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We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the 
E8 × E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first 
phase we have a standard model gauge group, an MSSM spectrum, four additional U (1) symmetries and 
singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, 
three of the additional U (1) symmetries are spontaneously broken and the remaining one is a B–L
symmetry. In this second phase, dimension five operators inducing proton decay are consistent with 
all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, 
these operators are forbidden due to the additional U (1) symmetries present in the first phase of the 
model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at 
specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect 
the model from fast proton decay.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A widely accepted dictum is that all the couplings that are al-
lowed by the symmetries of an effective field theory (EFT) should 
be present in the Lagrangian. In the present letter, we point out 
that care has to be taken when this principle is applied to EFTs 
from string theory. We will present an explicit example, in the con-
text of a standard model derived from heterotic string theory on 
Calabi–Yau manifolds, where this principle appears to be violated, 
at least when thinking about the associated EFT in the standard 
way. One of the relevant key facts is that string theory can lead to 
symmetry enhancement at particular loci in moduli space. These 
additional symmetries are not directly visible at a generic locus 
since the corresponding gauge bosons are massive and removed 
from the EFT. Yet, these symmetries can still forbid certain opera-
tors everywhere in moduli space, thereby leading to “unexpected” 
absences of operators.

Our example model is based on a heterotic line bundle model 
on a certain Calabi–Yau manifold which has been constructed in 
two previous publications [1,2]. Here, we will focus on the associ-
ated low-energy theory and explain the effect purely in terms of 
the four-dimensional N = 1 EFT. We will discuss and compare two 
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phases of this EFT, both of which have been obtained from a string 
construction. The first phase arises at a specific locus in mod-
uli space and corresponds to an MSSM with four additional U (1)

symmetries and a number of fields uncharged under the Standard 
Model gauge group. The additional singlets in this model can be 
interpreted as bundle moduli and, from a low-energy perspective, 
they are candidates for right-handed neutrinos. The second phase 
which arises at a more generic locus in moduli space corresponds 
to an MSSM with an additional U B–L(1) symmetry. In low-energy 
terms, it can be obtained from the first phase by continuation 
along the singlet directions thereby spontaneously breaking three 
of the four U (1) symmetries while leaving U B–L(1) unbroken.

Our point concerns the allowed operators in the second, generic 
phase with U B–L(1) symmetry.1 It is well-known that dimension 
five operators inducing proton decay are allowed by U B–L(1). Fol-
lowing the general lore, we should, therefore, expect that these op-
erators are present in the generic phase of our model. This would 
imply a serious phenomenological problem with proton stability. 
However, it turns out that the enhanced U (1)4 gauge symmetry 

1 The U B–L(1) symmetry is a linear combination of the hypercharge and an ad-
ditional U (1) symmetry with massive gauge boson. The latter U (1) manifests itself 
at low energies as a global symmetry. This approach is different from the one stud-
ied in [3,4]. To prevent the proton from fast decay the authors in [3,4] considered 
models with local U B–L(1) symmetry which then has to be violated by radiative 
corrections at scales below the string scale but higher than the electroweak scale 
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which arises at the specific locus in moduli space comes to the 
rescue. Not only does this enhanced symmetry forbid the dimen-
sion five operators in question, it also forbids all such operators 
with additional singlet insertions. This means that these operators 
remain forbidden even when we turn on singlet vacuum expecta-
tion values and move away from the enhanced symmetry locus.

To explain this in detail, we define the two relevant effective 
field theories in Sections 2 and 3, respectively, and present their 
field content and their allowed superpotential couplings. We dis-
cuss the implications of the U (1) symmetries at the enhanced 
symmetry locus and throughout the moduli space, in particular 
the resulting absence of dimension five proton decay operators. We 
conclude in Section 4.

2. The theory with enhanced symmetry

We begin by describing the four-dimensional N = 1 theory at 
the locus with enhanced symmetry, starting with the particle spec-
trum and followed by the key features of the effective action.

2.1. Spectrum

We consider an effective field theory with the standard model 
gauge group GSM = SU(3) × SU(2) × U (1) and with an additional 
U (1)4 symmetry group which significantly constrains the theory. 
Such models with extra U (1) symmetries arise from compactifica-
tions of the E8 × E8 heterotic string theory at specific loci in the 
moduli space where the structure group of the vector bundle de-
generates [7–9]. The gauge bosons of these extra U (1) groups can 
be massive or massless depending on the details of the model. If 
the gauge boson is massive the corresponding U (1) group appears 
at low energies as a global symmetry. It is convenient to describe 
these additional U (1) symmetries by the group S(U (1)5) whose 
factors we label by indices a, b, . . . = 1, . . . 5. Its representations are 
denoted by five-dimensional integral vectors

q = (q1, . . . ,q5) (1)

with the understanding that two charge vectors q and q′ are iden-
tified, if q − q′ ∈ Zn, where n = (1, 1, 1, 1, 1).

The gravitational spectrum of the model consists of the dilaton, 
S , four Kähler moduli T i = ti + iχ i (where ti are the geometrical 
fields, measuring the size of Calabi–Yau two-cycles, and χ i are the 
associated axions) plus complex structure moduli which will not 
play an essential role in our discussion. The axions χ i transform 
non-linearly under the S(U (1)5) symmetry2 as

δaχ
i = −ka

i . (2)

In the rest of the paper we will concentrate on the specific 
model constructed in [1,2]. For our model, the integers ka

i are ex-
plicitly given by

(
ka

i) =

⎛
⎜⎜⎝

−1 −1 0 1 1
0 −3 1 1 1
0 2 −1 −1 0
1 2 0 −1 −2

⎞
⎟⎟⎠ (3)

Let us review the properties of the resulting low-energy the-
ory (see [1,2] for details). As was discussed above, the symmetry 
group of the low-energy effective theory is GSM × S(U (1)5). In this 
case, three out of the four U (1) gauge bosons receive string scale 
Stückelberg masses and the remaining one is massless.

The matter spectrum consists of the following multiplets

2 The dilatonic axion also receives a non-trivial transformation at one-loop order. 
However, this does not affect our discussion.
2 Q e2 2 ue2 2 ee2 Q e4 ue4 ee4

2 Le4+e5 2 de4+e5 Le2+e5 de2+e5

He2+e4 H̄−e2−e4

3 Se2−e1 3 Se4−e1 5 Se2−e3 3 Se2−e5 Se4−e3 , (4)

where the subscripts indicate the S(U (1)5) charges and ea de-
note the standard unit vectors in five dimensions. The first three 
lines represent a perfect MSSM spectrum, however with specific 
S(U (1)5) charges for each multiplet. In addition, we also have 
a spectrum of singlets, S , which are neutral under the standard 
model group but charged under S(U (1)5). Note that the S(U (1)5)

charge of the standard model multiplets only depends on the SU(5)

GUT multiplet they reside in, so that, for each family, the multi-
plets in 10 = [Q , u, e] have the same S(U (1)5) charge, as do the 
multiplets in 5 = [d, L]. This fact is related to the underlying group 
structure of the model, which originates from an SU(5) GUT bro-
ken by a Wilson line.

The above spectrum is apparently anomalous. Indeed, one can 
compute the mixed U (1)–G2

SM anomaly to find

AU (1)−G2
SM

=
∑

all families

(
3 q(10) + q(5)

) = (0,7,0,5,3) . (5)

However, these anomalies (as well as the cubic and mixed gravita-
tional anomalies) are cancelled by the Green–Schwarz mechanism, 
facilitated by the axionic shifts (2).

If we describe linear combinations of the U (1) symmetries by 
vectors v = (va) (demanding that v · n = 0 to remove the overall 
U (1)), then massless vector bosons are characterised by the equa-
tion ka

i va = 0. Applying this to Eq. (3) shows that, for our model, 
three of the four U (1) symmetries are Stückelberg massive, while 
the linear combination v = (−4, 1, 6, −4, 1) remains massless.

2.2. Effective action

The Kähler potential has the standard form

K = − log(S + S̄) − log(κ) + Kcs + G I J C I C̄ J , (6)

where Kcs is the complex structure Kähler potential which will not 
be needed explicitly and C I collectively denote all matter fields 
listed previously. The specific form of the matter field Kähler met-
ric G I J is not relevant to our discussion and it will be sufficient 
to know that it is positive definite. The pre-potential, κ , for the 
Kähler moduli is explicitly given by3

κ = dijktit jtk = 12(t1 t2 t3 + t1 t2 t4 + t1 t3 t4 + t2 t3 t4) , (7)

and this equation defines the topological numbers dijk for our 
model. We also note that the allowed range of the moduli ti (the 
Kähler cone of the underlying manifold) is ti > 0, for i = 1, 2, 3, 4.

From this Kähler potential and the S(U (1)5) symmetry transfor-
mations given earlier, we can compute the S(U (1)5) D-terms Da . 
Their general form is [8]4

Da = 3

κ
ka

idi jkt jtk +
∑
I, J

qa(C I )C I C̄ J (8)

where qa(C I ) denotes the S(U (1)5) charges of the matter fields. 
Due to the special unitary nature of the group these D-terms 

3 For ease of notation, we will write explicit indices of the fields ti as subscripts.
4 In addition, there is also a one-loop correction to this D-term, resulting from 

the transformation of the dilatonic axion, which we omit. This correction does not 
affect our discussion.
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satisfy the constraint 
∑5

a=1 Da = 0. The first term corresponds to a 
Fayet–Illiopoulos (FI) term which is explicitly given by

12

κ

⎛
⎜⎜⎜⎝

t1t2 + t1t3 − t2t4 − t3t4
4 t1t2 − t1t3 + t2t3 − t1t4 + t2t4 − 4 t3t4

−t1t2 + t1t3 − t2t4 + t3t4
−2 t1t2 + 2 t3t4

−2 t1t2 − t1t3 − t2t3 + t1t4 + t2t4 + 2 t3t4

⎞
⎟⎟⎟⎠ (9)

while the second term is the matter field contribution which 
reads5

⎛
⎜⎜⎜⎜⎝

−Se2−e1 S†
e2−e1 − Se4−e1 S†

e4−e1

Se2−e1 S†
e2−e1 + Se2−e3 S†

e2−e3 + Se2−e5 S†
e2−e5

−Se2−e3 S†
e2−e3 − Se4−e3 S†

e4−e3

−Se2−e5 S†
e2−e5

Se4−e1 S†
e4−e1 + Se4−e3 S†

e4−e3

⎞
⎟⎟⎟⎟⎠

(10)

Finally, the superpotential is severely restricted by the S(U (1)5

symmetry and only contains the terms

W = λi H̄−e2−e4

(
Q (i)

e2 ue4 + Q e4 u(i)
e2

)

+ ραi S(α)
e2−e5

L(i)
e4+e5

H̄−e2−e4 . (11)

Here, i = 1, 2 labels the two families with the same S(U (1)5)

charges and α = 1, 2, 3 labels the three singlets Se2−e4 . We empha-
sise that these are all the allowed superpotential terms, including 
possible higher-dimensional operators with or without singlet in-
sertions. In particular, we note the absence of any dimension four 
and five operators which can induce proton decay. Additionally, we 
see that the down-Yukawa matrix vanishes perturbatively6 and the 
up-Yukawa matrix has rank 2. The actual quark masses depend on 
the proper normalisation of the kinetic terms in the action which 
is beyond the scope of the present paper and will not be relevant 
to the main point we would like to make.

We should now study the supersymmetric moduli space of 
this model, taking into account the Kähler moduli ti and the sin-
glet fields S . Since the above superpotential has no pure singlet 
field part, this amounts to studying the D-flat directions of the 
model. We begin with the specific locus where all singlet field 
VEVs vanish, 〈S〉 = 0, and where the additional U (1) symmetries 
are not spontaneously broken (although three of them are Stück-
elberg heavy). To satisfy the D-flat conditions in this case, the FI 
terms have to be set to zero individually which is equivalent to 
t1 = t2 = t3 = t4.

If we move away from this specific locus in a generic way, by 
switching on all singlet VEVs, the non-zero matter field parts of 
the D-terms can be compensated for by the FI terms with suitable 
choices of the Kähler moduli, provided they satisfy the inequalities

t1t2 + t1t3 − t2t4 − t3t4 ≥ 0

4 t1t2 − t1t3 + t2t3 − t1t4 + t2t4 − 4 t3t4 ≤ 0

−t1t2 + t1t3 − t2t4 + t3t4 ≥ 0

−2 t1t2 + 2 t3t4 ≤ 0

−2 t1t2 − t1t3 − t2t3 + t1t4 + t2t4 + 2 t3t4 ≤ 0 (12)

The intersection of the half-spaces defined by the above inequali-
ties with the Kähler cone, ti > 0, is non-empty, indicating the exis-
tence of supersymmetric vacua for generic (small) VEVs of the sin-
glet fields and everywhere in a neighbourhood of t1 = t2 = t3 = t4

5 For simplicity, we omit the matter field Kähler metric G I J . Since G I J is positive 
definite this will not affect our conclusions.

6 A non-zero down-Yukawa matrix may be generated by non-perturbative effects.
in Kähler moduli space. For such generic VEVs, all the additional 
U (1) symmetries are spontaneously broken. In addition, as long as 
〈Se2−e5 〉 	= 0, an LH̄ term is induced from the last term in the su-
perpotential (11). For sufficiently large VEVs 〈Se2−e5 〉, this removes 
the pair of Higgs doublets from the spectrum. A non-generic Higgs 
doublet pair which is massless only for special choices of moduli 
is a common feature in string standard models – a string theory 
manifestation of the μ-problem.7

For this reason, we will focus on the part of moduli space 
where 〈Se2−e5 〉 = 0, while all other singlet field VEVs can be non-
zero. In this case, for a solution to the D-flat conditions, the Käh-
ler moduli should still satisfy the inequalities (12), except for the 
fourth one which has to be replaced by the equality −2 t1t2 +
2 t3t4 = 0. A solution to these conditions exists for generic choices 
of all singlet VEVs (keeping 〈Se2−e5 〉 = 0) on a co-dimension one 
locus in Kähler moduli space. On this locus, we keep a light pair 
of Higgs doublets and only three of the four U (1) symmetries are 
spontaneously broken, while one linear combination, denoted by 
U X (1) and specified by the direction (1, 1, 1, 1, −4) remains un-
broken. We will now study the model at this locus in the moduli 
space in more detail.

3. The B–L model

For 〈Se2−e5 〉 = 0 but otherwise generic, non-zero singlet field 
VEVs, the low-energy theory has a symmetry group GSM × U X (1), 
where the group U X (1) is global, and the matter spectrum is given 
by

3 Q −1 3 u−1 3 e−1

3 L3 3 d3 3νR−5

H−2 H̄2 9 S0 (13)

Here, the subscript denotes the U X (1) charge. The U X (1) symme-
try is special in several ways. Firstly, combined with the hyper-
charge Y as

B − L = −1

5
X + 2

5
Y , (14)

it leads to a B–L symmetry of the model. Secondly, the spectrum 
contains three right handed neutrinos (which are identified with 
three of the singlet fields) with the correct U X (1) charge to render 
this additional symmetry non-anomalous. Note that the associated 
gauge boson is still Stückelberg heavy.

In Refs. [1,2] this model has been obtained both by continu-
ation along flat directions from the model at the enhanced sym-
metry locus and by a direct string construction. As it stands, the 
model retains no memory of the additional three U (1) symme-
tries present at the enhanced symmetry locus and is, therefore, 
much less restrictive. For example, the U X (1) symmetry allows for 
generic Yukawa couplings in contrast with the restricted super-
potential (11). However, we know that the superpotential at the 
enhanced symmetry locus is restricted as in Eq. (11) including all 
possible terms with singlet insertions. Hence, no other terms will 
be generated for non-zero singlet VEVs and we conclude that the 
superpotential retains its form (11), despite the absence of sym-
metries in the B–L model to explain this specific structure.

A similar situation arises with regard to proton stability. Dimen-
sion four operators, such as u d d, Q L d and e L L are forbidden 
by the U X (1) symmetry or, equivalently, by the B–L symmetry. 

7 However, it is interesting to note that there are examples in the standard model 
data base [10] where the Higgs doublet pair remains massless throughout moduli 
space.
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However, the global U X (1) symmetry does not forbid the dimen-
sion five operators Q Q Q L and u u d e which are known to induce 
fast proton decay. However, we know from Eq. (11) that all proton 
decay operators, including those with singlet insertions, are forbid-
den at the enhanced symmetry locus. Hence, the dimension five 
operators must be absent for the B–L model even though they are 
not forbidden by a symmetry of the model.

Finally, we would like to discuss the possibility of discrete 
remnants from the spontaneous breaking of the three U (1) sym-
metries which might explain the absence of these operators. 
The spontaneous breaking is induced by VEVs for the fields 
Se2−e1 , Se4−e1 , Se2−e3 , Se4−e3 . The S(U (1)5) charges indicated carry 
the correct integral normalisation and they are all ±1. From these 
properties it can be shown that there are, in fact, no discrete rem-
nants left over.

4. Conclusion

In this letter, we have studied a heterotic standard model in the 
context of its four-dimensional effective theory. Generically, this 
model has a standard model gauge group plus a U B–L(1) symme-
try, an MSSM spectrum, including three right-handed neutrinos, 
and a number of singlet fields. In this model, dimension five opera-
tors which induce proton decay are allowed by the symmetries, in-
dicating a possible phenomenological problem. However, we have 
shown that there is a specific locus in the moduli space where the 
symmetry enhances by three additional U (1) symmetries. These 
additional U (1) symmetries forbid the dangerous dimension five 
operators as well as all their possible variants with singlet in-
sertions. As a result, these operators are absent throughout the 
moduli space and the B–L model is safe from fast proton decay.

Our main point is that knowledge of the full moduli space of a 
model – and loci of enhanced symmetry in particular – can lead 
to phenomenologically important constraints on the model and can 
rule out couplings which seem otherwise allowed. Given that cou-
pling constants, specifically those for higher-dimensional operators, 
are not easy to calculate directly from string theory this can lead 
to valuable information about the structure of the low-energy the-
ory.
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