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1. Introduction

Let 1 → N → G
π→ H → 1 be a short exact sequence of groups, i.e., an extension of a group N by

the group H � G/N . If N is abelian, then such an extension is called an abelian extension. Our aim in
this paper is to construct certain exact sequences, similar to the one due to C. Wells [9], and apply
them to study extensions and liftings of automorphisms in abelian extensions. More precisely, we
study, for abelian extensions, the following well-known problem (see [3,7,8]):

Problem. Let N be a normal subgroup of G . Under what conditions (i) can an automorphism of N
be extended to an automorphism of G; (ii) an automorphism of G/N is induced by an automorphism
of G?
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Let 1 → N → G
π→ H → 1 be an abelian extension. We fix a left transversal t : H → G for H in G

such that t(1) = 1, so that every element of G can be written uniquely as t(x)n for some x ∈ H and
n ∈ N . Given an element x ∈ H , we define an action of x on N by setting nx = t(x)−1nt(x); we thus
have a homomorphism α : H → Aut(N) enabling us to view N as a right H-module.

A pair (θ,φ) ∈ Aut(N) × Aut(H) is called compatible if θ−1xαθ = (xφ)α for all x ∈ H . Let C denote
the group of all compatible pairs. Let C1 = {θ ∈ Aut(N) | (θ,1) ∈ C} and C2 = {φ ∈ Aut(H) | (1, φ) ∈ C}.

We denote by AutN,H (G) the group of all automorphisms of G which centralize N (i.e., fix N
element-wise) and induce identity on H . By AutN (G) and AutN (G) we denote respectively the group
of all automorphisms of G which centralize N and the group of all automorphisms α of G which
normalize N (i.e., α(N) = N). By AutH

N (G) we denote the group of all automorphisms of G which
normalize N and induce identity on H .

Observe that an automorphism γ ∈ AutN (G) induces automorphisms θ ∈ Aut(N) and φ ∈ Aut(H)

given by θ(n) = γ (n) for all n ∈ N and φ(x) = γ (t(x))N for all x ∈ H . We can thus define a homo-
morphism τ : AutN (G) → Aut(N) × Aut(H) by setting τ (γ ) = (θ,φ). We denote the restrictions of τ
to AutH

N (G) and AutN (G) by τ1 and τ2 respectively.
With the above notation, there exists the following exact sequence, first constructed by C. Wells [9],

which relates automorphisms of group extensions with group cohomology:

1 → Z1
α

(
H,Z(N)

) → AutN(G)
τ→ C → H2

α

(
H,Z(N)

)
.

Recently P. Jin [7] gave an explicit description of this sequence for automorphisms of G inducing
identity on H and obtained some interesting results regarding extensions of automorphisms of N to
automorphisms of G inducing identity on H . We continue in the present work this line of investiga-
tion.

In Section 2, we establish our exact sequences.

Theorem 1. If 1 → N → G
π→ H → 1 is an abelian extension, then there exist the following two exact se-

quences:

1 → AutN,H (G) → AutH
N (G)

τ1→ C1
λ1→ H2(H, N) (1.1)

and

1 → AutN,H (G) → AutN(G)
τ2→ C2

λ2→ H2(H, N). (1.2)

For the definitions of maps λ1 and λ2, see (2.9) and (2.10). It may be noted that these maps are
not necessarily homomorphisms (see Remark 2.12).

We say that an extension 1 → N → G
π→ H → 1 is central if N � Z(G), the center of G; for such

extensions we construct a more general exact sequence.

Theorem 2. If 1 → N → G
π→ H → 1 is a central extension, then there exists an exact sequence

1 → AutN,H (G) → AutN(G)
τ→ Aut(N) × Aut(H)

λ→ H2(H, N). (1.3)

The map λ will be defined in the proof of Theorem 2 in Section 2.
As a consequence of Theorem 1, we readily get the following result:

Corollary 3. Let N be an abelian normal subgroup of G with H2(G/N, N) trivial. Then

(1) every element of C1 can be extended to an automorphism of G centralizing H ;
(2) every element of C2 can be lifted to an automorphism of G centralizing N.
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Clearly, if G is finite and the map x �→ x|G/N| is an isomorphism of N , then H2(G/N, N) = 1. In
particular, for the class of finite groups G such that |G/N| is coprime to |N|, we have H2(G/N, N) = 1
and hence Corollary 3 holds true for this class of groups.

In Section 3, we apply Theorem 1 to reduce the problem of lifting of automorphisms of H to G
to the problem of lifting of automorphisms of Sylow subgroups of H to automorphisms of their pre-
images in G , and prove the following result:

Theorem 4. Let N be an abelian normal subgroup of a finite group G. Then the following hold:

(1) An automorphism φ of G/N lifts to an automorphism of G centralizing N provided the restriction of φ to
some Sylow p-subgroup P/N of G/N, for each prime number p dividing |G/N|, lifts to an automorphism
of P centralizing N.

(2) If an automorphism φ of G/N lifts to an automorphism of G centralizing N, then the restriction of φ to a
characteristic subgroup P/N of G/N lifts to an automorphism of P centralizing N.

We mention below two corollaries to illustrate Theorem 4. These corollaries show that, in many
cases, the hypothesis of Theorem 4 is naturally satisfied.

Corollary 5. Let N be an abelian normal subgroup of a finite group G such that G/N is nilpotent. Then an
automorphism φ of G/N lifts to an automorphism of G centralizing N if, and only if the restriction of φ to each
Sylow subgroup P/N of G/N lifts to an automorphism of P centralizing N.

An automorphism α of a group G is said to be commuting automorphism if xα(x) = α(x)x for all
x ∈ G . It follows from [4, Remark 4.2] that each Sylow subgroup of a finite group G is kept invariant
by every commuting automorphism of G . Thus we have the following result:

Corollary 6. Let N be an abelian normal subgroup of a finite group G. Then a commuting automorphism φ

of G/N lifts to an automorphism of G centralizing N if, and only if the restriction of φ to each Sylow subgroup
P/N of G/N lifts to an automorphism of P centralizing N.

It may be remarked that if N is an abelian subgroup of G , then the map ω constructed by Jin in [7,
Theorem A] is trivial and hence, in our notation, gives the following exact sequence:

1 → Z1
α(H, N) → AutH

N (G) → C1 → 1

which, in turn, implies that any element of C1 can be extended to an automorphism of G centraliz-
ing H . The latter statement, however, is not true, in general, as illustrated by the following class of
examples:

Let G1 be a finite p-group, where p is an odd prime. Then there exists a group G in the isoclinism
class (in the sense of P. Hall [6]) of G1 such that G has no non-trivial abelian direct factor. Let N =
Z(G), the center of G . Then it follows from [1, Corollary 2] that |AutH

N (G)| is pr for some r � 1. Let
θ ∈ N be the automorphism inverting elements of N . Then the order of θ is 2 and therefore θ cannot
be extended to an automorphism of G centralizing H . Thus Theorem D of Jin does not shed any light
in case N is abelian. However, using our sequence (1.1), one can see that the following result holds:

Theorem 7. Let N be an abelian normal subgroup of a finite group G. Then an automorphism θ of N extends
to an automorphism of G centralizing G/N if, and only if, for some Sylow p-subgroup P/N of G/N, for each
prime number p dividing |G/N|, θ extends to an automorphism of P centralizing P/N.

Finally, in Section 4, we refine our sequences (1.1)–(1.3), and show that these sequences split in
case the given exact sequence 1 → N → G → H → 1 splits (Theorem 8). We also give examples to
show that the converse is not true, in general.
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2. Construction of sequences

Let 1 → N → G
π→ H → 1 be an abelian extension. For any two elements x, y ∈ H , we have

π(t(xy)) = xy = π(t(x))π(t(y)) = π(t(x)t(y)). Thus there exists a unique element (say) μ(x, y) ∈ N
such that t(xy)μ(x, y) = t(x)t(y). Observe that μ is a map from H × H to N such that μ(1, x) =
μ(x,1) = 1 and

μ(xy, z)μ(x, y)t(z) = μ(x, yz)μ(y, z), (2.1)

for all x, y, z ∈ H ; in other words, μ : H × H → N is a normalized 2-cocycle.
We begin by recalling a result of Wells [9]; since we are dealing with abelian extensions, the proof

of this result in the present case is quite easy. However, for the reader’s convenience, we include a
proof here.

Lemma 2.2. (See [9].) Let 1 → N → G
π→ H → 1 be an abelian extension. If γ ∈ AutN (G), then there is a

triplet (θ,φ,χ) ∈ Aut(N) × Aut(H) × N H such that for all x, y ∈ H and n ∈ N the following conditions are
satisfied:

(1) γ (t(x)n) = t(φ(x))χ(x)θ(n),

(2) μ(φ(x),φ(y))θ(μ(x, y)−1) = (χ(x)−1)t(φ(y))χ(y)−1χ(xy),

(3) θ(nt(x)) = θ(n)t(φ(x)).

[Here N H denotes the group of all maps ψ from H to N such that ψ(1) = 1.]
Conversely, if (θ,φ,χ) ∈ Aut(N) × Aut(H) × N H is a triplet satisfying equations of (2) and (3), then γ

defined by (1) is an automorphism of G normalizing N.

Proof. Every automorphism γ ∈ AutN (G) determines a pair (θ,φ) ∈ Aut(N) × Aut(H) such that γ re-
stricts to θ on N and induces φ on H . For any x ∈ H , we have π(γ (t(x))) = φ(x). Thus

γ
(
t(x)

) = t
(
φ(x)

)
χ(x), (2.3)

for some element χ(x) ∈ N . Since χ(x) is unique for a given x ∈ H , it follows that χ is a map from H
to N . Notice that χ(1) = 1. Let g ∈ G . Then g = t(x)n for some x ∈ H and n ∈ N . Applying γ , we have

γ (g) = γ
(
t(x)

)
θ(n) = t

(
φ(x)

)
χ(x)θ(n). (2.4)

Let x, y ∈ H . Then t(xy)μ(x, y) = t(x)t(y). On applying γ we get γ (t(xy))θ(μ(x, y)) =
γ (t(x))γ (t(y)), since γ restricts to θ on N . By (2.3), we have γ (t(x)) = t(φ(x))χ(x), γ (t(y)) =
t(φ(y))χ(y) and γ (t(xy)) = t(φ(xy))χ(xy), and consequently

t
(
φ(xy)

)
χ(xy)θ

(
μ(x, y)

) = t
(
φ(x)

)
χ(x)t

(
φ(y)

)
χ(y).

This, in turn, gives

μ
(
φ(x),φ(y)

)
θ
(
μ(x, y)−1) = (

χ(x)−1)t(φ(y))
χ(y)−1χ(xy). (2.5)

For x ∈ H and n ∈ N , we have

θ
(
nt(x)) = γ

(
nt(x)) = θ(n)γ (t(x))

= θ(n)t(φ(x))χ(x) = θ(n)t(φ(x)), (2.6)
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since θ is the restriction of γ and χ(x) commutes with θ(n). Thus, given an element γ ∈ AutN (G),
there is a triplet (θ,φ,χ) ∈ Aut(N) × Aut(H) × N H satisfying equations of (1), (2) and (3).

Conversely, let (θ,φ,χ) ∈ Aut(N) × Aut(H) × N H be a triplet satisfying equations of (2) and (3).
We proceed to verify that γ defined by (1) is an automorphism of G normalizing N . Let g1 = t(x1)n1
and g2 = t(x2)n2 be elements of G , where x1, x2 ∈ H and n1,n2 ∈ N . Then

γ (g1 g2) = γ
(
t(x1)n1t(x2)n2

)

= γ
(
t(x1x2)μ(x1, x2)n

t(x2)
1 n2

)

= t
(
φ(x1x2)

)
χ(x1x2)θ

(
μ(x1, x2)n

t(x2)
1 n2

)

= t
(
φ(x1x2)

)
μ

(
φ(x1),φ(x2)

)
χ(x1)

t(φ(x2))χ(x2)θ(n1)
t(φ(x2))θ(n2)

= t
(
φ(x1)

)
χ(x1)θ(n1)t

(
φ(x2)

)
χ(x2)θ(n2)

= γ (g1)γ (g2).

Hence γ is a homomorphism. Let g = t(x)n be an element of G . Since φ and θ are onto, there exist el-
ements x′ ∈ H and n′ ∈ N such that φ(x′) = x and θ(n′) = n. We then have γ (t(x′)θ−1(χ(x′)−1)n′) = g .
Hence γ is onto.

Finally, let γ (t(x)n) = 1. Then t(φ(x)) ∈ N , and it easily follows that t(x)n = 1; consequently γ is
one–one. Also γ (n) = θ(n) for n ∈ N . Therefore γ ∈ AutN (G). �
Remark 2.7. If 1 → N → G

π→ H → 1 is a central extension, then the action of H on N becomes
trivial, and therefore Lemma 2.2 takes the following simpler form which we will use in the proof of
Theorem 2.

Lemma 2.2′ . Let 1 → N → G
π→ H → 1 be a central extension. If γ ∈ AutN(G), then there exists a triplet

(θ,φ,χ) ∈ Aut(N)× Aut(H)× N H such that for all x, y ∈ H and n ∈ N the following conditions are satisfied:

(1′) γ (t(x)n) = t(φ(x))χ(x)θ(n),

(2′) μ(φ(x),φ(y))θ(μ(x, y)−1) = χ(x)−1χ(y)−1χ(xy).

Conversely, if (θ,φ,χ) ∈ Aut(N) × Aut(H) × N H is a triplet satisfying equation of (2′), then γ defined
by (1′) is an automorphism of G normalizing N.

For θ ∈ C1 and φ ∈ C2, we define maps kθ ,kφ : H × H → N by setting, for x, y ∈ H ,

kθ (x, y) = μ(x, y)θ
(
μ(x, y)−1)

and

kφ(x, y) = μ
(
φ(x),φ(y)

)
μ(x, y)−1.

Notice that, for θ ∈ C1, we have θ(nt(x)) = θ(n)t(x) for all x ∈ H and n ∈ N . Similarly, for φ ∈ C2, we
have nt(x) = nt(φ(x)) for all x ∈ H and n ∈ N .

Lemma 2.8. The maps kθ and kφ are normalized 2-cocycles.
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Proof. For x, y, z ∈ H , we have

kθ (xy, z)kθ (x, y)t(z) = μ(xy, z)θ
(
μ(xy, z)−1)(μ(x, y)θ

(
μ(x, y)−1))t(z)

= μ(xy, z)μ(x, y)t(z)θ
(
μ(xy, z)−1(μ(x, y)−1)t(z))

= μ(x, yz)μ(y, z)θ
(
μ(x, yz)−1μ(y, z)−1) by (2.1)

= μ(x, yz)θ
(
μ(x, yz)−1)μ(y, z)θ

(
μ(y, z)−1)

= kθ (x, yz)kθ (y, z),

and kθ (x,1) = 1 = kθ (1, x). Hence kθ is a normalized 2-cocycle.
We next show that kφ is a normalized 2-cocycle. For x, y, z ∈ H , we have

kφ(xy, z)kφ(x, y)t(z) = μ
(
φ(xy),φ(z)

)
μ(xy, z)−1(μ

(
φ(x),φ(y)

)
μ(x, y)−1)t(z)

= μ
(
φ(xy),φ(z)

)
μ

(
φ(x),φ(y)

)t(z)
μ(xy, z)−1(μ(x, y)−1)t(z)

= μ
(
φ(x),φ(yz)

)
μ

(
φ(y),φ(z)

)
μ(x, yz)−1μ(y, z)−1 by (2.1)

= μ
(
φ(x),φ(yz)

)
μ(x, yz)−1μ

(
φ(y),φ(z)

)
μ(y, z)−1

= kφ(x, yz)kφ(y, z),

and kφ(x,1) = 1 = kφ(1, x). Thus the map kφ is a normalized 2-cocycle. This completes the proof of
the lemma. �

Define λ1 : C1 → H2(H, N) by setting, for θ ∈ C1,

λ1(θ) = [kθ ], the cohomology class of kθ ; (2.9)

similarly, define λ2 : C2 → H2(H, N) by setting, for φ ∈ C2,

λ2(φ) = [kφ], the cohomology class of kφ. (2.10)

To justify this definition, we need the following:

Lemma 2.11. The maps λ1 and λ2 are well defined.

Proof. To show that the maps λ1 and λ2 are well defined, we need to show that these maps are in-
dependent of the choice of transversals. Let t, s : H → N be two transversals with t(1) = 1 = s(1).
Then there exist maps μ,ν : H × H → N such that for x, y ∈ H we have t(xy)μ(x, y) = t(x)t(y)

and s(xy)ν(x, y) = s(x)s(y). For x ∈ H , since t(x) and s(x) satisfy π(t(x)) = x = π(s(x)), there ex-
ists a unique element (say) λ(x) ∈ N such that t(x) = s(x)λ(x). We thus have a map λ : H → N
with λ(1) = 1. For x, y ∈ H , t(xy) = s(xy)λ(xy). This gives t(x)t(y)μ(x, y)−1 = s(x)s(y)ν(xy)−1λ(xy).
Putting t(u) = s(u)λ(u), where u = x, y, we have λ(x)s(y)λ(y)λ(xy)−1 = μ(x, y)ν(x, y)−1. Since
λ(1) = 1, μ(x, y)ν(x, y)−1 ∈ B2(H, N), the group of 2-coboundaries.

Similarly,

θ
(
μ(x, y)

)
θ
(
ν(x, y)−1) = θ

(
μ(x, y)ν(x, y)−1)

= θ
(
λ(x)s(y)λ(y)λ(xy)−1)
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= θ
(
λ(x)s(y)

)
θ
(
λ(y)

)
θ
(
λ(xy)−1)

= θ
(
λ(x)

)s(y)
θ
(
λ(y)

)
θ
(
λ(xy)−1)

= λ′(x)s(y)λ′(y)λ′(xy)−1 ∈ B2(H, N),

where λ′ = θλ. This proves that λ1 is independent of the choice of a transversal.
Next we prove that λ2 is well defined. It is sufficient to show that

μ
(
φ(x),φ(y)

)
ν
(
φ(x),φ(y)

)−1 ∈ B2(H, N).

Just as above, we have

λ
(
φ(x)

)s(φ(y))
λ
(
φ(y)

)
λ
(
φ(xy)

)−1 = μ
(
φ(x),φ(y)

)
ν
(
φ(x),φ(y)

)−1
.

Putting λφ = λ′′ , we get

λ′′(x)s(φ(y))λ′′(y)λ′′(xy)−1 = μ
(
φ(x),φ(y)

)
ν
(
φ(x),φ(y)

)−1
.

Since ns(x) = ns(φ(x)) and λ′′(1) = 1, μ(φ(x),φ(y))ν(φ(x),φ(y))−1 ∈ B2(H, N). This proves that λ2 is
also independent of the choice of a transversal, and the proof of the lemma is complete. �
Proof of Theorem 1. Let 1 → N → G → H → 1 be an abelian extension. Clearly both the se-
quences (1.1) and (1.2) are exact at the first two terms. To complete the proof it only remains to
show the exactness at the third term of the respective sequences.

First consider (1.1). Let γ ∈ AutH
N (G). Then θ ∈ C1, where θ is the restriction of γ to N . For

x, y ∈ H , we have, by Lemma 2.2(2), kθ (x, y) = (χ(x)−1)t(y)χ(y)−1χ(xy). Thus kθ ∈ B2(H, N) and
hence λ1(θ) = 1. Conversely, if θ ∈ C1 is such that λ1(θ) = 1, then for x, y ∈ H , we have kθ (x, y) =
(χ(x)−1)t(y)χ(y)−1χ(xy), where χ : H → N with χ(1) = 1. Therefore γ defined by Lemma 2.2(1) is
an element of AutH

N (G). Hence the sequence (1.1) is exact.
Next let us consider the sequence (1.2). Let γ ∈ AutN (G). Then φ ∈ C2, where φ is induced

by γ on H . For x, y ∈ H , we have kφ(x, y) = (χ(x)−1)t(φ(y))χ(y)−1χ(xy) by Lemma 2.2(2). Since
nt(φ(y)) = nt(y) for all n ∈ N and y ∈ H , we have kφ ∈ B2(H, N) and hence λ2(φ) = 1. Conversely, if
φ ∈ C2 is such that λ2(φ) = 1, then, for x, y ∈ H , we have kφ(x, y) = (χ(x)−1)t(y) χ(y)−1χ(xy), where
χ : H → N is a map with χ(1) = 1. Therefore γ defined by Lemma 2.2(1) is an element of AutN

H (G).
Hence the sequence (1.2) is exact, and the proof of Theorem 1 is complete. �
Proof of Theorem 2. The sequence (1.3) is clearly exact at AutN,H and AutN (G). We construct the
map λ, and show the exactness at Aut(N) × Aut(H). For (θ,φ) ∈ Aut(N) × Aut(H), define kθ,φ : H ×
H → N by setting, for x, y ∈ H ,

kθ,φ(x, y) = μ
(
φ(x),φ(y)

)
θ
(
μ(x, y)

)−1
.

Observe that for x, y, z ∈ H , we have kθ,φ(x,1) = 1 = kθ,φ(1, x) and

kθ,φ(xy, z)kθ,φ(x, y) = kθ,φ(x, yz)kθ,φ(y, z).

Thus kθ,φ ∈ Z2(H, N), the group of normalized 2-cocycles. Define λ(θ,φ) = [kθ,φ], the cohomology
class of kθ,φ in H2(H, N). Proceeding as in the proof of Lemma 2.11, one can prove that λ is well
defined. If (θ,φ) ∈ Aut(N) × Aut(H) is induced by some γ ∈ AutN (G), then by Lemma 2.2′ , we have
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kθ,φ(x, y) = χ(x)−1χ(y)−1χ(xy),

where χ : H → N is a map with χ(1) = 1. Thus kθ,φ(x, y) ∈ B2(H, N). Hence λ(θ,φ) = 1.
Conversely, if (θ,φ)∈ Aut(N)×Aut(H) is such that [kθ,φ]= 1, then kθ,φ(x, y)=χ(x)−1χ(y)−1χ(xy)

for some χ : H → N with χ(1) = 1. By Lemma 2.2′ there exists γ ∈ AutN (G) inducing θ and φ. Thus
the sequence (1.3) is exact. �
Remark 2.12. The maps λ1 and λ2 are not homomorphisms, but they turn out to be derivations with
respect to natural actions of C1 and C2 respectively on H2(H, N). There is an action of C1 on Z2(H, N)

given by (θ,k) �→ kθ for θ ∈ C1 and k ∈ Z2(H, N), where kθ (x, y) = θ(k(x, y)) for x, y ∈ H . Note that if
k ∈ B2(H, N), then k(x, y) = χ(x)t(y)χ(y)χ(xy)−1. Since θ(χ(x)t(y)) = θ(χ(x))t(y) , we have

kθ (x, y) = θ
(
χ(x)

)t(y)
θ
(
χ(y)

)
θ
(
χ(xy)

)−1
.

Putting χ ′ = θχ , we have kθ (x, y) = χ ′(x)t(y)χ ′(y)χ ′(xy)−1. Thus the action keeps B2(H, N) invariant
and hence induces an action on H2(H, N) given by (θ, [k]) �→ [kθ ].

One can see that for θ1, θ2 ∈ C1 and x, y ∈ H , we have

kθ1θ2(x, y) = μ(x, y)θ1θ2
(
μ(x, y)−1)

= μ(x, y)θ1
(
μ(x, y)−1)θ1

(
μ(x, y)θ2

(
μ(x, y)−1))

= kθ1(x, y)kθ1
θ2

(x, y).

Thus kθ1θ2 = kθ1kθ1
θ2

and hence λ1(θ1θ2) = λ1(θ1)λ1(θ2)
θ1 . Consequently λ1 is a derivation with respect

to this action.
Similarly, there is an action of C2 on Z2(H, N) given by (φ,k) �→ kφ for φ ∈ C2 and k ∈ Z2(H, N),

where kφ(x, y) = k(φ(x),φ(y)) for x, y ∈ H . If k ∈ B2(H, N), then k(x, y) = χ(x)t(y)χ(y) χ(xy)−1.
Since χ(φ(x))t(φ(y)) = χ(φ(x))t(y) , we have

kφ(x, y) = χ
(
φ(x)

)t(y)
χ

(
φ(y)

)
χ

(
φ(xy)

)−1
.

Putting χ ′ = χφ, we have kφ(x, y) = χ ′(x)t(y)χ ′(y)χ ′(xy)−1. Thus the action keeps B2(H, N) invariant
and hence induces an action on H2(H, N) given by (φ, [k]) �→ [kφ]. Just as above, one can see that
λ2 is a derivation with respect to this action.

3. Applications

In this section we give some applications of our exact sequences to lifting and extension of auto-
morphisms in abelian extensions.

Proof of Theorem 4. (1) Let N be an abelian normal subgroup of a finite group G . Suppose that the
restriction φ|P of φ to any Sylow subgroup P/N of G/N lifts to an automorphism of P centralizing N .
Then the pair (1, φ|P ) is compatible, and hence, as it is easy to see, (1, φ) is also compatible. Applying
sequence (1.2) of Theorem 1 to the abelian extension 1 → N → P → P/N → 1, we have that the
cohomology class [kφ|P ] = 1 in H2(P/N, N). It follows from the construction of the cochain complex
defining the group cohomology, that the map H2(G/N, N) → H2(P/N, N) induced by the inclusion
P/N ↪→ G/N maps the class [kφ] to [kφ|P ]. However, by [2, Chapter III, Proposition 9.5(ii)], we have
[G/N : P/N][kφ] = 1. Since this holds for at least one Sylow p-subgroup P/N of G/N , for each prime
number p dividing |G/N|, it follows that [kφ] = 1. By exactness of sequence (1.2) of Theorem 1, φ lifts
to an automorphism γ of G centralizing N .
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(2) Let γ be a lift of φ to an automorphism of G centralizing N . To complete the proof it only
needs to be observed that if P/N is a characteristic subgroup of G/N , then P is invariant under γ . So
the restriction of γ to P is the required lift. �

The proof of Theorem 7 is similar to the above proof and we omit the details.
For the case of central extensions, the sequence (1.3) yields the following result:

Corollary 3.1. Let N be a central subgroup of a finite group G. Then a pair (θ,φ) ∈ Aut(N)× Aut(G/N) lifts to
an automorphism of G provided for some Sylow p-subgroup P/N of G/N, for each prime number p dividing
|G/N|, (θ,φ|P ) ∈ Aut(N) × Aut(P/N) lifts to an automorphism of P .

4. Splitting of sequences

Let 1 → N → G → H → 1 be an abelian extension. Let C∗
1 = {θ ∈ C1 | λ1(θ) = 1} and C∗

2 = {φ ∈ C2 |
λ2(φ) = 1}. Then it follows from Theorem 1 that the sequences

1 → AutN,H (G) → AutH
N (G) → C∗

1 → 1 (4.1)

and

1 → AutN,H (G) → AutN(G) → C∗
2 → 1 (4.2)

are exact.
Similarly, let 1 → N → G → H → 1 be a central extension and C∗ = {(θ,φ) ∈ Aut(N) × Aut(H) |

λ(θ,φ) = 1}. Then it follows from Theorem 2 that the sequence

1 → AutN,H (G) → AutN(G) → C∗ → 1 (4.3)

is exact.

Theorem 8. Let G be a finite group and N an abelian normal subgroup of G such that the sequence 1 → N →
G → H → 1 splits. Then the sequences (4.1) and (4.2) split. Further, if N is a central subgroup of G, then the
sequence (4.3) also splits.

Proof. Since the sequence 1 → N → G → H → 1 splits, we have μ ∈ B2(H, N). We can write G =
N � H as a semidirect product of N by H . Every element g ∈ G can be written uniquely as g = hn
with h ∈ H and n ∈ N .

We first show that the sequence (4.1) splits. Note that C∗
1 = {θ ∈ Aut(N) | θ(nh) = θ(n)h for all n ∈ N

and h ∈ H}. Define a map ψ1 : C∗
1 → AutH

N (G) by ψ1(θ) = γ1, where γ1 : G → G is given by γ1(g) =
γ1(hn) = hθ(n) for g = hn in G . Then for g1 = h1n1, g2 = h2n2 in G , we have

γ1(g1 g2) = γ1
(
(h1n1)(h2n2)

) = γ1
(
h1h2nh2

1 n2
)

= h1h2θ
(
nh2

1 n2
) = h1h2θ(n1)

h2θ(n2)

= γ1(g1)γ1(g2),

showing that γ1 is a homomorphism. It is easy to see that γ1 is an automorphism of G which nor-
malizes N and induces identity on H . Notice that ψ1 is a section in the sequence (4.1) and hence the
sequence splits.
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Next we show that the sequence (4.2) splits. Notice that C∗
2 = {φ ∈ Aut(H) | nφ(h) = nh for all n ∈ N

and h ∈ H}. Define a map ψ2 : C∗
2 → AutN (G) by setting ψ2(φ) = γ2, where γ2 : G → G is given by

γ2(g) = γ2(hn) = φ(h)n for g = hn in G . Then for g1 = h1n1, g2 = h2n2 in G , we have

γ2(g1 g2) = γ2
(
(h1n1)(h2n2)

) = γ2
(
h1h2nh2

1 n2
)

= φ(h1h2)n
h2
1 n2 = φ(h1)φ(h2)n

h2
1 n2

= γ2(g1)γ2(g2).

This shows that γ2 is a homomorphism. It is not difficult to show that γ2 is an automorphism of G
which centralizes N . Notice that ψ2 is a section in the sequence (4.2) and hence the sequence splits.

Finally, we consider the sequence (4.3). Since N is central, G is a direct product of H and N . Notice
that C∗ = Aut(N) × Aut(H). For a given pair (θ,φ) ∈ Aut(N) × Aut(H), we can define f ∈ Aut(G) by
f (hn) = φ(h)θ(n) for g = hn in G . This gives rise to a section in the sequence (4.3) and hence the
sequence splits. �
Remark 4.4. The converse of Theorem 8 is not true, in general, as is shown by the following examples.

(1) Let 1 → N → G → H → 1 be an exact sequence, where G is a non-abelian finite group of
nilpotency class 2 such that N = Z(G) = [G, G] and H � G/N . Notice that this sequence does
not split under the natural action of H on N . For, if the sequence splits, then G is a direct
product of N and H . This implies that G is abelian, which is a contradiction. In this case,
AutN,H (G) = Autcent(G) = AutH

N (G), where Autcent(G) is the group of central automorphisms
of G . Thus from the exactness of sequence (4.1), C∗

1 = 1 and the sequence splits.
(2) Consider an exact sequence 1 → N → G → H → 1, where G is an extra-special 2-group of or-

der 22n+1 with n = 1 or 2, and N = Z(G) = [G, G]. Notice that the sequence does not split. For
this sequence we have AutN,H (G) = Inn(G) = Autcent(G) and AutN (G) = Aut(G). Define a map
ρ : H × H → N by ρ(t(x)N, t(y)N) = [t(x), t(y)]. Notice that ρ is a bilinear map. Let γ ∈ Aut(G)

and φ = τ2(γ ). Now

ρ
(
φ
(
t(x)N

)
, φ

(
t(y)N

)) = ρ
(
γ

(
t(x)

)
N, γ

(
t(y)

)
N

) = [
γ

(
t(x)

)
, γ

(
t(y)

)]

= γ
([

t(x), t(y)
]) = [

t(x), t(y)
]

= ρ
(
t(x)N, t(y)N

)
.

This shows that φ, viewed as a linear transformation of the F2-vector space H , is orthogonal. Thus
φ ∈ O (2n,2). This shows that C∗

2 ⊂ O (2n,2). It is well known that Aut(G)/ Inn(G) is isomorphic
to the full orthogonal group O (2n,2). Thus from the exactness of the sequence (4.2), we have
C∗

2 = O (2n,2). It follows from [5, Theorem 1] that the sequence (4.2) splits.
(3) Let 1 → N → G → H → 1 be the exact sequence of example (2) above. Since Aut(N) = 1,

Eqs. (4.2) and (4.3) are the same. Hence the sequence (4.3) splits while 1 → N → G → H → 1
does not split.

References

[1] J.E. Adney, T. Yen, Automorphisms of p-groups, Illinois J. Math. 9 (1965) 137–143.
[2] K.S. Brown, Cohomology of Groups, Springer-Verlag, New York, 1982.
[3] J. Buckley, Automorphism groups of isoclinic p-groups, J. Lond. Math. Soc. 12 (1) (1975/1976) 37–44.
[4] M. Deaconescu, G. Silberberg, G.L. Walls, On commuting automorphisms of groups, Arch. Math. 79 (2002) 423–429.
[5] R.L. Griess, Automorphisms of extraspecial groups and non-vanishing of degree 2 cohomology, Pacific J. Math. 48 (1973)

403–422.



830 I.B.S. Passi et al. / Journal of Algebra 324 (2010) 820–830
[6] P. Hall, The classification of prime power groups, J. Reine Angew. Math. 40 (1940) 130–141.
[7] P. Jin, Automorphisms of groups, J. Algebra 312 (2007) 562–569.
[8] D.J.S. Robinson, Applications of cohomology to the theory of groups, in: Groups — St. Andrews 1981, St. Andrews, 1981, in:

London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge–New York, 1982, pp. 46–80.
[9] C. Wells, Automorphisms of group extensions, Trans. Amer. Math. Soc. 155 (1971) 189–194.


	Automorphisms of abelian group extensions
	Introduction
	Construction of sequences
	Applications
	Splitting of sequences
	References


