
JOURNAL OF MULTIVARIATE ANALYSIS 36, 175-198 (1991) 

Maximum Likelihood Estimation for Noncausal 
Autoregressive Processes 

F. JAY BREIDT* AND RICHARD A. DAVIS* 

Colorado State University 

KEH-SHIN LII+ 

University of California, Riverside 

AND 

MURRAY ROSENBLATT~ 

University of California, San Diego 

Communicated by the Editors 

We discuss a maximum likelihood procedure for estimating parameters in 
possibly noncausal autoregressive processes driven by i.i.d. non-Gaussian noise. 
Under appropriate conditions, estimates of the parameters that are solutions to the 
likelihood equations exist and are asymptotically normal. The estimation procedure 
is illustrated with a simulation study for AR(2) processes. 0 1991 Academic Press, Inc. 

1. INTRODUCTION 

In this paper we discuss maximum likelihood estimation for possibly 
noncausal autoregressive (AR) processes. We assume that {X,} satisfies the 
difference equations 

where (Z,} is an independent and identically distributed (i.i.d.) sequence of 
random variables with mean zero, variance CT*, and common probability 
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density function f,, c a scale parameter. A unique stationary solution to 
these difference equations exists provided the autoregressive polynomial 
(b(z)= 1 -&z- ... -$$ zp has no roots on the unit circle (d(z) #O for 
1~1 = 1). This solution is said to be causal (or minimum phase) if d(z) has 
no roots inside the unit circle (4(z) # 0 for lzl < l), since then X, can be 
expressed as a function of only the present and past of the noise process, 
z,, zl--1, . . . . The solution is said to be noncausal (or nonminimum phase) if 
d(z) has any roots inside the unit circle. More specifically, we will say that 
{X,} is purely noncausal if d(z) has all of its roots inside the unit circle 
(d(z) # 0 for 121 >, 1); in this case X, is a function of only the future of the 
noise process, Z,, i, Z1+*, . . . . Finally, if d(z) has roots both inside and 
outside the unit circle, we will say that the solution {A’,} is mixed in the 
sense that X, is then a function of both the future and the past of the noise 
process. These ideas are made precise in Section 2. 

Now if {X,} is a noncausal AR(p) driven by the i.i.d. sequence {Z,} 
with mean zero and variance g*, then {X,} can be reexpressed as a causal 
(or purely noncausal) AR(p) driven by a new white noise sequence {z,} 
with mean zero and variance g2 (Brockwell and Davis [3, p. 1251). (Note 
that in the non-Gaussian case, {PI} is uncorrelated, but not independent 
(Breidt and Davis [2].) In any of these representations, the second- 
order structure of {X,)-namely its autocovariance function-remains 
unchanged. Thus any estimation method based solely on the second-order 
properties of the system will be unable to distinguish among causal and 
noncausal models. In particular, moment estimation techniques such as 
Yule-Walker estimation will always yield causal models. 

Nonidentifiability of causal and noncausal models also appears in 
Gaussian maximum likelihood estimation. Classically in time series 
analysis, estimation of the parameters has been carried out for causal 
models using a Gaussian likelihood (Rosenblatt [lo], Brockwell and 
Davis [3]). Since in the Gaussian case the probabilistic structure of {X,} 
is wholly determined by its autocovariance function, causal and noncausal 
systems cannot be distinguished, and so it is conventional to restrict the 
parameter space to the causal region. On the other hand, for {Z,} non- 
Gaussian, causal and noncausal models are identifiable from the likelihood 
function. 

We propose a maximum likelihood procedure for estimating r~ and the 
parameters of the autoregressive polynomial in possibly noncausal AR(p) 
processes driven by i.i.d. noise with mean zero, variance a2, and common 
probability density function f,, 0 a scale parameter. We show that under 
appropriate conditions estimates of these parameters which are solutions to 
the likelihood equations exist and are asymptotically normal, and we 
derive the form of the asymptotic covariance matrix. Inherent in the 
estimation procedure is the identification of the order of causality of the 
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model-whether the process (X,) will be modeled as causal, purely 
noncausal, or mixed. We demonstrate the effectiveness of this procedure 
with a simulation study for AR(2) processes. 

A natural criticism is that the practicality of this estimation procedure is 
limited by the assumption that the probability density function of the noise 
process {Z,} is known to within the value of a scale parameter. Of course, 
this criticism applies equally to much of classical parametric inference. It 
seems that a reasonable first step is to consider the case of f, known. 
Consideration of the case of f, unknown is the next step, which we are 
currently taking. It involves developing methods of obtaining reasonably 
efficient initial estimates of the order of causality and of the parameters in 
the model. Such estimates might then be used in an adaptive estimation 
procedure, like those described by Beran [l] and Kreiss [6]. One 
approach to obtaining these estimates is based on the use of higher order 
cumulant spectra (Lii and Rosenblatt [8], Nikias and Raghuveer [9]). 
Preliminary simulation results indicate that maximizing an appropriate 
non-Gaussian likelihood, such as the likelihood obtained when Z, has a 
Laplace density, may be a more efficient approach; these results are 
discussed briefly in Section 4. This next step in the problem, however, is not 
our focus here. 

2. APPROXIMATING THE LIKELIHOOD 

In this section we derive an approximation to the likelihood of a possibly 
noncausal AR(p) process and calculate the asymptotic covariance matrix 
of the partial derivatives of the likelihood. 

Let {X,} be the mean zero AR(p) process satisfying the difference 
equations 

X,-&X,-,- ... -q$X,--p=Zr, (2.1) 

where 4(z)=l--#,z- . . . - dpzp #O for IzI = 1, bp #O, and {Z,} is an 
i.i.d. sequence of random variables with mean zero, variance 02, and 
common probability density function f,, 0 a scale parameter. Specifically, 
we assume fJx)= op’f (x/o) for some probability density function (pdf) 
f(x). It is well known (see, for example, Brockwell and Davis [3, p. 883) 
that there exists a unique stationary solution to (2.1) given by the two- 
sided moving average 

xl= f. *jZr-j, 

where ll/j is the coefficient of zi in the Laurent series expansion of 1/4(z), 
viz.. 

(2.2) 
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which exists in some annulus d< Izj <d-l, d< 1. If Q(z)#O for IzI G 1, 
then ej = 0 for j < 0 and we call {AT,> causal, since it now is a causal 
function of {Z,}, i.e., 

00 

j=O 

On the other hand, if d(z) # 0 for IzI 2 1 then 

x*= f ICI-jzl+j 
J=o 

is a function of the future values of {Z,}. We call such a process purely 
noncausal. In this case, the coefficients +j satisfy 

(l-q5,z- ..’ -$4pzp)(+o+1(/~Iz-1+ . ..)=l 

which implies 

ljo=l/-l= ... =l)--p=o, *-p= -4;’ (2.3) 

so that X, is independent of Z,, s d t + p - 1. 
In the causal and purely noncausal cases, it is rather straightforward to 

approximate the likelihood by the conditional likelihood (conditional on 
the first p observations in the causal case and the last p observations in the 
noncausal case). However, in the mixed case, when 4(z) has zeros lying 
inside and outside the unit circle, approximating the likelihood is more 
difficult since X, now depends on both the future and past values of {Z,}. 
To handle the mixed case, we first reparameterize the model by decom- 
posing the autoregressive polynomial, d(z), into its causal and purely 
noncausal components, and then analyze the corresponding AR processes 
that arise from this decomposition. 

Factor the autoregressive polynomial as 

where 

qqz) = 1 - dlZ - . . . - Cjpzp= d+(z) d*(z), (2.4) 

f$+(z)=l-e,z- *.. -8,z’#O for IzI d 1, 

4*(z) = 1 -or+ 1 z- ... -e,z”#o for IzI 2 1, 

and r, s 2 0, with r + s = p. In other words, if m,, . . . . m,, m,, 1, . . . . mp are 
the p zeros of d(z) with lmil > 1, i= 1, . . . . r, and lmil < 1, i= r + 1, . . . . p, 
then 

4+(z)= fi (1 -m;‘z) and 4*(z)= fi (1-m,:‘z) (2.5) 
i=l i=r+l 
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and the 4;s can be determined from the 0;s through the equations 
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8 -zr 1 ej-iO,+i, 

4~={~Z,I;,djJ,+i, 
j = 1, .  .  .  .  r, 

j = r + 1, . . . . p, (2.6) 

where we set B0 = -1 and 0,= 0 whenever i# (0, . . . . p>. 
Now define the causal and purely noncausal AR processes by 

u* = 4*tmx, and vt = d+wX,, 

respectively, where B is the backwards shift operator (BkX, = X,--k, 
k = 0, f 1, . ..). Since 4+(B) b*(B)X, = Z,, 

and hence 

4+(B) ut = z, and 4*(B) v, = z,, 

U,= f ajZtpj, vt= f BjZr+j, (2.7) 
j=O j=s 

where 

4+(z)-‘= f ajzj and (75*(z)-‘= f pjz-j. (2.8) 
j=O j=s 

Since U, is independent of I’-,+ 1, the pdf of the random vector 
(U,, . . . . U,, Vn-s+, ,..., V,)’ is 

h,( u1 , .*a, Ur) fi fo(u*-e,u,-,- ... -erUr--r)hvtV,-.+l,'.', V"), 
t=r+1 

where h, and h, are the joint pdf’s of (U,, . . . . U,)’ and (Vnes+r, . . . . V,,)‘, 
respectively. The joint pdf of (U, , . . . . U,, X, , . . . . X,)‘ is obtained via the 
transformation 

US 
X s+1-Or+lXs- ... -epx, 

x,-0,+,x,-,- . ..-e.x,-, 
Y n--s+l-e,x”-.- ... -erXn--s+l. 

I x,-e,x”-,- ... -e,x,_, 

‘U,’ 

v* 

Xl 

XII . . 

where T is an (n + s) x (n + s) matrix. The joint pdf of (U,, . . . . U,, 
x 1, . . . . X,)’ is then 
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hu(U1, . . . . Ur) fi fM,-G&J--,- ‘.. -4,X,-,) 
(=?+I > 

x hy(dt(NX,-,+ 1, . . . . 4t(WXn) ldet TI, 

where Uj is replaced by d*(B)X] for s < j 6 r. From the form of the trans- 
formation, it follows for s> 0 that In ldet Tj -In [Opln--P which suggests 
approximating the log-likelihood by 

L(e 1 ,..., Op,g)= i (lnf,(U,-8,U,-,- ... -e,U,-,)+ln le,l) 
r=p+l 

= i s,(e)? (2.9) 

where 
t=p+1 

g,(O)=lnf,(U,-0,U,-,- ... -8,U,-,)+ln loPI 

=lnf,(V,-8,+, v,-, - . . . -8,1JP,)+ln lepl 

and 8 = (0,) . . . . 8,+ i)’ denotes the parameter vector with 8,+, = g. Note 
that in the causal case (S = 0), the In le,,l term does not appear in (2.9). 

In order to calculate the asymptotic covariance matrix of the partials of 
L, we make the follo@ing assumptions on f: 

Al. f(x) >O for all x. 

A2. feC=. 

A3. f’~ L’ with jf’(x) dx=f(x)l?, =O. 

A4. Jxf’(x)dx=xf(x)l”‘,-Jf(x)dx= -1. 

A5 jj-“(x) dx =f’(x)l “‘, = 0. 

A6. jxf”(x)dx=xf’(x)l”‘,-jf’(x)dx=O. 

A7. jx=f”(x)dx=2xf’(x)l”“,-2fxf’(x)dx=2. 

A8. j (1 + x=)(f’(~))~/“(x) d.v < co. 

Evaluating the partials of g, at the true values, we obtain 

-utpjf$!, i = 1, . ..) r 

ag,- 
- . ..-If&. i=r+ 1, . ..) p- 1 

aei - _ v f6(& ; L 
(2.10) 

1-s f,(z,) 8,’ 
i=p 

1 ( -0-l z,- fm+ 1 
> fo(Z,) ' 

i=p+ 1. 
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The assumptions on f imply 

Ez fL(Z,) _ 03 
i 

if s # t, 

“f,(Z,) - 13 if s = t, 
(2.11) 

and hence, using the representation of (2.7) and applying (2.3) to the flj 
sequence, we have 

&LO 
aei ' 

i = 1, . . . . p + 1. (2.12) 

Next, we determine the limiting covariance matrix of (n - p)-lj2 
C:=,+ 1 (agJaf3). From (2.11) and the assumptions on f, we have 

(CT’?, if t=k, i= j=O, 

where 

otherwise, 
(2.13) 

I”=a-2 
I (f’(x))2if(4 dx, JZo-2 x*(f’(x))*,‘f(x) dx - 1 

> 
. 

Let y J -) and y y( .) denote the autocovariance functions of ( U,> and ( Vl>. 
Then from the representations of U, and V, given in (2.7) together with 
(2.13), we obtain 

ydi-AZ k=t,r<i<j<p, i#p, 

yv(0)I+ /3fa2(?- T),, k=t, i=j=p, 

0, k#t, r<i<j<p, 

b=s a=0 

f'@ 1 
zk+r-j+bf&) 

d k 

af-k&ilLk+j--r~ if t>k, l<i<r<j<p, = 
0, if t<k, l<i<r<j<p, 
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0, if i = 1, . . . . p-l ort#k, 

-e;W, if i=p, t=k, 

1, if i=p+l, t=k. 

Also, for 1 <i<r and r-c j<p, 

(n - p) cov 

=hteC+, k~+lcov(~~~) 
J 

=L “Cl i ff,-&-ifit-&+j--r 

n-pk=P+l r=k+l 

--* z QrBt+i+j-r, 
1=0 

the convergence holding due to the geometric decay of {a,} and (8,). 
Combining the preceding results, we conclude that 

(~-P,-lcov(,~+,~~(,~+,~)‘)-~~ (2.14) 

where, if s > 0, C is the symmetric matrix with (i, j) element (i < j), 

If s=O then 

‘SuG-j), l<i<j<r, 

7Y di-A, r<iGj<p, i#p, 
ry v(O) + ~y(L- T), i=j=p, 

c,“=O ukfik+i+j--r, l<i<r<j<p, (2.15) 
- f?,‘aJ, i=p,j=p+l, 

Z i=j=p+ 1, 
0 I 9 otherwise. 

l<i<j<p, 

i=j=p+ 1, 
otherwise. 
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Remark. In view of (2.14), we call Z the information matrix. Note that 
in the s >O case, only the four elements in the southeast corner of Z 
depend on the scale parameter cr. Of course, in the causal case (r = p, 
s=Oh Op+l,p+l is the only entry which depends on B. 

PROPOSITION 1. Let f be a non-normal pdf satisfying the conditions 
Al-A8. Then the matrix C is positive definite. 

ProoJ: First partition C as 

C= 
A B [ 1 B’ c’ 

whereAisrxr,Cis(s+l)x(s+l),andBisrx(s+l).Nextconsiderthe 
random vectors, R = (R, , . . . . R,)’ and S = (S, , . . . . S,, i)’ defined by 

R,=D-,f~=~oa,Z-,-,,f~, for t=l,..., r, 
(I rJ 0 

l<tcs, 
for 

t = s, 
t = 1, . . . . s, 

s s+1= 0-l z,- 
( 

fC0) + 1 
) f,Vo) * 

It is readily verified that the covariance matrices, C,, and C,,, of R and 
S are equal to A and C, respectively. Also, from (2.13), we have for j<s, 

Cov(Ri,Sj)= f f aJ,E Z-i-,Zj- 
a=0 b=s 

and 

whence 

Moreover, 

Z,, = Cov(R, S) = a’7B. 

a27> 1, (2.16) 
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since, by the Cauchy-Schwarz inequality and the assumptions on f, 

l=~E[-Z,~]~2<o’7 

with equality holding if and only if f is normal. 
The matrices A and C are positive definite since there is no linear 

dependence within the vectors R and S. Thus, to prove positive definiteness 
of L’, it suffices to show that 

C- B’A-‘B 

is positive definite. The matrix C- (o*T)*B’A-‘B, being the covariance 
matrix of S - Z,,L’;i R, is non-negative definite and hence for a nonzero 
vector a E R” + ’ with Ba # 0, we have, by (2.16), 

a’(C-B’A-‘B)a>a’(C-(a*r)*B’A-‘B)a>O. 

On the other hand, if Ba = 0, then 

a’( C - B’A ~ ‘B)a = a’Ca > 0 

by the positive definiteness of C. This concludes the proof. [ 

PROPOSITION 2. If f satisfies the assumptions Al-A8, then 

n ag, d 
(n- P)Y2 t=;+I G-+ NO> 3 

where C is the matrix given in (2.15). 

Proof. By the Cramer-Wold device, it suffices to show that 

(n - p)-l’* ag i a’d& N(0, a’Za) (2.17) 
r=p+1 

for all a E Rp+ ‘. Define the sequence of (p + 1) dimensional random 
vectors {Yt,, t =O, fl, . . . } to be the partials defined in (2.10), but with the 
U,‘s and V,‘s replaced by the sums in (2.7) truncated at a large positive 
integer m. In addition, let C, be the matrix corresponding to Z, obtained 
by truncating the U,‘s and V:s. Then the stationary sequence {Y,,, 
t = 0, + 1, . ..} is m + p dependent and it follows easily that (2.14) holds 
with agJa0 replaced by Y,, and limit covariance matrix given by Z,. 
Applying a standard central limit theorem for finite dependent stationary 
sequences (for example, Theorem 6.4.2 in [3], we obtain 

(n-p)-‘/* i a’Yt, -f+ N(0, a’C,a). 
f=p+l 
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Now 2, + C as m + cc and since 

( 

n 

lim lim Var (n-p)-‘/* 
I( 

ag, a’Y tm - a’ - 
a0 )) 

= 0, m-mn-m t=p+1 

the convergence in (2.17) is immediate from Proposition 6.3.9 in [3]. u 

3. ASYMPTOTIC NORMALITY 

In this section, we show that there exists a sequence of solutions, @,, to 
the likelihood equations, 

sue) = o 

aoj ' 
j= 1, . ..) p + 1, 

L given in (2.9), which is consistent and asymptotically efficient in the sense 
that 

n”‘(i&e)P, N(0, c-‘), 

where C is the Fisher information matrix computed in (2.15). We 
temporarily assume that L does not depend on s, the number of zeros of 
the autoregressive polynomial which lie inside the unit circle. In addition to 
the assumptions Al-A8 of Section 2, we assume that 

h’(x) :=; h(x) = d r*) = h,(x) -h*(x), 
dx f(x) 

(3.2) 

where h, and h, are nondecreasing functions with 

hi(x) = O(lxlk) as 1x1 + 03 
for some k 2 0 satisfying 

E Izo12+% 03. 

In particular, this condition implies 

E IZ,I’ Ih’(a,‘Zo)l GE IZ,\’ Ihl(o,‘Z,)I +E IZ,I’h,(a,‘Z,)I < cc 

for j= 0, 1, 2. 
To establish the existence of a consistent sequence of estimators, Pn, 

satisfying (3.1), we follow the argument given on p. 430 of Lehmann [7]. 
Since we are assuming here that s is fixed, the parameter space for the 
model is 

Q,= (8ER p+‘: 1 -e,z- ... -8,z’#O for IzI < 1, 

i-e ,++- . . . -epzs+o for IzI 2 1, 

8,#0,8,#0,and8,+,=~>0}. 

Let 8, = (eel, . . . . 8,, a,)’ EO, be the true parameter value and let 
QE denote the closed ball of radius E centered at 8,, i.e., Q, = 
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{eEw+‘: 10 - 0,, d E}, where I e 1 represents the max norm on Iwp+ ‘. The 
parameter space Q, is open and for E small, there exists a dc 1 such that 
for all 8 E QE 

and 

q5+(z)=l-e,z- ... -8,z’#O for lzj <d-l, 

4*(z) = 1 -or+ 1 z- ... -8,z”#O for Izl >d, 

(b(z) = (b+(z) (b*(z) = 1 - q5, z - . . . - q$zp # 0 for d< (zJ 6 d-l. 

It follows from these relations and (2.5) and (2.6) that there exists a 
constant C > 0 such that 

j= 1, **., p, 

j= 0, f 1, . ..) (3.3) 

SUP I $j - $ojl < C&d”‘, j = 0, f 1, . ..) 
OEQ, 

where the { tij} and { $,} are the coefficients in the power series (2.2) with 
parameter 8 and 8,, respectively. 

Expanding L(B) in a neighborhood of tI,, we have 

where 

Ai( f: ag,O, 
r=p+i aej 

Bjk(e) = i azg,O 
I=p+l aejW’ 

and 0* is between 0,, and 8. By the ergodic theorem and (2.12), 
P+l 1 

sl= c - i 
j=l n-Pt=p+l 

~(8,-e,,)~‘~‘~~(e,-e,)=o a.s. 
J j=l J 

(3.5) 
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To analyze the terms involving mixed partials, we begin with some 
preliminaries. In what follows, a tilde over a random variable will indicate 
dependence of that random variable on the parameter 8, while a tildeless 
random variable will depend only on the true model (Cl = 0,). For example, 

8,=x*-O,+J-,- ... -epx,-s, U~=Xf-O~,,+~Xt-~- ... -8,X,-,, 

2,=8,-8,21t-1- . . . -e,zItp,, z,= u,-t&u,-I- ... -el)rU,-r, 

=X,-&X,-,- .*. -q&k& =xt-401xt--l- .-. -hpXr-p, 

W(= f *jZ,-j, Xl= f @()jZ,-j. (3.6) 
j= -cc j= -m 

It follows easily from (3.3) and (3.6) that 

sup I& U,I <E(lX,-,I + .‘. + 1X,-,1) 
BEQ8 

sup IVz- V-,1 <E(lX,-,I + **. + IX,-,I) (3.7) 
@EQ, 

Sup /8,-X,1 < Sup f I+jI,-$l)jl Iz,-jl <Cc 2 d Iz,-jl. 
@EQt e=Qe j= -cc j= -m ‘j’ 

Also, writing 2, = 2, - Z, + Z,, we have for all 8 E Q, 

Zt-C(!l lW-,l)6~~~Z~+~~(~~ lkil). 

The mixed partials of g,(8) are calculated to be 

(3.8) 

a’g,(e)= 
aejek 

I 

O,-j&kh’(u-l~~), l,<j<k<r, 

d-,+,+.h(a-‘z,)+ 8,-iP,-,+,h’(o-1~,), 1 <j<r<k<p, 
o,-,h(o-‘2,)+ ~,-ja-‘Z,h’(a-‘2,), l<j<r,k=p+l, 

u-2 F,-j+,8,-k+,h’(a-‘~~), r<j<kdp, j<p, 
8:_,h’(a-‘~,)-a2~,‘, j=k=p, 

v,++,h(a-‘2,) + Vf-j+r~-‘~~h’(o-‘~~), r<j<p,k=p+l, 
c2Z;h’(a-‘2,) + 2a-‘z,h(o-‘2,) + 1, j=k=p+l. 

One verifies that 
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where ojk is given in (2.15), and hence by the ergodic theorem, 

As for S3, we show 

a.s. (3.9) 

(3.10) 

as E + 0 for j, k = 1, . . . . p+ 1. For 1 <j<k<r, we have 

p-4 1 
fJ2cr2 0 

n-p j IKjU,-&(G1z,)I 
r-p+1 

+Op2 & -i I(“t-j- 8t-j) Utpkh’(aiYIZt)I 
t-p+1 

+C2 & ,=c+l Itut-,- LJ Dt-jwT?Z)I 

+C2 &,e$+I 18,-j8,~,(h’(a,1Z,)-h’(a-1~~))l 

=T,+T,+T,+T,. 

For E < oo/2, we have by the ergodic theorem 

sup T, < ~100,~ 
BEQ, 

& Pi lU,-jUt-kh’(o~lZt)I 
t--p+1 

+ ~lOa;~El U-jU-,h’(a~lZo)I a.s. 

= &lOCT,3EI u-ju-,I E~h’(o,‘Z,)I + 0 

as E + 0. Using the bounds in (3.7) and applying the ergodic theorem once 
again, we obtain 

liy+szp ;;i T2 G~c,~EEI(IX-,- 11 + ... + IX-j-,1) U-kh’(a,‘Zo))I a.s. 
L 

+O as E -0. 
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and, by a similar argument, 
lim sup sup T3 + 0 

n-m BEQ, 

a.s. as E --t 0. 

As for T4, set W, = xi”=, IX,-il and define for i = 1,2, 

i 

hi(z’g~~Ewf)-hi(z’~~Ew’>, if Z,--C.sW,>O, 

Yf,,= hi(z~~~~~w’)-hi(Z’~~~w~)~ if Z,+C&W,<O, 

hi (“‘I yew’) - hi (“‘i yew’), otherwise, 

where hl and h, are the nondecreasing functions specified in (3.2). Then by 
(3.7), (3.8), and the ergodic theorem, 
lim sup sup T4 

“-CX OEQ, 

G~~J;~E[(IU~ +eWpi)(lKkl +EWL)(Y& + Yk,,)l a.s. (3.11) 

Using the inequality 

<A, +A, IZOlk+ i IX-ilk 
i=l > 

<Al +A3 IZOlk+ i C”‘C l$i,“e$ikI IZ-i-il’..Z-i-ikl 
( 

9 
i=l il c 

where A 1, A *, and A 3 are constants, the expectation in (3.11) is finite, from 
which it follows by the assumptions on hi and dominated convergence that 
the limit of the right hand side in (3.11) is 0 as E --t 0. This proves (3.10), 
at least for the 1 < j < k < r case. For the other cases, the arguments follow 
the same ideas as used above and hence are omitted. 

Combining the results in (3.5), (3.9), (3.10), and Proposition 1, we 
conclude that for E small 

sup( S, + S2 + S,) c 0 a.s. 

as n -+ co, where the sup is taken over 0 on the boundary of Q,. Conse- 
quently, for n large, 

L(0) <I@,) as. 
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for all 9 on the boundary of Q, and so L(B) must have a local maximum 
on the interior of Q,. Such a local maximum must satisfy the likelihood 
equations. Now as discussed in Lehmann [7], a sequence of local maxima 
can be chosen, independent of E, so as to converge a.s. to 8,. 

Having established the existence of a consistent sequence of estimators, 
8,, satisfying the likelihood equations (3.1), asymptotic normality of 6, is 
practically immediate from Proposition 2. To see this, a Taylor series 
expansion of aL(O)/aO about 0, gives 

where B(8) is the (p + 1) x (p + 1) matrix with entries Bj,JfI) and 8* is on 
the line segment joining f3a and 8,. Since 8* + 8, a.s., it follows from (3.10) 
and the ergodic theorem that 

a.s. and hence, from Proposition 2, that 

d/*(il, -e,) L ~(0, c-y. 

We record the preceding results in the following theorem. 

THEOREM 3. Let {X,} be the mean zero AR(p) process satisfying 

x,-&A--,- ... -fjpxt--p=zI, 

where the autoregressive polynomial 4(z) has the factorization given in (2.4) 
and {Z,} is an i.i.d, sequence of random variables with mean zero, variance 
o* and common pdf, IS ~ 'f (x/g). Further suppose that f is a non-normal pdf 
which satisfies conditions Al-A8 of Section 2 and (3.2). Then there exists a 
sequence of solutions, 8,,, to the likelihood equations (3.1) which is asymptoti- 
cally normal with mean O,, and asymptotic covariance matrix n-‘Z-l, where 
C is specified in (2.15). 

From this theorem, it is also possible to get the limit distribution for the 
estimates of the original autoregressive parameters ii, . . . . dp. In this case 
the resulting estimate, $,, is computed by replacing the 13:s in (2.6) by their 
estimated values. A standard argument shows that 

n”*($,-0) L N(0, RZ;‘R’), (3.12) 

where Z;’ is the p x p northwest submatrix of Z-l and 

R is quite trivial to compute from (2.6). 
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Theorem 3 and (3.12) remain valid if the likelihood function L(8) in 
(2.9) is allowed to depend on s, the number of zeros of 4(z) inside the unit 
circle. The proof is the same as in the s fixed case, since the key observation 
is that if 14 - +,,I < E, E small, then d(z) and &,(z) have the same number 
of zeros inside the unit circle. 

If there happens to be more than one solution to the likelihood equa- 
tions with s either known or unknown, Theorem 3 does not indicate which 
of the local maxima to choose as the estimator. The obvious candidate is, 
of course, the maximum likelihood estimator, i, 6,, found by maximizing 
L(8) with respect to s and 8. Subject to mild restrictions, T, ?l,, will be con- 
sistent, from which the asymptotic normality of &, ensues. An argument for 
this assertion is as follows. 

It will be convenient here to work with the parameters Q and CJ rather 
than 8 so that the log-likelihood becomes 

J344 a)= i gt(94 a), 
f=p+l 

where 

and from (2.5), 

epl= lTiP=r+l miy 

i 

if s # 0, 

1, if s = 0. 

Restrict the parameter space, 

f2 := {(l)‘, O)‘E lRp+‘: dp # 0,4(z) # 0 for lzl = 1, and D > 0}, 

to any compact subset, 8,, containing the true parameter &,, CJ,,. Now, 
using the same method of argument given for the consistency part of 
Theorem 3, it can be shown that with probability one, 

uniformly on 52,. Provided the limit, Eg,+ ,(+, a), has a unique maximum 
at $,,, c,,, then, by a standard compactness argument, any maximum of 
(l/(n - p)) L(4, a) must converge to the maximum of the limit and, there- 
fore, the mle is consistent. 

603/36/2-4 
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4. SIMULATION METHODS AND RESULTS 

The standard recursion for simulating n observations from a causal 
AR(r) process (U,} is to begin far back in the past of the process, say at 
t= -k, to set U-k-1=U-k-2= ... =Upkpr=O, and then to compute 
recursively 

for t = -k, -k+ 1, . . . . 1, 2, . . . . n. Purely noncausal processes can be 
generated similarly by reversing the time scale; the recursion begins far 
forward in the future of the process, say at t = n + m, and computes U, for 
t = n + m, n + m - 1, . . . . n, n - 1, . . . . 1. 

Of course, neither of these recursions will generate a series of mixed 
causality, since they force exclusive dependence on the past or on the future 
of the i.i.d. sequence {Z,}. To simulate time series of mixed causality, we 
use the factorization (2.4) and a two-stage recursive procedure. We first 
simulate n + m observations from the causal AR(r){ U,}; as above, we 
begin at t = -k, far back in the past of the process. Then, since 
d*(B)X,= U,, we have that 

x,=e,‘(x,+,-e,+,x,+.-,- ... -~,-I~,+,- U,,,). (4.1) 

We set Xn+m+s=Xn+m+s+l= ... =Xnfm+,=O, compute (4.1) recur- 
sively for t = n + m, n + m - 1, . . . . n, n - 1, . . . . 1, and then retain the last n 
computed values as the simulated time series {X,}, t = 1, 2, . . . . n. 

Using the above recursions, we simulated causal and mixed AR(2) 
processes driven by non-Gaussian noise, emphasizing the mixed case. Noise 
distributions included the Laplace (two-sided exponential) distribution and 
the Student’s t distribution; the underlying random number generator is 
discussed in Kahaner, Moler, and Nash [S]. We approximated the log- 
likelihood of each simulated series as in (2.9) and, allowing t(0) to depend 
on s, the number of zeros of 1 - 4iz- &z2 inside the unit circle, 
maximized this function using a non-linear optimizer described by Dennis 
and Schnabel [4]. 

In the Laplace case, the mle of cr can be expressed in closed form as a 
function of the data and of the parameters in 4(z). The approximate log- 
likelihood can thus be reduced to a function of dl, &, and s, or in the 
parameterization of (2.5), as a function of m;‘, m;‘, and s. This 
parameterization is used in the surface and contour plots of Figs. 4.1 and 
4.2, which show the reduced log-likelihood for 100 observations from the 
simulated AR(2) process 

Z,=(l-m;‘B)(l-m;‘B)X, 

= (1 +0.9@(1 - l.lB)X,, 
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Reduced log-like 

. 
FIG. 4.1. Reduced log-likelihood surface plot. 

where {Z,} is i.i.d. with the Laplace density f(x) = )e-IXI. Here s = 1 and 
Q = d. (Though the Laplace density does not, strictly speaking, meet 
assumption A2 of Section 2, we believe the results remain valid, as they do 
in the classical case for estimation of the location parameter in the Laplace 
density [7, p. 4191.) These plots show sections of the causal (s=O), mixed 
(s = l), and purely noncausal (s = 2) regions. Note that the surface is 
unbounded along the lines rn;' = +l and m;' = &l, since these 
correspond to roots of 4(z) on the unit circle. Note also that because m;’ 
and m;' commute in the reduced log-likelihood function, the surface is 
symmetric about the line rn;' = m; '. In this example, the estimation 
procedure chose 5= 1, fii;’ = -0.9270, fi;i = 1.1075, and 3 = 1.1746. 

For the following simulation study, we applied the maximum likelihood 
estimation procedure to each of 1000 time series of length n and recorded 
the number of times R that the procedure chose the correct order of 
causality (s” = s). To allow comparison with the asymptotic theory, we com- 
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FIG. 4.2. Reduced log-likelihood contour plot. 

puted sample means and standard deviations only for those R estimates. 

Results for the mixed case appear in Tables I-IV, while an example for the 
causal case and a few other numerical examples of interest appear below. 

The tabled results for the mixed case show that the estimation procedure 
does an excellent job of choosing the order of causality of the model even 
when the roots m, and m2 of 4(z) are near the unit circle (Tables I and II). 

TABLE I 

{Z,}-i.i.d. Laplace, m;‘= -0.9,m;‘=1.1,0=$ 

---I 
ml 

- -1 
m2 6 

n R Mean SD ASD Mean SD ASD Mean SD ASD 

50 613 -0.8671 0.0671 0.0436 1.1395 0.0830 0.0504 1.4309 0.2064 0.2103 

100 805 a.8935 0.0364 0.0309 1.1141 0.0505 0.0357 1.4096 0.1581 0.1487 

200 935 a.8887 0.0284 0.0218 1.1080 0.0285 0.0252 1.4174 0.1029 0.1051 

400 1000 a.8961 0.0176 0.0154 1.1026 0.0219 0.0178 1.4121 0.0674 0.0743 
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TABLE II 

(2,)~i.i.d. t(4), m;‘= -0.9,m;‘=l.l,a=,,h 

n R Mean SD ASD Mean SD ASD Mean SD ASD 

50 684 -0.8752 0.0736 0.0517 1.1414 0.0845 0.0598 1.4730 0.2424 0.2029 
100 791 -0.8810 0.0423 0.0366 1.1225 0.0550 0.0423 1.5077 0.1702 0.1435 
200 925 -0.8913 0.0299 0.0259 1.1079 0.0351 0.0299 1.5073 0.1066 0.1014 
400 980 a.8973 0.0183 0.0183 1.1042 0.0221 0.0211 1.5089 0.0762 0.0717 

When roots are near the unit circle-the boundary for causality-models 
with high likelihoods occur in the causal, mixed, and purely noncausal 
regions, as illustrated in Figs. 4.1 and 4.2, and the estimation procedure 
must choose among them. Not surprisingly, as the roots move away from 
the unit circle (Tables III and IV), the success rate for determining the 
order of causality is even higher. 

For a causal example, we simulated n = 200 observations from the series 

Z,=(l-m;‘B)(l-m;‘B)X, 

= (1 - .8B)( 1 + .8B)X,, 

where {Z,} was i.i.d. f(4) (a = &). Sample means and standard deviations 
(SDS) computed for the R estimates which fell in the correct region, as well 
as asymptotic standard deviations (ASDs) computed as in Theorem 3 and 
(2.15), are recorded here: 

- -1 ml ---I m2 6 

n R Mean SD ASD Mean SD ASD Mean SD ASD 

200 882 0.7971 0.0421 0.0455 a.7930 0.0404 0.0455 1.5014 0.1188 0.0939 

TABLE III 

{Z,} w i.i.d. Laplace, m1 -I= -0.5,m;‘=1.3,o=fi 

- -1 ml - -1 m2 B 

n R Mean SD ASD Mean SD ASD Mean SD ASD 

50 753 a.4898 0.1102 0.0884 1.3642 0.2102 0.1102 1.4656 0.2710 0.2332 
100 921 -0.4936 0.0694 0.0625 1.2972 0.0931 0.0779 1.3968 0.1558 0.1649 
200 994 a.5023 0.0472 0.0442 1.3189 0.0696 0.0551 1.4292 0.1283 0.1166 
400 1000 -0.4965 0.0384 0.0312 1.3065 0.0489 0.0390 1.4161 0.0949 0.0824 
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TABLE IV 

{Z,}~i.i.d. r(4), m;‘= -0S,m;‘=1.3,o=$ 

--L 
ml 

- -f 
m2 B 

II R Mean SD ASD Mean SD ASD Mean SD ASD 

50 687 -0.4895 0.1071 0.1067 1.3548 0.2212 0.1331 1.5326 0.3084 0.2371 
100 855 -0.4926 0.0805 0.0755 1.3321 0.1163 0.0941 1.5098 0.1965 0.1677 
200 957 -0.4907 0.0550 0.0534 1.3113 0.0736 0.0665 1.5091 0.1355 0.1186 
400 1000 a.5012 0.0395 0.0377 1.3022 0.0507 0.0471 1.4998 0.0904 0.0838 

In addition to computing sample means and standard deviations, we 
computed sample correlation matrices and compared them to the 
asymptotic theory. The following example is for n = 200 observations from 
the mixed AR(2) 

Z,=(l-m;‘B)(l-m,‘B)X, 

= (1 + SB)( 1 - 1.3&Y,, 

where {Z,} was i.i.d. r(4) (a = $). In this case, the asymptotic theory 
indicates that estimates of m;' and c should be quite highly correlated. 
Estimates of m;' should be weakly correlated with the estimates of the 
other parameters. Here are the sample and asymptotic standard deviation- 
correlation matrices: 

Sample Asymptotic 

--, *-, 
9 m2 d ml 

I _ -1 
m2 d 

- -1 0.208 - ml 0.055 0.283 -1 3 0.053 0.280 0.171 
- -1 m2 0.074 0.636 - -1 m2 0.067 0.611 
d 0.136 d 0.119 

More results from this simulation are included in Table IV. 
We also loked at normal probability plots for the optimized parameters 

to check the asymptotic normality of the estimates. In the mixed case, the 
asymptotic normal approximation to the distribution of the estimates of 
ml -I, the inverse of the root of d(z) outside the unit circle, is good even for 
n as small as 50. The distributions of the estimates of m;' and 0 are, 
however, quite skewed for the smaller samples (n = 50 and 100); this 
skewness diminishes as n increases. 

An example with the parameter set m;' = -0.5 and m;' = 1.1 and with 
{Z,} i.i.d. t( 10) (a = d/2) illustrates the identifiability problem we 
encounter as the noise distribution approaches a Gaussian distribution. As 
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the degrees of freedom v in the t(v) distribution are increased, t(v) 
approaches the standard Gaussian distribution. Since in the Gaussian case 
the parameters m;‘, m;‘, and r~ are not identifiable [3, pp. 123-1251, 
processes driven by near-Gaussian noise will be similarly troublesome. In 
this example, the estimation procedure is still largely successful in choosing 
the order of causality, with a 70.5% success rate. These results should be 
compared with the results for the t(4) in Table IV. 

---I 
ml 

--I 
m2 d 

n R Mean SD ASD Mean SD ASD Mean SD ASD 

400 705 a.5010 0.0452 0.0455 1.3106 0.0624 0.0567 1.2858 0.0799 0.0664 

For this final example, we used approximate log-likelihoods corre- 
sponding to AR(2) series with Laplace error distributions to estimate the 
parameters in models for simulated AR(2) series with t(4) error distribu- 
tions. (These simulated series were the same as’ those corresponding to 
n = 200 in Table II, so the results below are directly comparable.) This 
procedure is analogous to estimating parameters in general ARMA(p, q) 
models by maximizing the Gaussian likelihood even when the process is 
known to be non-Gaussian, a standard estimation procedure in time series. 
The resulting estimators are, for noncausal models, the analogue of least 
absolute deviation estimators. In this example, maximizing the Laplace 
likelihood yields remarkably good estimates. Note that the asymptotic 
standard deviation (ASD) recorded here is for an AR(2) driven by t(4) 
noise. 

n R Mean SD ASD Mean SD ASD 

200 837 -0.8915 0.0331 0.0259 1.1090 0.0388 0.0299 

This example suggests that maximizing the Laplace likelihood can give 
reasonably efficient estimates of the parameters in the model. It appears 
that these estimates might in fact be &-consistent, in which case they 
could be used as initial values in an adaptive estimation procedure like 
those advocated by Beran [l] and Kreiss [6]. 

In Tables I-IV the sample mean and standard deviation (SD) are 
calculated from the R estimates out of the 1000 replications for which the 
estimation procedure chose the correct order of causality (g= s). The 
asymptotic standard deviation (ASD) as computed from Theorem 3 and 
(2.15) is also recorded. 
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Note added in proof It should be noted that this paper contains detailed derivations of the 
results of the paper “Nonminimum Phase non-Gaussian Autoregressive Processes” which 
appeared in the Proc. Natl. Acad. Sci. USA 81, 179-181. 
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