y)k wrdetk Vn,k(x)

∑
�(λ)�n
|λ|=d

sλ(x)sλ(y)

hold.

Since the Schur functions of n variables are the irreducible characters of the unitary group
U(n), it follows from (6.2) that

sλ(x1, . . . , xkn) =
∑

i11,i21,...,ikn�0
i11+···+ikn=|λ|+ kn(n−1)

2

{∫
Tn

y
i11+···+ik1
1 · · ·yi1n+···+ikn

n sλ(y)

Δn(y)k
dg(y)

}

× detk(x
i11
� , x

i21
� , . . . , x

ikn
� )

wrdetk Vn,k(x)
,

where Tn is the n-torus in U(n) and dg is its normalized Haar measure. Thus implicitly, we
find the Schur function sλ(x1, . . . , xkn) can be written as a linear combination of the ratios
detk(x

i11
� , x

i21
� , . . . , x

ikn
� )/wrdetk Vn,k(x) of Vandermonde type − 1

k
-determinants. Actually, we

have the following expression.
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Proposition 6.8. For a given sequence a = (a1, . . . , akn) ∈ Z
kn
�0 of nonnegative integers, put

Dn,k(x;a) = detk
(
x

aj

i

)
1�i,j�kn

.

Let us also define ei , δn,k ∈ Z
kn
�0 by

ei = (0, . . . ,0,
ith
1 ,0, . . . ,0), δn,k =

kn∑
j=1

(
n − 1 −

⌊
j − 1

k

⌋)
ej .

Then, the Schur function sλ(x) is written as

sλ(x) = 1

wrdetk Vn,k(x)

∑
μ�λ

|μ|=|λ|

∑
σ∈Skn/Sμ

Kλμ · Dn,k

(
x; δn,k +

kn∑
i=1

μσ(i)ei

)
.

We notice that wrdetk Vn,k(x) = Dn,k(x; δn,k).
For a partition λ = (λ1, . . . , λkn) whose depth is at most kn, the monomial symmetric function

mλ(x) is defined by

mλ(x) =
∑

σ∈Skn/Sλ

kn∏
i=1

x
λσ(i)

i .

Here Sλ is the stabilizer of λ, that is, Sλ = {σ ∈ Skn: λσ(i) = λi, 1 � i � kn}. The proposition
follows from the following simple lemma.

Lemma 6.9. Let λ be a partition whose depth is at most kn. Then, the monomial symmetric
function mλ(x) has the following expression

mλ(x) = 1

wrdetk Vn,k(x)

∑
σ∈Skn/Sλ

Dn,k

(
x; δn,k +

kn∑
i=1

λσ(i)ei

)
.

Proof. For any σ ∈ Skn, we have

Dn,k

(
x; δn,k +

kn∑
i=1

λσ(i)ei

)
=

∑
τ∈Skn

(
−1

k

)kn−νkn(τ ) kn∏
i=1

x
n−1−� i−1

k
�

τ(i) ·
kn∏
i=1

x
λσ(i)

τ (i) .

Hence it follows that

∑
σ∈Skn

Dn,k

(
x; δn,k +

kn∑
i=1

λσ(i)ei

)

=
∑

τ∈Skn

(
−1

k

)kn−νkn(τ ) kn∏
i=1

x
n−1−� i−1

k
�

τ(i) ·
( ∑

σ∈Skn

kn∏
i=1

x
λσ(i)

τ (i)

)
= wrdetk Vn,k(x)|Sλ|mλ(x).

Therefore we obtain
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mλ(x) = 1

wrdetk Vn,k(x)

1

|Sλ|
∑

σ∈Skn

Dn,k

(
x; δn,k +

kn∑
i=1

λσ(i)ei

)

= 1

wrdetk Vn,k(x)

∑
σ∈Skn/Sλ

Dn,k

(
x; δn,k +

kn∑
i=1

λσ(i)ei

)
.

This completes the proof. �
Since the Schur functions are written as a linear combination

sλ(x) =
∑
μ�λ

|μ|=|λ|

Kλμmμ(x)

of monomial symmetric functions, Proposition 6.8 follows immediately.

Corollary 6.10. The power-sum symmetric functions pd(x), the complete symmetric functions
hd(x) and the elementary symmetric functions ed(x) are expressed as

pd(x) = 1

wrdetk Vn,k(x)

kn∑
i=1

Dn,k(x; δn,k + dei ),

hd(x) = 1

wrdetk Vn,k(x)

∑
1�i1�···�id�kn

Dn,k

(
x; δn,k +

d∑
j=1

eij

)
,

ed(x) = 1

wrdetk Vn,k(x)

∑
1�i1<···<id�kn

Dn,k

(
x; δn,k +

d∑
j=1

eij

)
.

7. Generalities on (n,k)-sign and spherical functions

For k,n ∈ N, we put

Rn,k := {
f : [kn] → [n] ∣∣ ∣∣f −1(j)

∣∣= k, ∀j ∈ [n]}.
We notice that Rn,1 = Sn. We also notice that Skn acts on Rn,k transitively from the right, and
Sn acts on Rn,k from the left.

For f ∈ Rn,k , we define the (n, k)-sign of f by

sgnn,k(f ) := wrdetk
(
δf (i),j

)
1�i�kn
1�j�n

.

We see that

sgnn,k(τ · f ) = sgn(τ )k sgnn,k(f )

for τ ∈ Sn. Using this sign for f ∈ Rn,k and the very definition (4.6) of the wreath determinant
we have the
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Lemma 7.1. Let k,n ∈ N. Then the equality

wrdetk A =
∑

f ∈Rn,k

sgnn,k(f )
∏

i∈[kn]
aif (i)

holds for any A = (aij ) ∈ Matkn,n.

We define the element ιn,k ∈ Rn,k by

ιn,k

(
(i − 1)k + j

)= i (1 � i � n, 1 � j � k).

The stabilizer of ιn,k in Skn is Sn
k . Hence, it follows that

sgnn,k(f ) =
∑

w∈Skn

(
−1

k

)kn−νkn(w) n∏
i=1

k∏
j=1

δf w((i−1)k+j),i

=
∑

w∈Skn

(
−1

k

)kn−νkn(w)

δf w,ιn,k

=
∑
w∈Sn

k

(
−1

k

)kn−νkn(g(f )w)

,

where g(f ) ∈ Skn is defined by f = ιn,k · g(f ). Therefore, if we regard a standard tableau
T = (tij ) ∈ STab((kn)) as an element of Rn,k by the assignment T : [kn] � tij �→ i ∈ [n], then
sgnn,k(T ) = wrdetk I (T ). Hence, the result of Theorem 5.3 can be expressed also as

wrdetk A =
∑

T ∈STab((kn))

sgnn,k(T )detT (A).

We consider the injection

ω :Sk
n � (w1, . . . ,wk) �→ (

(i − 1)k + j �→ wj(i)
) ∈ Rn,k,

and denote its image by R
×
n,k . By Lemmas 4.6 and 7.1, we have

(
k!
kk

)n ∑
w∈Sk

n

sgn(w)

n∏
i=1

k∏
j=1

ai,ω(w)((i−1)k+j) =
∑

f ∈Rn,k

sgnn,k(f )

n∏
i=1

n∏
j=1

ai,f ((i−1)k+j)

(7.1)

for (aij )1�i,j�n ∈ Matn. Comparing the coefficients in both sides, we obtain the

Corollary 7.2. For any f ∈ Rn,k , the equality

sgnn,k(f ) = sgn(w)

(
k!
kk

)n |(f · Sn
k ) ∩ R

×
n,k|

|f · Sn
k |

holds for w ∈ Sk
n such that ω(w) ∈ (f · Sn

k ) ∩ R
×
n,k . The sign sgn(w) does not depend on the

choice of w.
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Proof. Fix an element f ∈ Rn,k . We notice that the monomial
∏n

i=1
∏n

j=1 ai,f ((i−1)k+j) in the
right-hand side of (7.1) depends only on the orbit f · Sn

k . We also notice that the function sgnn,k

is constant on each Sn
k -orbit. Hence the coefficient of the monomial

∏n
i=1

∏n
j=1 ai,f ((i−1)k+j) in

the right-hand side is sgnn,k(f )|f ·Sn
k |. For any w = (w1, . . . ,wk) ∈ Sk

n such that ω(w) ∈ f ·Sn
k ,

the sign sgn(w) = sgn(w1 . . .wk) gives the same value, which can be verified by counting the
inversion numbers. It follows that the coefficient of the monomial

∏n
i=1

∏n
j=1 ai,f ((i−1)k+j) in

the left-hand side is sgn(w)|(f · Sn
k ) ∩ R

×
n,k| for any w ∈ (f · Sn

k ) ∩ R
×
n,k . Thus we have the

desired conclusion. �
As a corollary of the discussion above, we obtain the

Proposition 7.3.

(1) Put

mij (f ) = ∣∣{l ∈ [k] ∣∣ f ((i − 1)k + l
)= j

}∣∣.
Then ∣∣f · Sn

k

∣∣= k!n∏
i,j mij (f )! .

(2) The equality

sgnn,k(f )det(A)k =
∑

h∈Rn,k

sgnn,k(h)

kn∏
i=1

af (i)h(i)

holds for any f ∈ Rn,k and A = (aij )1�i,j�n ∈ Matn. (When k = 1, this is just the definition
of the determinant.)

(3) For f ∈ Rn,k , put

Pf (x11, . . . , xnk) := 1

|Sn
k |

∑
(σ1,...,σn)∈Sn

k

n∏
i=1

k∏
j=1

xf ((i−1)k+j),σi (j).

Then

|(f · Sn
k ) ∩ R

×
n,k|

|f · Sn
k | = the coefficient of

∏
1�i�n
1�j�k

xij in Pf (x11, . . . , xnk).

It is convenient to express an element f ∈ Rn,k as an n × k matrix whose (i, j)-entry is given
by f ((i − 1)k + j), that is,

f =
⎛⎝ f (1) . . . f (k)

...
. . .

...

f ((n − 1)k + 1) . . . f (nk)

⎞⎠ .

If f1, f2 ∈ Rn,k and f2 = f1 · σ for some σ ∈ Sn
k , then each row vector of f2 is a permutation of

the corresponding row vector of f1.
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Example 7.4. Let us calculate sgnn,k(U4) = wrdet2 I (U4) for U4 (regarding as an element
in R3,2) given in Example 5.4. In the matrix notation,

U4 =
1 3
2 5
4 6

=
{1 �→ 1 2 �→ 2

3 �→ 1 4 �→ 3
5 �→ 2 6 �→ 3

}
=
(1 2

1 3
2 3

)
.

It follows that

U4 · S3
2 =

{(1 2
1 3
2 3

)
,

(1 2
1 3
3 2

)
,

(1 2
3 1
2 3

)
,

(1 2
3 1
3 2

)
,

(2 1
1 3
2 3

)
,

(2 1
1 3
3 2

)
,

(2 1
3 1
2 3

)
,

(2 1
3 1
3 2

)}
and

(
U4 · S3

2

)∩ R
×
3,2 =

{(1 2
3 1
2 3

)
,

(2 1
1 3
3 2

)}
.

Since(1 2
3 1
2 3

)
= ω

(
(2,3), (1,2)

)
and sgn((2,3), (1,2)) = 1 (where (i, j) denotes the transposition of i and j ), we get

wrdet2 I (U4) =
(

2!
22

)3

× 2

8
= 1

32
.

We remark that(
m11(U4) m12(U4) m13(U4)

m21(U4) m22(U4) m23(U4)

m31(U4) m32(U4) m33(U4)

)
=
(1 1 0

1 0 1
0 1 1

)
and we see that

2!3∏
1�i,j�3 mij (U4)! = 2!3

1!1!0!1!0!1!0!1!1! = 8 = ∣∣U4 · S3
2

∣∣
as we counted above. We also note that

PU4(x11, . . . , x32) = 1

8
(x11x22 + x12x21)(x11x32 + x12x31)(x21x32 + x22x31),

and the coefficient of x11x21x31x12x22x32 of PU4 is
2

8
= 1

4
.

Let us put

ϕn,k(g) = detk(g · 1⊕n
k )

detk(1
⊕n
k )

= kkn 1

|Sn
k |

∑
σ∈Sn

(
−1

k

)kn−νkn(g−1σ)

(7.2)
k
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for g ∈ Skn. We note that ϕn,k(g
−1) = ϕn,k(g) since νkn(g

−1σ) = νkn(gσ−1). By Lemma 4.7
and its Sn

k -invariance of 1⊕n
k , it follows that

ϕn,k(h1gh2) = χn,k(h1h2)
kϕn,k(g)

for g ∈ Skn and h1, h2 ∈ Sk � Sn. In particular, ϕn,k is a Sn
k -biinvariant (or Sn

k -zonal spherical)
function on Skn. We note that the rightmost side of (7.2) can be considered as an analogue of
the integral expression of the zonal spherical function of a Riemannian symmetric space due to
Harish-Chandra (see, e.g. [2]).

Lemma 7.5. The χk
n,k-spherical function ϕn,k relative to the wreath product Sk � Sn on Skn is

expressed as a matrix element of the (unitary) representation M
Tkn,det
n,k (∼= J λ

kn) of Skn:

ϕn,k(g) = 〈g · wrdetk(X),wrdetk(X)〉
〈wrdetk(X),wrdetk(X)〉 ,

where 〈 , 〉 denotes the invariant inner product on M
Tkn,det
n,k . In particular, ϕn,k is a positive definite

function.

Proof. Consider the projection

Pn,k = 1

|Sn
k |

∑
σ∈Sn

k

σ ∈ C[Skn].

By (5.3), for each g ∈ Skn, there exists a constant C(g) such that

Pn,k g · wrdetk(X) = C(g)wrdetk(X). (7.3)

Since Pn,k is self-adjoint with respect to 〈 , 〉 and wrdetk(X) is Sn
k -invariant, it follows that〈

g · wrdetk(X),wrdetk(X)
〉= 〈

g · wrdetk(X),Pn,k · wrdetk(X)
〉

= 〈
Pn,kg · wrdetk(X),wrdetk(X)

〉
= C(g)

〈
wrdetk(X),wrdetk(X)

〉
.

To determine C(g), let us calculate the coefficient of
∏n

p=1
∏k

l=1 x(p−1)k+l,p in the both sides

of (7.3). It is immediate to see that the coefficient in the right-hand side is C(g)( k!
kk )n =

C(g)detk(1
⊕n
k ). We look at the left-hand side:

Pn,kg · wrdetk(X) = 1

|Sn
k |

∑
σ∈Sn

k

σg · wrdetk(X)

= 1

|Sn
k |

∑
σ∈Sn

k

∑
h∈Skn

(
−1

k

)kn−νkn(h) n∏
p=1

k∏
l=1

x(σgh)((p−1)k+l),p

=
∑

h∈Skn

(
1

|Sn
k |

∑
σ∈Sn

k

(
−1

k

)kn−νkn(g−1σ−1h)) n∏
p=1

k∏
l=1

xh((p−1)k+l),p.

Hence the coefficient of
∏n

p=1
∏k

l=1 x(p−1)k+l,p in Pn,kg · wrdetk(X) is equal to
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∑
h∈Sn

k

1

|Sn
k |

∑
σ∈Sn

k

(
−1

k

)kn−νkn(g−1σ−1h)

=
∑
σ∈Sn

k

(
−1

k

)kn−νkn(g−1σ)

= detk
(
g · 1⊕n

k

)
.

Thus we have

C(g) = detk(g · 1⊕n
k )

detk(1
⊕n
k )

= ϕn,k(g).

This completes the proof. �
Remark 7.6. By specializing the Frobenius character formula for SN , we have

αN−νN (g) =
∑
λ�N

f λ

N !fλ(α)χλ(g) (g ∈ SN),

where fλ(α) denotes the content polynomial defined by

fλ(α) =
∏

(i,j)∈λ

(
1 + (j − i)α

)
.

Since

fλ

(
−1

k

)
=

∏
(i,j)∈λ

(
1 − 1

k
(j − i)

)
= 1

kkn

∏
(j,i)∈λ′

(
k + (i − j)

)= (kn)!
f λ

|SSTabk(λ
′)|

kkn
,

it follows that(
−1

k

)kn−νkn(g)

=
∑
λ�kn

|SSTabk(λ
′)|

kkn
χλ(g).

Hence the function ϕn,k is a linear combination

ϕn,k(g) =
∑
λ�kn

∣∣SSTabk(λ
′)
∣∣φλ

n,k(g)

of Sn
k -zonal spherical functions

φλ
n,k(g) = 1

|Sn
k |

∑
σ∈Sn

k

χλ
(
g−1σ

)
with nonnegative (integral) coefficients. Therefore, it is immediate to see again that ϕn,k is a
positive definite function.

Remark 7.7. Since 〈indSkn

Sn
k

1Sn
k
,J λ

kn〉 = Kλ,(kn) for λ � kn, the pair (Skn, S
n
k ) is not a Gelfand

pair in general. Further, although one can verify that the pair (Skn,Sk � Sn) is a Gelfand pair
when k = 2 (see p. 401 in [7], in fact, the wreath product S2 � Sn is isomorphic to the hyperoc-
tahedral group of degree n), it is not the case for a general k. Actually, when n = 3, by looking
at the Schur function expansion of the plethysm h3 ◦ hk (see p. 141 in [7]), it follows that the
induced representation indS3k 1Sk �S3 is not multiplicity free when k � 18.
Sk �S3
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For a standard tableau T ∈ STab((kn)), we define

DT (X) = wrdetk
(
g(T )−1 · X),

where g(T ) is a permutation given in (5.2). We see that

DT (X) =
∑

S∈STab((kn))

wrdetk
(
g(T )−1I (S)

)
detS(X)

=
(

k!
kk

)n ∑
S∈STab((kn))

ϕn,k

(
g(T )−1g(S)

)
detS(X).

We now define the f (kn) × f (kn) matrix Ξn,k by

Ξn,k = (
ϕn,k

(
g(T )−1g(S)

))
S,T ∈STab((kn))

. (7.4)

Since ϕn,k(g) = ϕn,k(g
−1), one finds that the matrix Ξn,k is symmetric. Moreover, we notice

that detΞn,k � 0 by Lemma 7.5, because ϕn,k is a positive definite function. Then the following
conjecture looks quite reasonable.

Conjecture 7.8. The matrix Ξn,k is positive definite; in particular, one has detΞn,k > 0. In other
words, {DT (X)}T ∈STab((kn)) gives another basis of the space M

Tkn,det
n,k = C[Skn] · wrdetk .

We try to examine the first few examples which may support the above conjecture.

Example 7.9. We have

detΞ2,2 = 1

3

(
3

2

)2

, detΞ3,2 = 2

3

(
3

4

)5

, detΞ2,3 = 3

2

(
2

3

)5

,

detΞ4,2 = 265

3

(
3

8

)14

, detΞ2,4 = 3

265

(
5

6

)14

.

We notice here that

f (22) = 2, f (23) = f (32) = 5, f (24) = f (42) = 14.

Appendix A. Laplace expansion of α-determinants

Proposition A.1 (Laplace expansion). For a given n by n matrix X = (xij )1�i,j�n, we have

det(α) X =
n∑

p=1

α1−δpq xpq det(α) Xpq,

where Xpq is an n − 1 by n − 1 matrix obtained by the following procedure: (1) remove qth
column vector and qth row vector in X, (2) if p �= q , then replace the row vector (xp1, . . . , xpn)

in X by (xq1, . . . , xqn).
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Proof. We have

det(α) X =
n∑

p=1

∑
g∈Sn
g(q)=p

αn−νn(g)
n∏

i=1

xg(i)i

=
n∑

p=1

xpq

∑
g∈Sn
g(q)=q

αn−νn
(
(p,q)·g) ∏

1�i( �=q)�n

x(p,q)·g(i)i

=
n∑

p=1

α1−δpq xpq

∑
g∈Sn
g(q)=q

α(n−1)−νn−1(g)
∏

1�i( �=q)�n

x(p,q)·g(i)i

=
n∑

p=1

α1−δpq xpq det(α) Xpq.

Here we use the fact that νn((p, q) · g) = νn−1(g) + δpq if g(q) = q (see the proof of
Lemma 2.1). �
Example A.2 (n = 4). For

X =
⎛⎜⎝

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

⎞⎟⎠ ,

we have

X12 =
(

x21 x23 x24
x31 x33 x34
x41 x43 x44

)
, X22 =

(
x11 x13 x14
x31 x33 x34
x41 x43 x44

)
,

X32 =
(

x11 x13 x14
x21 x23 x24
x41 x43 x44

)
, X42 =

(
x11 x13 x14
x31 x33 x34
x21 x23 x24

)
.

Hence we have

det(α)

⎛⎜⎝
x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44

⎞⎟⎠
= αx12 det(α)

(
x21 x23 x24
x31 x33 x34
x41 x43 x44

)
+ x22 det(α)

(
x11 x13 x14
x31 x33 x34
x41 x43 x44

)

+ αx32 det(α)

(
x11 x13 x14
x21 x23 x24
x41 x43 x44

)
+ αx42 det(α)

(
x11 x13 x14
x31 x33 x34
x21 x23 x24

)
.

References

[1] W. Fulton, Young Tableaux, London Math. Soc. Stud. Texts, vol. 35, Cambridge University Press, Cambridge, 1997.



K. Kimoto, M. Wakayama / Journal of Combinatorial Theory, Series A 115 (2008) 1–31 31
[2] S. Helgason, Groups and Geometric Analysis, Academic Press, New York, 1984.
[3] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, in: The Schur Lec-

tures, Tel Aviv, 1992, in: Israel Math. Conf. Proc., vol. 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1–182.
[4] R. Howe, (GLn,GLm)-duality and symmetric plethysm, Proc. Indian Acad. Sci. Math. Sci. 97 (1–3) (1987) 85–109.
[5] K. Kimoto, S. Matsumoto, M. Wakayama, Alpha-determinant cyclic modules and Jacobi polynomials, in prepara-

tion.
[6] K. Kimoto, M. Wakayama, Quantum α-determinant cyclic modules of Uq (gln), J. Algebra 313 (2007) 922–956.
[7] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, Oxford, 1995.
[8] S. Matsumoto, M. Wakayama, Alpha-determinant cyclic modules of gln(C), J. Lie Theory 16 (2006) 393–405.
[9] T. Shirai, Y. Takahashi, Random point fields associated with certain Fredholm determinants I: Fermion, Poisson and

boson point processes, J. Funct. Anal. 205 (2003) 414–463.
[10] R.P. Stanley, Enumerative Combinatorics, vol. 1, second ed., Cambridge Stud. Adv. Math., vol. 49, Cambridge

University Press, Cambridge, 1997.
[11] D. Vere-Jones, A generalization of permanents and determinants, Linear Algebra Appl. 111 (1988) 119–124.
[12] H. Weyl, The Classical Groups. Their Invariants and Representations, second ed., Princeton University Press,

Princeton, 1946.


