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1. Introduction

In this paper, we study the Cauchy problem for the Korteweg-de Vries-Burgers (KdV-B) equation
with fractional dissipation

Up + Upo + €]0x*%u + (1), =0, u(0)=¢, (1.1)

where 0 <€, < 1, u is a real-valued function of (x,t) € R x R;. Eq. (1.1) has been derived as a
model for the propagation of weakly nonlinear dispersive long waves in some physical contexts when
dissipative effects occur (cf. [9]). The global well-posedness of (1.1) and the generalized KdV-Burgers
equation has been studied by many authors (see [7,8] and the reference therein).

In [7] Molinet and Ribaud studied Eq. (1.1) in the case o =1 and showed that (1.1) is globally well-
posed in HS (s > —1). The main tool used in [7] is an X*P-type space which contains the dissipative
structure. Their result is sharp in the sense that the solution map of (1.1) fails to be C? smooth at t =0
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if s < —1. In particular, one cannot get lower regularity simply using fixed-point machinery. Note that
s = —1 is lower than the critical index s = —3/4 for the KdV equation and also lower than the critical
index s = —1/2 for the dissipative Burgers equation. The case 0 < o < 1 was left open and it was
conjectured in [7] that one can get that (1.1) is globally well-posed in H® (s > s. = (o — 3)/2(2 — ))
by using the same strategy as o = 1.

In the first part of this paper, we will study the global well-posedness of Eq. (1.1) by following
some ideas in [7].! The main issue reduces to a bilinear estimate

[0xV) | y—1/22550 < Cllullxr/zsalVIIx1/2.50- (1.2)

For the definition of X25%, one can refer to (2.2) below. We will apply the [k; Z]-multiplier method
in [10] to prove (1.2). We obtain a critical number

—3/4, 0<a<1/2

- (13)

-3/5-2w), 12<a<1.

The well-posedness in H*(R), s > —3/4, for any « > 0 was first obtained by Molinet and Ribaud [8].
It is worthy to note that s, is strictly bigger than the conjectured number s. for 0 < o < 1. We prove
that (1.2) holds if and only if s > s4. So, it seems that s > s, is an essential limitation of this method
in these resolution spaces.

In the second part of this paper, we study the inviscid limit behavior of (1.1) when € goes to 0.
Formally, if € =0 then (1.1) reduces to the KdV equation

U + e + (%), =0, u0) =¢. (1.4)

X

The local well-posedness of Eq. (1.4) in L? was established by Bourgain [1] and the XP:S-theory was
discovered. This local solution is a global one by using the conservation of L? norm. The optimal
result on local well-posedness in HS was obtained by Kenig, Ponce, Vega [5], where they developed
the sharp bilinear estimates and obtained that (1.4) is locally well-posed for s > —3/4. The sharp
result on global well-posedness in HS was obtained in [2], it was shown that (1.4) is globally well-
posed in H® for s > —3/4, where a kind of modified energy method, so-called I-method, is introduced.

A natural question is whether the solution of (1.1) converges to that of (1.4) if € goes to 0. We will
prove that the global solution of (1.1) converges to the solution of (1.4) as € — 0 in the natural space
C([0, T1, H®) for —3/4 < s < 0. To achieve this, we need to control the solution uniformly in €, which
is independent of the properties of dissipative term. We prove a uniform global well-posedness result
using ['-variant X?S-type space and the I-method. Notice that (1.1) is invariant under the following
scaling for 0 <A <1

ulx, t) = 22u(ax, 23t), o — %P0,  €— 13N, (1.5)

Eq. (1.1) has less symmetries than the KdV equation (1.4) due to the dissipative term. Hence the
proofs for the pointwise estimate of the multipliers in our argument are different from those in
the KdV equation [2]. The basic idea is the same, and to exploit dedicated cancellation to remove the
singularity in the denominator.

For the limit behavior, we need to study the difference equation between (1.1) and (1.4). We first
treat the dissipative term as perturbation and then use the uniform Lipschitz continuity property of
the solution map. Similar idea can be found in [14] for the inviscid limit of the complex Ginzburg-
Landau equation. For T > 0, we denote S$, St the solution map of (1.1), (1.4) respectively. Now we
state our main results. The notations used in this paper can be found in Section 2.

1 After the paper was finished, the authors have been informed that the same results in this part were also obtained by
Stéphane Vento [13] using the similar method.



3866 Z. Guo, B. Wang / J. Differential Equations 246 (2009) 3864-3901

Theorem 1.1. Assume 0 < €, « < 1. Let s, be given in (1.3). Let ¢ € H*(R), s > sy. For any T > 0, there exists
a unique solution u¢ of (1.1)in

Zr =C([0, T1, H%) N X;/>%. (16)
Moreover, the solution map S : ¢ — u is smooth from H*(R) to Zt and u belongs to C((0, 00), H*(R)).

Notice that the critical regularity for the fractional Burgers equation is s =3/2 — 2« in the sense
of scaling. Thus if 1/2 <« <1 then s, is lower than the critical regularity for the KdV and also for
the fractional Burgers equation. In the proof we need to exploit the properties of the dissipative term
both in bilinear estimates and regularity for the solution. Therefore, the results in Theorem 1.1 depend
on € > 0. For the uniform well-posedness, we have the following:

Theorem 1.2. Assume 0 < o < 1 and —3/4 < s < 0. Let ¢ € H*(R). Then for any T > 0, the solution map S
in Theorem 1.1 satisfies forall 0 < € <1

1500 psry < C(T, Nullas), (17)

where FS(T) c C([0, T1; H®) which will be defined later and C(-,-) is a continuous function with C(-,0) =0,
and also satisfies that forall 0 < € < 1

155 @1 = S7@2) | c .10 < (T2 Idtllms. Ip2lls) 11 — B2l b (1.8)

We also have the uniform persistence of regularity, following the standard argument. The
similar conclusions in Theorem 1.2 also hold for the complex-valued equation (1.1) for a small
T =T(|lullgs) > 0. Our final result is on the limit behavior.

Theorem 1.3. Assume 0 < @ < 1. Let ¢ € H*(R), —3/4 <s < 0. Forany T > 0, then
. € _
6&2}4_ ” ST(¢) - ST(¢) HC([O,T],HS) =0. (19)

Remark 1.4. We are only concerned with the limit in the same regularity space. There seems no
convergence rate. This can be seen from the linear solution,

—t83 —te|dy| 2 ®

e — e % corpms = 0. as €0, (1.10)

but without any convergence rate. We believe that there is a convergence rate if we assume the initial
data has higher regularity than the limit space. For example, we prove that

IS5 @1 = S1@2) ¢ qo.11.12) S 61 = P2lli2 + € 72C(T, il g2l 2)- (111)

We only prove our results in the case s < 0 and our method also works for s > 0. For the complex-
valued equation (1.1), the limit behavior (1.9) holds for a small T =T (||¢| gs) > O.

The rest of the paper is organized as follows. In Section 2 we present some notations and Banach
function spaces. The proof of Theorem 1.1 is given in Section 3. We present uniform LWP in Section 4
and prove Theorem 1.2 in Section 5. Theorem 1.3 is proved in Section 6.
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2. Notation and definitions

For x,y € R, x~ y means that there exist C1, C; > 0 such that Cq]x| < |y| < Cz|x|. For f € S we
denote by f or F(f) the Fourier transform of f for both spatial and time variables,

fe.n= / e ™ e T f(x, t)dxdt.
R2
We denote by Fy the Fourier transform on spatial variable and if there is no confusion, we still write

F = Fx. Let Z and N be the sets of integers and natural numbers, respectively. Z; = N U {0}. For
keZy let

Ie={&: gl €[22}, k=1, Io={&: l51<2).

Let no : R — [0, 1] denote an even smooth function supported in [—8/5,8/5] and equal to 1 in
[—5/4,5/4]. For k € N let ni(§) =no(&/2%) — 10(§/2"1) and ey = Yo 1. For k € Z let i (§) =
no(&/2%) — no(&/2%1). Roughly speaking, {)i}iez is the homogeneous decomposition function se-
quence and {nk}kez, is the non-homogeneous decomposition function sequence to the frequency
space.

For k € Z,. let Py denote the operator on L%(R) defined by

Pru(€) = ni(©)u(e).

By a slight abuse of notation we also define the operator Py on L%(R x R) by the formula
FPw)E, ) =nk@E)F W), 1). For € Z let

Pgl:Zka P>z=zpk~

k<! k>l
We define the Lebesgue spaces L%LY and L{L% by the norms
Iflaee = N A e loqory:  WFlese = [ lgaqo.rp le- (21)
We denote by Wy the semigroup associated with Airy equation

Fe(Wo(D)¢)(€) = exp[i®t]p(€), VteR, ¢S’

For 0 <e <1 and 0 <a <1, we denote by W the semigroup associated with the free evolution of
(11),

Fu(WE©9)(6) = exp[ el Pt +iEt]p(§), V>0, €S,
and we extend W to a linear operator defined on the whole real axis by setting
Fr(WE(0)e) (&) = EXP[—EIEIZO‘IH + i$3f]$(5), VtER, peS'.

To study the low regularity of (1.1), Molinet and Ribaud introduce the variant version of Bourgain’s
spaces with dissipation

lull s = |(i(T = €%) + 167 €0 12 gy (2.2)
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where (-) = (1+ |- |?)1/2. The standard X space for (1.4) used by Bourgain [1] and Kenig, Ponce,
Vega [5] is defined by

lullgos = |(z = ) €T 12 ga)-

The space X!/25% turns out to be very useful to capture both dispersive and dissipative effect. From
the technical level, the dissipation will give bounds below for the modulations. These bounds will
weaken the frequency interaction for o > 1/2, but will not for o < 1/2.

In order to study the uniform global well-posedness for (1.1) and the limit behavior, we use an I
Besov-type norm of X5, For k € Z,. we define the dyadic XP:5-type normed spaces Xj = Xi(R?),

X = {f € L*(R?): f(&,7) is supported in I, x R and || f|Ix, =221/2||17j(r —-&%). f||L2}.
=0

Structures of this kind of spaces were introduced, for instance, in [12], [4] and [3] for the BO equation.
From the definition of Xy, we see that for any [ € Z, and f; € X (see also [4]),

o0
> 22ny(e =) [ e o2 1+ 27 e = 7)< 23)
j=0
Hence for any | € Z, to € R, fi € Xk, and y € S(R), then
|17y @' =) - F i, < N ficll (24)
For —3/4 < s <0, we define the following spaces:
FS= {u eS'(R?): Jlulls = Y 2%% @) Fw) ||f<k < oo}, (2.5)
keZy
NS = {u e S'(R?): Nulfs = Y 22| (i+7 - &) m@Fw]3, < oo}. (2.6)

keZ4

The space FS is between X!/25 and X'/2t:5. It can be embedded into C(R; H®) and into the
Strichartz-type space, say LYL} as X'/2+5. On the other hand, it has the same scaling in time as
X1/2:5 which is crucial in the uniform linear estimate, see Section 4. That is the main reason for us
applying F®.

For T >0, we define the time-localized spaces X';’S’“, Xl;’s, FS(T), and N*(T)

lull yosa = inf {[[Wllxssa, w(t)=u(t) on [0, T]};
XT wexb.s.a
lull o = inf {[wlixss, w(t)=u(t) on [0, T1};
T weXb-s

lullpscry = inf {[[w|ps, w(t)=u(t) on [0, T]}:
weFs

Nl s ry ZWiQISS{IIWIINS, w(®) =u(t) on [0, T1}. (2.7)

As a conclusion of this section we prove that the norm on F° controls some space-time norm
as the norm X1/2+S_If applying to frequency dyadic localized function, we see that the norm F* is
almost the same as the norm X'/2t5. Fortunately, in application we usually encounter this case. See
[11] for a survey on X5 space.
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Proposition 2.1. Let Y be a Banach space of functions on R x R with the property that

Heittoe—faffHY S s

holds for all f € H*(R) and 19 € R. Then we have the embedding

1/2
( > ||Pku||%) S llulls. (2.8)

keZ

Proof. In view of definition, it suffices to prove that if k € Z
IPrully < 2% m@EF @) - (2.9)

Indeed, we have
Pyu =/nk(E)Fu(é, T)e™ el dt dt

o0
=3 [ (e - &) me@Fute ee ds dr
j=0
o0
= Z/m(z)ei” / M@ Ful(E, T+ £3)e™ e’ dz dr. (2.10)
j=0
From the hypothesis on Y, we obtain

I1Pyuly SZ/Ylj(r)"eitffnk(é)fu(é,r+$3)ei"§eit53 |, dr
j=0

S2¥ & Fwy, . (211)
which completes the proof of the proposition. O

3. Global well-posedness for KdV-B equation

In this section, we prove a global well-posedness result for the KdV-Burgers equation by following
the idea of Molinet and Ribaud [7]. Using Duhamel’s principle, we will mainly work on the integral
formulation of the KdV-Burgers equation

t
1
u(t) = We(t)p1 — 5 / Wt — f)ax(uz(f))dr, t>0. (3.1)
0
We will apply a fixed point argument to solve the following truncated version

t
t
u(t) = wt)[wg‘(r)m - XRT() f Wt — 7)a (W2 (D)uA(T)) dr}, (32)
0
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where t € R and v is a smooth time cutoff function satisfying
¥ e C°(R), suppy C [—2,2], Yv=1 on[-1,1], (3.3)
and Y7 (-) =¥ (-/T). Indeed, if u solves (3.2) then u is a solution of (3.1) on [0, T], T < 1.
Theorem 1.1 can be proved by a slightly modified argument in [7] combined with the following

bilinear estimate. See also [13].

Proposition 3.1. Let s, be given by (1.3). Let s € (S¢, 0], 0 < § < 1, then there exists Cs o > 0 such that for
anyu,veS,

[0x@V) | x-1/24550 < Cs.allullxr/zsallVIxi/2sa- (34)

This type of estimate was systematically studied in [10], see also [5] for an elementary method.
We will follow the idea in [10] to prove Proposition 3.1. Let Z be any abelian additive group with
an invariant measure d¢. In particular, Z = R? in this paper. For any k > 2, let I}(Z) denote the
hyperplane in R¥

N(2) = {1, ....8) € Z" &+ +E=0}

endowed with the induced measure

/f: / fE1 o b1, =81 — - — &) dEr .. dE_.

1(2) Zk-1

Note that this measure is symmetric with respect to permutation of the co-ordinates.
A function m: I,(Z) — C is said to be a [k; Z]-multiplier, and we define the norm [m||j,z) to be
the best constant such that the inequality

k
/ m@ [ [ fi&)

N =

k
<lmllpez [T 1filli2 (35)
j=1

holds for all test functions f; on Z.
By duality and Plancherel’s equality, it is easy to see that for (3.35), it suffices to prove

<1. (3.6)
[3:R?]

‘ [£31(63)° (61) 7 (62) *(i(T3 — &3) + |&5>) ~1/2°
(i(t2 — &) + 1627 V/2(i(11 — &1) + |1 )12

By comparison principle (see [10]), it suffices to prove that

Z Z Z N3(N3)*(N1)*(N2)~*
2 2 2 _
N1,N32,N3Ly,Lp,L3 H <Ll+N1D[>1/2<L2_l—NZa)l/z([B—i_N:"a)]/z b

X || XNy .No. N H: Ly Lo sl 3ir2y S T (3.7)

where N, L;, H are dyadic, h(¢) =&} +&; + &5 and

XN1. N2, N3 HiL Lo, Ly = Xlg|~Nu,[&al~No, [E31~Ns XIN®I~H Xy —£3 oy -8 Lo ra—E3 oLy (3+8)
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The issues reduce to an estimate of
| XNy N2 N3 H: Ly Lo, Ls 11 [3:R2) (3.9)
and dyadic summation. Since
S+6+E6=0, |h©|=|& +& +&]~NiN2Ns,
and
—H -5+ T8 +hE) =0
then we have
Nmax ~ Nied,
Linax ~ max(Lyeq, H), (3.10)

where we define Npgx = Npmed = Nmin to be the maximum, median, and minimum of N1, Ny, N3
respectively. Similarly define Lpygx > Lieq = Linin. It is known (see Section 4, [10]) that we may assume

Nmax 21, Ly, L, L3 2 1. (3.11)

Therefore, from Schur’s test [10, Lemma 3.11] it suffices to prove that

Z N3(N3)*(N1)*(Np)~°
2 2 2 —
NoaxNaad <N 11,1 Tyz1 (L1 T NPV (L2 + Ny*) V2 (L + N3¥) 17270

X || XNy N2 N3: Linax: Ly . L. L3 1 [3:R2) (312)

and

Z Z Z N3<N3>S(N1>7S<N2>7S
2a 1/2 200\1/2 20071/2—8
Nmax~Nmed~N Lmax~Lmed H<Lmax L +N / (L +N ) / (L +N ) /

X || XNy Np.Ns:H:Ly L. L3 |32 (3.13)

are both uniformly bounded for all N > 1.

Proposition 3.2. (See [10, Proposition 6.1].) Let dyadic numbers H, N1, N2, N3, L1, L, L3 > 0 obey (3.10),
(3.11).

(i) If Nmax ~ Nmin and Lingx ~ H, then we have

1/2,,—1/4,1/4
B9 SLY2Npa LA (3.14)
(ii) If N ~N3> Nyand H ~ Ly 2 Ly, L3, then
N 1/2
3.9 SN min(H, N’“‘f* Lmed> . (3.15)
min

Similarly for permutations.
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(iii) In all other cases, we have

(3.9) SLYAN-1 min(H, Lipeg)'/?. (3.16)

~ Tmn

In order to estimate the denominator in (3.12), (3.13), we will need the following proposition to
reduce some cases.

Proposition 3.3. Let k € N. Assume that aq,ay, ...,a, and by, by, ..., by are non-negative numbers, and
A1 <Ay <--- < Ay, B1 < By <--- < By are rearrange of {a;}, {b;} respectively. Then

k k
[ J@i+bo =] ]cai+B. (317)

Proof. We apply an induction on k. The case k =1 is obviously. For k = 2, we have

(a1 +b1)(az + bz) =araz + b1ba + aibz + azby
> A1Ay + BBy + A1By + A2B1 = (A1 + B1)(A2 + B2).
We assume the lemma holds for all g € N, g <k — 1. Now we prove for k. If a; = A1, by = B1, then

we apply induction assumption for k — 1 and get (3.17). Otherwise, we may assume a; = A1, b, = Bj.
By induction assumption for 2, then k — 1, we get

k

[ J(@i +b) =@ +b1) (@ +b2)l_[(az +by)

i=1 i=3

k
> (A1 + B1)(a2 +b1) [ [(ai +bi)
i=3

k
>[cAi+ B, (318)

which completes the proof of the proposition. O

Proof of Proposition 3.1. We will prove the proposition using case-by-case analysis. We first bound
(3.13). Since we have

N3(N3)*(N1)~*(N2)™* < N(Nmin) ~* + N> Ninin (Nimin)* (3.19)

and from (iii) of Proposition 3.2, we obtain

1/2 1/2
(N{Nmin) >+ N~ 2SNmm(Nmtn} )me min
CRES Z Z L1/2 5L1/2 8Ll/2 8
Ninax~Nmed~N Li,Lmax = H max  “med “~min

_ 1/2
< Z Z N{(Nmin) > +N 25Nmin<Nmm) )Lmtlz;LB(st/m
Nmax~Nmed~N Lmax2H
_ 1/2
SN (NN NN
Nimin <N72
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+ Z (N+N725ijn)N 2+65N 1/2+4348

min
N=2<Npin<1

+ Z NNmm+N 25N311+S)N 2+68N_1/2+38

min
Nmin 21

<1 (3.20)

provided that —1 <s <0.
We next bound (3.12), which is more complicated. We first assume that (3.14) applies. Then we
have

1/2,1/4

s Y )3 N7 L i L g (Lmin + N2) 7120
. ~ N T N L Tas (Lmax + N2a)1/2—8<Lmed + N2a>1/2—8

N3/A-s1/4+
DD N
~ N3/2-38 L ed+N2a>1/2—5

Nmax~Nmin~N Lied

SNTiTEST <y (3.21)

provided that —% -2 <s<o.
If (3.16) applies, from Proposition 3.3, we obtain

12 N-171/2

-2
3. 12) < ZZ (N(Nmm) + N— stm<Nmm) )me Lmed
(Limax + N2@)1/2= 5<L d+N2a)l/2 8(Lmln+N2a y1/2-8

< Z (N(Nmin)7S + NizSNmin(I\Imz'n)s)l\’71+4mS
~ (Nszin +N2a)1/2738

Z (N+N—23Nmin)N—l+40[8

<
~ No—638

Npin SN22-2

+
N20=2 Ny <1
(NN 4+ N- 25N1+S)N 1+4as

Z min
1/2 -38

1-66
Nmin 21 N N

(N+N—25Nmin)N—1+40t5
N1- 65N]/2 38

< N—OH—]OS + N—25—3+a+68 + N—2$—2+68 + N—5—3/2+78

<1, (3.22)

~

provided that —1 < s <0.
If (3.15) applies, we have three cases:

N3 ~ N3 > Ny, L1 2Ly, Ls, (3.23)
Ni~N3>» Ny, L2214, L3, (3.24)
Ni~Ny>»>N3, L3221, L (3.25)

If (3.23) holds, then we have
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1/2
min

N<Lme +N2a)1/2 6<me+N2a>1/2

N (Ninin) ™ L N ™1 min(H, {22 Lypeq)'/2

CRRIPS ZZ N2

L mzn

1/2
min

N{(Lp, +N2a)1/2 )

N(Npin)~* 10g(Limea) N~'N
S I

N Linea>NNZ, min

§ —1/2

+Z N{Nmin)™ log(Lmed)Lmed 1Nmm/ N1/2
172 -

Ni Linea SNNZ, N N(Lipeq + N29)1/2-8

= A1+ As. (3.26)

N

We first bound Aj:

L5
< med
AS Z Z (Lmed + N20)1/2=8

N=2<Nin <1 Lipeg 2NNZ,

+ Z Z Lmedezsn
(Lmed>1/2 -3
Npin 21 Lmed>NN§1m

§N7a+78 + Z Nr_msn 1445 \—1/2+26 <1, (3.27)
Nmin>1
provided —1 <s < 0.
For A3, we have
3+1/2 1/2 8+1/2 \—1-sp—1/2
ns Y ) Lied NN~ DS Lined’ N “N~'/2
2 (Lin d+N2(x 1/2-6 (Lmed+N2a)]/2_6
N=V2Nmin <1 Lingg<KNN2,, Nimin21 L0 <KNN2,
26—1/2 \j48—1 —1—54+48 \j—1/2425
5 Z N Nmm + Z Nmin N
N=12Npin<1 Nmin21
S, (3.28)

provided —1 <s < 0.
From symmetry, the case (3.23) is identical to the case (3.24). Now we assume that (3.25) holds,
and we obtain

25 (Nimin)* NiminL N ™1 min(H, 222 L 0)1/2

<312><ZZ e

L mm N1 28<Lmed+N2a)1/2—5<Lmin+N2a>1/2

N2 Nynin)* Niin 10g(Lineg) NN /2

1/2—8 \j1— —
Nm/in N1 ZS(Lmed+N2a>1/2 8

DY !

Ni' Linea>NNZ,

1/2 —1n—1/2751/2
N2 *(Nmin)* Nmin IOg(Lmed)Lmed Nmin N
+2 2

1/2—6 \j1—
Nm/in N1 26<Lmed+N2a>l/2

Ni Linea <NNZ,

=B1+ Bs. (3.29)

We first bound Bj:
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N—ZS l+28N1+5 LB N—ZS 1426 Nr1n+5+SL6

< min ~“med med
Bi % Z Z (Lmed + N22y1/2-8 + Z Z (Lmed + N22)1/2=3

N=2Nmin <1 Lingg =NN2,. Nmin21 Lyeg >NN2,

2s—1+428 py1+6 25—1+428 Ny 1+8+s
< Z N~ Nmzn Z N~= Nmm (3 30)
~ 2 200\1/2-26 2 200\1/2-28 " .
Nfngmingl <NNmm + N a> / min>1 (NNmin + N 0() /

We discuss it in the following two cases. If 1/2 <« <1, then

min
Nmin>Na_1/2 1<Nmin<Na_]/2

B, §N7257170(+68+ Z N— 25— 3/2+4z§1\155+s+ Z N725717a+65N;1-l!—n8+s’ (3.31)

provided that —ﬁ <5s<0.If0<a<1/2, then

—25—3/2-+48 758 —25—3/2448 nj58+S —25—1—a+68 \j146
Bi S Z N N + Z N Nmin + Z N Nmm
N=1/2 Nppin <1 Npin 21 N=2L Npin KNO—1/2
S, (3.32)

provided that —3/4 <s <0.
For B,, we have

25—3/2428 N8 [ 1/246 25—3/2428 NyS+s1/24+8
B, < Z Z N~ NmmLmed + Z Z N~ NmmLmed
2 (Limed + N2)172 (Lmed + N2)172
N=V2<Nmin <1 LmedgNN%ﬂ'n Ninin 21 LmedgNernin
and get
N—25—1438 1438 N—25—1+438 N 1+5+38

By < Z —_min__ Z Z Tmin
~ 2ay1/2 2 2ay1/2
N=12Nmin<1 (NNmin + N2V min 21 (NN + N2V

If 1/2 <o <1, then

—25—1—a+36 25—3/2+438 pys+36
By <N + > N N5t

Niin >N=1/2

2s—1—a+38 \j1+5+36
+ Z N Nmm

1< Npin KNO~1/2

<1, (3.33)
provided that —=3- <s<0.1f 0 <a < 1/2, then
By < N251-a 313
N=172 < Ny SNO-1/2
+ Z N3N Z N-253/243 i35
Ne=1/2 Npin <1 Nmin>1
<1, (3.34)

provided that —3/4 < s < 0. Therefore, we complete the proof of Proposition 3.1. O
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Proposition 3.4. If s < sy, then for any 0 < § < 1, there does not exist C > 0 such that forany u,v € S,
[8x V)| y-1/205.50 < Cllttllx125a VIix1/250- (3.35)
Proof. From the proof of Proposition 3.1, we see that the restriction on s is caused by high-high

interaction, and hence we construct the worst case. The idea is due to C. Kenig, G. Ponce and L. Vega
[5]. In view of definition, (3.35) is equivalent to

H A+ 5D fE, A+ EDTfE &, T -+ —&D)  d6rdn
A+ 1P +1T =DV ] (15112 + |1 = EDVHE - 6112 + |t — 11 = ¢ —§0°DV? N1z,
< ||f||§§r. (3.36)
If0<a<1/2, fix N> 1, we set
f(%-st):XA(évr)‘FXfA(évr)a
where
A={E 1 eR*N<ESN+1,N<|r - &3 <2N},
and
—A={¢. 1) eR? | —(, 1) e A}
Clearly,
Ifllz, ~NV2. (3.37)

On the other hand, A contains a rectangle with (N, N> + N) as a vertex, with dimension N~! x N2

and longest side pointing in the (1, 3N?) direction. Therefore,

|f* fE, 1) Z Nxr(&, 1), (3.38)
where R is a rectangle centered at the origin of dimensions N~! x N2 and longest side pointing in
the (1,3N?) direction. Taking the one-third rectangle away from origin, then we have |£| ~ 1, and
therefore (3.36) implies that

NTIH2N=2SN"INNTVZN <N, (3.39)

which implies that s > —3/4.
If 1/2 <o <1, then take

fé&. 1)=xp& )+ x-B&, 1),
where
B={( 1) eR*IN<ESN+NV2 N |t —£3| <2N%), (3.40)

and
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2
-B={(¢ 1) eR*| (¢ 1) € B}.

Clearly,

3o

3a 1
Ifllpz  ~N275. (3.41)

On the other hand, B contains a rectangle with (N, N3 + N2%) as a vertex, with dimension N2¥—2 x
N*+3/2 3nd longest side pointing in the (1, 3N?) direction. Therefore,

f 6. D| 2N yr (5, D), (342)
where R is a rectangle centered at the origin of dimensions N2*—2 x N®*3/2 and longest side pointing

in the (1, 3N?) direction. Taking the one-third rectangle away from origin, then we have |£| ~ N¢~1/2,
and therefore (3.36) implies that

N@=1/2)(145) N @+3/2)(=1/2+8) =25 y—2a pBa—1/2 ya—1 o /2+3/4 < \3a—1/2 (3.43)
which implies that s > -3/(5 —2a). O

Remark 3.5. The constant in Proposition 3.1 depends on «, which is the main reason for gaining
§-order derivative in time in the bilinear estimates. In proving global well-posedness we also need
to exploit the smoothing effect of the dissipative term and then L? conservation law. Therefore, the

result of Theorem 1.1 is dependent of €.

4. Uniform LWP for KdV-B equation
In this section we study the uniform local well-posedness for the KdV-Burgers equation. We will
prove a time-localized version of Theorem 1.2 where T = T(||¢||ys) is small. In view of Remark 3.5,

the space XP5 we used in the last section is not proper in this situation. We will use the space FS.
Let us recall that (1.1) is invariant in the following scaling

ux,t) = 22u(ax, 23t), o) — A2p0x),  €—>11%, VO<i<1. (4.1)

This invariance is very important in the proof of Theorem 1.2 and also crucial for the uniform global
well-posedness in the next section. We first show that F$(T) — C([0, T], H®) for se R, T € (0,1] in
the following proposition.

Proposition4.1.Ifsc R, T € (0, 1], and u € F5(T), then
sup [[u()] ys < lulleser). (4.2)
te[0,T]
Proof. In view of definition, it suffices to show that for k € Z, t € [0, 1],

I @Fa®] 2 S |me) Fuly, (43)

From the fact

WEFUO =3 f ni(T - €)M Fa)(@e dr,
J€Zy g
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we easily see that (4.3) follows from the Minkowski’'s inequality, Cauchy-Schwarz inequality and the
definition of X,. O

We prove an embedding property of the space N° in the next proposition which can be viewed as
a dual version of Proposition 4.1. This property is important in proving the limit behavior in Section 6.

Proposition 4.2.If s € R and u € L2H, then
llullns < llull2ps- (4.4)
Proof. We may assume s = 0. By definition it suffices to prove that for k € Z,
[(i+7 &) " Fw]y, < n©Fw]. (4.5)
which immediately follows from the definition of X;. O

As in the last section we will mainly work on the corresponding integral equation of Eq. (1.1). But
for technical reason we will mainly work on the following integral equation

u®) =y O[WO¢1 — L(3x(v*u?))x. D], (4.6)

where i is as in (3.3) and

itt’ _ ,—elt||§>®
_ ixé; _ ’ ’
L@ 0 =Wo(o) [ 7S e F(Wo-0f)(&. 7 de e’ (47)
RZ
One easily sees that

t
Xe OVOLEE.D = e OVO) [ W= DF @ dr. (48)

0

Indeed, taking w = Wy (-) f, the right-hand side of (4.8) can be rewritten as

t
Wo(t) |:X]R+ Oy ®) / e""ée’“‘é‘zuv"v(é, ) / eift/eeerls‘za dr dg dr’i|
R2 0

v p—etlE

w(, t)de dt’].

_ iXSeii
= Wo(t)[XR+(fW(t)/e it/ + elg]
R2

Thus, if u solves (4.6) then u is a solution of (3.1) on [0, 1]. We first prove a uniform estimate for the
free solution.

Proposition 4.3. Let s € R. There exists C > 0 such that forany 0 < e <1

[vOWE©| s < Cligllns, Yo € HS(R). (4.9)
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Proof. We only prove the case 0 < € < 1. By definition of F?, it suffices to prove that for k € Z
[m@&F @ OWE©8)], S Im©EE] 2. (4.10)

In view of the definition, if k =0, then by Taylor’s expansion
[n0@&F(wOWE©9)] y,

< 221/2

j=0

( 1)11 n‘%-IZnoz .
M0(E)pE) i w)Zn—m (T)n(T)

n>0 ’ s,r

< Z — ||'70(§)¢>(E)||Lz lemw O 1 S Jm0@d @) 2.

n>0

which is the estimate (4.10), as desired. We now consider the cases k > 1. We first observe that if
|€| ~ 2%, then for any j >0,

[P (e ¥ )] 2 < |Pj(e™ ) 0) 2. (41)

which follows from Plancherel’s equality and the fact that

—It] _
Fle )(r)_chz.

It follows from the definition that

Im@&F @ OWE )|, < D272 me@dEn; @) F (@)1 ) @) | 2,
j=0 '

22 @& @P; (w0 )0
j—O

o]

Zzﬂzunk@w(s)HLZ sup 1P (Y ©e 1) @), 2.
j=0
It suffices to show that for any k > 1,
221/2 sup | Pj(w©e ™) @), , S 1. (4.12)
ico lel2

We may assume j > 100 in the summation. Using the para-product decomposition, we have

witz = Y [(Preati)(P<ratz) + (P<run) (Prraua)], (413)
r=0
and
Pj(ujup) = Pj( Z [(Pry1un)(P<rytuz) + (Pgrul)(PrHUz)]) =PI +1D). (4.14)

r>j—10
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‘20(

Now we take u7 = ¢ (t) and up = e €€ It follows from Bernstein's estimate, Holder’s inequality

and (4.11) that

> PP e S 3 2 3T Izl Pritlig,

j>100 j>100 r>j—10
(j—r)/2 r/2
SR DL L AT P
j>=100 r>j—10
<N 9r/2||p.,  (e—€ltl2* <1 415
NZ [Prea )”L§~ ’ (4.15)
1/2 1/2

where we used the fact that B has a scaling invariance and e !l e B the first term P;(I) in
(4.14) can be handled in an ea51er way. Therefore, we complete the proof of the proposition. O

From the proof we see that F° norm has the same scale in time as B;/f and e~€CItl If applying
X1/2+5 norm, one cannot get a uniform estimate. Similarly for the inhomogeneous linear operator we

get
Proposition 4.4. Let s € R. There exists C > 0 such that for all v € S(R?) and 0 < € < 1,

[¥ OLOW) | ps < CllVIINs. (4.16)

Proof. The idea is essential due to Molinet and Ribaud [7]. See also Section 5 in [3]. We only prove
the case 0 < € < 1. In view of definition, it suffices to prove that if k € Z,

Im@F(OLW) [y, S N(+7-8) m@FW)| .- (417)
We set
_ p—etlE® o
w(@) =Wo(—1)v(D),  ke(®)=1v (t)f T T e w(E, thdr'.

Therefore, by the definition, it suffices to prove that

22]/2|Ulc(f)ﬂ](f)ft(ks)(f)||L2 <Zz @ @wE 2 - (418)

j=0
We first write

1 — e—€ltlE

R w(, n)dr

kg(r>=w() / n+€|§|2aw(s,r>dr+w(r>/

7I<1 ITI<1

e—eltlis >

+¢()[ lt+€|§|2aW(§ T)dt — ¥ (t) / WW(&T)W«'

IT|>1 IT|>1
=I14+10+1-1V.

We now estimate the contributions of I-IV. First, we consider the contribution of IV:
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Y22 @ Pi)0] < 32 suplme@ Py e )0
=0 Yojmo ek t
1 @®BE Dl
x — —dt

Il
IzI>1

<22 @i wE v s
j=0 '

where we use Taylor expansion for k =0 and (4.12) for k > 1. Next, we consider the contribution

of IIl. Setting g(&,7) = &WXWN we have

221/2||nk(s>P,<m><t>||Lz <sz”llnk(s)m(r)w>x<r g€ Dz,

j=0

nj@)Im@wE, iz

< 2]/2 ’
Ng lit/] Xt/|>1 2
SRR LAOUHCLICR] P

j=0

/2

where we used the fact that Bz/1 is a multiplication algebra and that F— 1(IWI) € B1 . Thirdly, we

consider the contribution of II. For €|£2* > 1, as for IV, we get

I Dl
—art

22 m@Pian®] 2 <Y 27 sup @ (v (1= e~ ) 0] 5 / =
ET

i=0

S22 m@m@wE o2 -

j=0

For €|£]2* < 1, using Taylor’s expansion, we have

> 2l [m@r;an®] 2,

j=0

NN

n>1j=0

€ |§|20m

wE, 1)
Nk (&) / W‘iﬂ’ RERZG))

ITI<

<‘ / Elélz‘_"|m<($)\7\/(§,f)ld
- liT +€l€1%]

2
Ly

S22 P m@n@wE s
j=0 '

I7TI<

where in the last inequality we used the fact [||t|"y (©)[| j1/2 < lE]" () []y1 < C2". Finally, we consider
2,1
the contribution of I:

B (itt)" N
=vo [ 2 e 1 e 4

lei<1 2

Thus, we get
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222 @ Pih®] 2,

j=0
0] / 7| =~
<> e [ (W (S, T)| dT
n>1 n! 2 T T +elg ] L
S22 @ @wE o2
j=0 ’

Therefore, we complete the proof of the proposition. O

In order to apply the standard fixed-point machinery, we next turn to a bilinear estimate in F5.
The proof is divided into several cases. We will use the estimate for the characterization multiplier in
Proposition 3.2. The first case is low x high — high interaction.

Proposition 4.5. If k > 10, |k — ky| < 5, then forany u € F5, v € F*
. -1 i = =
[(i+7 = &) m@igPoux Piyv | < lIPottllxg I Phy Vilxg, - (419)

Proof. For simplicity of notation we only prove the case that k = k;, since the other cases can be
handled in the same way. From definition of Xj, we get

|G +7 - &) me@igPoux Pev|, <2 > 272)1p, jug j, # iyl (4.20)
JsJ1,J220

where
ugj, = no@nj, (t =&, vij, = mEnj, (v — &)V
Thus, in view of definition it suffices to show that

T,
11Dy 0.jy * Vi, jpll2 S 272975922 g j 121 vi j, 2. (4.21)

By duality and &} + & — (&1 +&)° = —3& £(&1 + &), (4.21) is equivalent to

‘f/u(él, V&, )86 + &, T1 + T2 — 38162(&1 + &) d& dEr dTi dTy
S 27U v )2 gll2 (4.22)

for any u, v, g € L? supported in Iy x Ij,, Iy x Ij,, I x I respectively. Therefore, it suffices to show
that

/ / uENvE)E (& + &2, —38162(51 + &) d& d&;

1611<2 gy |~2k

<278l vl gl (4.23)

for any u, v, g € L? supported in Ig, Iy, I x ijax respectively where jn.x = max(j, j1, j2) and ijux =
Ul3:73 Ijmax+l'
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Indeed, by changing the co-ordinates w1 = &1, uy =& + &, the left side of (4.23) is bounded by

u(u)v(uz — n1)g (12, —3p1 (2 — 1) p2) dis dits. (4.24)
[111<2 |y |~2K

Since in the integration area

d
[ = pops]| ~ 2%, (425)
"1

then by Cauchy-Schwarz inequality we get

(4.24) < llull2llvii2 ] g (2. —3m1 (2 — ) p2) | 2

17 1<2. up |~2K
<27l vii2lgllz, (4.26)

which completes the proof. O

Proposition 4.6. If k > 10, |k — k| <5and 1 <k; <k — 9. Then forany u,v € F*
. _‘l . —_— —_— _ _ —_— —_—
[(i+7 = &) n®igPu s Py, SK272274 P ullx,, 1Phy v, - (4.27)
Proof. We only prove the case k = k;. From the definition, we get

. _‘1 '/\ — i
[(i+7 - &) m@igPouxPev|y $2¢ Y 2720 jup gy # vl (428)
J.Jj1,J220

where
Uk, jy = Nk, E)j, (T — &)1, Vi j, = M@E)nj, (T — ).

By checking the support properties of the functions uy, j,, V,,j, and using the fact that |£;‘13 + 3;‘23 —
(614 &)3| ~ 2%k we get that 1p, ;uy, j, * Vi, j, =0 unless jmax > 2k + ki — 10. Using (3.15), we get

k —j/2
23 272, ug gy Vi, N2
Jri1,J220
52’< Z 2_j/22jmm/22_k/22_k1/22jmed/2”uk1,j1||2||vk,j2||2
Jsj1,J220

k 39—k/29—k1/29—jmax/2 1 D. = Y
<S4 Ny My ine 2Py ik, 1PV X,
Jmax=>2k—+k1—10

SK27227M Py, PRVl (4.29)
which completes the proof of the proposition. O

The second case is high x high — low. This case is the worst and where the condition is imposed.
This is easy to be seen, since s <0 and ||u||gs, ||V||rs are small for u, v with very high frequency.
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Proposition 4.7. If k > 10, |k — k| < 5, then forany u, v € F*
. 7‘1 . — — _ — —
I(i+7 = &) no@©igPeux Piyv | S K227 Pettlx I Piy Vlxi, - (4.30)

Proof. As before we assume k = k,. From the definition, we get

0
[(+7-&) " no@ighuxPev|y S Y 2 Y 2721, kg, kvl (431)

K=—o00  j,j1,j2=0

where

upj, = m@Enj, (T =&, vij, = m@Enj, (r — &) (432)

We may assume that k' > —10k and j, ji, jo < 10k. Otherwise, from the following simple estimate
which follows from Hélder’s inequality and Young’s inequality

imin/2~k' /2
1Dy Uk jy * Vi j 2 S 27mn/ 2282 g, (12| vi j, 2

we immediately obtain (4.30). For the same reason as in the proof of last proposition, we see that
Jmax = 2k + k' —10. Using (3.15), we get

[ +7 — &) no®)ig P Py,

0

K i
S D020 YT 27, g, kvl
k'=—10k  j.j1.j220

0
e
S ) DL 2RIy gy allvi g, N2
k'=—10k j,j1,j220

0
S Y Y e By | Py,
k'=—10k jmax >2k+k’

S22 Pyl | Prvlx, (4.33)
Therefore, we complete the proof of the proposition. O
Proposition 4.8. Ifk > 10, |k — ky| <5and 1 <ky <k —9, then forany u, v € F*
[+ 7 = 8%) " o @ P Py v | S K222 Pt 1PV, - (434)
Proof. As before we assume k =k;. From the definition of X, we get

. -1 P i
[(+7-8) g @igPeux Pyl <29 3 272, ue, xviplla. (435)
J.J1.J220

where uy j,, v j, are as in (4.32). For the same reason as before we have jmnax > 2k 4+ ki — 10 and we
may assume j, ji, jo < 10k. It follows from (3.15) that the right-hand side of (4.35) is bounded by
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Z 2—i/29k19imin/29—k/29—k1/29imed/2 lluk jy I21vk j, l12

JiJ1,J220
S D KRTMRNRTIne 2 Py, | Pevilx,
Jmax>2k+kq

S22 Py x| vl x,.
Therefore we complete the proof of the proposition. O
Proposition 4.9. If k > 10, |k — kx| <5 and k — 9 < ky <k + 10, then forany u, v € F*
[+ 7 =€) " @i P Py v | SK27 4Pl 1 Pig v, (4.36)
Proof. As before we assume k =k;. From the definition of X, we get

. -1 Lo~ i
[G+7 =) n ©iPuxPev|y <29 37 272 p, juij kvicplla, (437)
J.J1.J220

where uy j,, Vi, j, are as in (4.32). For the same reason as before we have jpnax > 2k +ki — 10 and we
may assume j, ji, j2 < 10k. It follows from (3.14) that the right-hand side of (4.39) is bounded by

—j/29Kk19imin/29—k/4~] 4 359=3k/4\| D 1 Doy
> 2mizglagdmin/2p kA med 4wy 1o Vi g, ll2 S K274 Pral| x, || Picv 1, »
JsJ1,J220

which completes the proof of the proposition. O

The final case is low x low — low interaction. Generally speaking, this case is always easy to handle
in many situations.

Proposition 4.10. If 0 < k1, k2, k3 < 100, then for any u, v € F$
. 7‘1 i — —_— —
[ +7 =€) M ©iEPigux Pis v, < IPig g, 1 Pis Vlixi, - (4.38)
Proof. From the definition of Xj,, we get that

: -1 5T —j
[G+7 &) ©igPruxPiv]y <20 30 27020, Uiy jy Vi gy, (439)
J:J1,220
where uy, j,, Vk,,j, are as in (4.32). By checking the support properties of the function uy, j,, Vi, j,.

we get that 1Dk1,j”kz,j1 * Vig j, = 0 unless | jmax — jmed| < 10 OF jmax < 1000 where jmax, jmed are the
maximum and median of j, ji, jo» respectively. It follows immediately from Young’s inequality that

1Dy ik, jy * sz,j2||L§T <2420 gy 12 01Vig o2, i =1, 2. (4.40)
From definition and summing in j;, we complete the proof of the proposition. O

With these propositions in hand, we are able to prove the bilinear estimate. The idea is to de-
compose the bilinear product using para-product, and then divide it into many cases according to the
interactions. Finally we use discrete Young’s inequality.
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Proposition 4.11. Fix any s € (—3/4,0], Vs < o < 0, there exists C > 0 such that forany u, v € F°,
lox@v)|| yo < C(lullpsliviipe + IvIEsullee). (4.41)

Proof. In view of definition, we get that

lxn |2, = 32 2290 i+ 7 — %) s, (g)isa*?”f%. (4.42)

k3 €Zy

We decompose U,V and get

”(i+r_53)*1,7,{3(5)1'@*?”%g Z ||(i+f—&3)71nk3(§)i§P/k1\“*P/k2\VHX,{3‘ (4.43)

k],k2€Z+

By checking the support properties we get that 7y, (S)P/kl\u * P/kz\v =0 unless |kmax — Kmed| < 5 where
kimax, kmeq are the maximum and median of kq, k3, k3 respectively. We may assume that k; <k, from
symmetry. By dividing the summation into high x high, high x low four parts, we get that the right-
hand side of (4.43) is bounded by

-1 L
<Z > >|| i+7 &) M E)iEPux PV (4.44)
J 1k1 szAj 3

where Aj, j=1,2,3,4, are defined by
A1 =1{k2 210, |ky —k3| <5, ky <kz —10};

Aj

{k2>10, lky —k3| <5, ko =9 < ki <k2 +10};
As={ky =10, |ky —ki| <5, ks <kq —10};
Ag = {kq, ka2, k3 < 100}.

Therefore, (4.41) follows from Propositions 4.5-4.10, discrete Young'’s inequality and the assumption
that s> —3/4. O

We next show (1.1) is uniformly (on 0 < € < 1) locally well-posed in HS, —3/4 < s < 0. The proce-
dure is quite standard. See [5], for instance. By the scaling (4.1), we see that u solves (1.1) if and only
if uy (x, t) = A2u(rx, A3t) solves

dus + 5y + €329 %% uy + 0x(uF) =0,  un(0) =A%P(1). (4.45)
Since —3/4 <s <0,
226 (x) || ys = O (A *S|igllns) as A — 0, (4.46)
thus we can first restrict ourselves to considering (1.1) with data ¢ satisfying
lpllps =r < 1. (4.47)

As in the last section, we will mainly work on the integral equation (4.6). We define the operator

Dy () = Y(OWE ()¢ — ¥ (OL(3x(v?u?)), (4.48)
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where L is defined by (4.7). We will prove that @4(-) is a contraction mapping from
B={weF: ||w|ps <2cr} (4.49)
into itself. From Propositions 4.2-4.4 we get if w € BB, then
Do (W) | s < cligls + [ (¥ O W2 (. D) | s
<cr+cllwls < cr +c(2cr)? < 2cr, (4.50)
provided r satisfies 4c?r < 1/2. Similarly, for w,h € B
| @6 (w) = @4 ()| s < c[|Lax (v (1) (u? (1) = h*(D)) | s

<cllw +hllpsllw — hllps

1
<Actrfw = hilps < Sllw —hlps. (451)
Thus @4 (-) is a contraction. There exists a unique u € B such that

u=yOWEO¢ — v (OL(3(v*u?)). (4.52)

Hence u solves the integral equation (3.1) in the time interval [0, 1].
We prove now that u € X/25%, Indeed, from the slightly modified argument as the proof for
Propositions 2.1, 2.3 [7], we can show that

[ OWEOS] 41250 S D15

. V(0)| 22
Hw(f)L(V)Hxl/z.s,a,§||V||x—1/2~w+< / (&)? ( f W‘”> dé) < vllne,

which then imply u € X/25% as desired. For general ¢ € H, by using the scaling (4.1) and
the uniqueness in Theorem 1.1, we immediately obtain that Theorem 1.2 holds for a small T =
T(l¢llns) > 0.

5. Uniform global well-posedness for KdV-B equation

In this section we will extend the uniform local solution obtained in the last section to a uniform
global solution. The standard way is to use conservation law. Let u be a smooth solution of (1.1),
multiply u and integrate, then we get

t
1 1
§||u(t)||§+e/||A°‘u(r)“;dr:§||¢||§. (5.1)
0

By a standard limit argument, (5.1) holds for L%-strong solution. Thus if ¢ € L2, then we get that (1.1)
is uniformly globally well-posed.

For ¢ € H® with —3/4 <'s < 0, there is no such conservation law. We will follow the idea in
[2] (I-method) to extend the solution. Let m:R¥ — C be a function. We say m is symmetric if
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m1, ..., &) =m(o(&1,...,&)) for all o € S, the group of all permutations on k objects. The sym-
metrization of m is the function

1
(Mlym €162, 60 = 17 Y (o1&, E0). (52)
oeSy
We define a k-linear functional associated to the multiplier m acting on k functions uq, ..., uy,
Amyug, ... u) = / m&1, ..., &) (§1) - - - U (&)- (5.3)
&1+ +£,=0
We will often apply Ay to k copies of the same function u. Agx(m;u,...,u) may simply be written

Ag(m). By the symmetry of the measure on hyperplane, we have A(m) = Ag([m]sym)-
The following statement may be directly verified by using the KdV-B equation (1.1). Compared to
the KdV equation, the KdV-B equation has one more term caused by the dissipation.

Proposition 5.1. Suppose u satisfies the KdV-B equation (1.1) and that m is a symmetric function. Then

d k
a/\k(m) = Ay(mhy) — € Agy(mPBy k) — iiAk—o—] (m1. .. &1 &+ S D E &), (5.4)

where
he=i(E +&6++&).  Bak=I61" + &1+ + &

We follow the I-method [2] to define a set of modified energies. Let m: R — R be an arbitrary
even R-valued function and define the operator by

If & =m@&7fE. (5.5)

We define the modified energy E%(t) by
E3(0) = | Tu@®) 2. (5.6)
By Plancherel and the fact that m and u are R-valued, and m is even,
Ef (6) = Az (m(EDm(&)).

Using (5.4), we have

d
EE%(D = Ay (mE)mE)hy) — € Ay (mEDM(E2)Ba,2)
—iAz(mEDmE + &) (& +§)). (5.7)

The first term vanishes. The second term is non-positive, hence good. We symmetrize the third term
to get

d

aE%(t) = —€ A (MEDM(E) Ba.2) + As(—i[mENME +83) (62 + £)],,,)- (5.8)
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Let us denote
M3 (61, 6. &) = —i[mEDmE + &) (E +83)] - (5.9)
Form the new modified energy
E{ () = E} () + A3(03),

where the symmetric function o3 will be chosen momentarily to achieve a cancellation. Applying
(5.4) gives

d
i 10 = —e Ao (mENm(Efa 2) + A3(Ms)

3
+ Az(o3h3) — €A3(038a.3) — Ei/\4(<73(§1, £2.83 +£4)(E3 + £1)). (5.10)

Compared to the KdV case [2], there is one more term to cancel, so we choose

M3

03 = — m (5.1])
to force the three A3 terms in (5.10) to cancel. Hence if we denote
3
My (61, 62,83, 84) = —ii[Gs (€1, 62,83 +E)(E3 +E0)] e (5.12)
then
d
i F1 (O =—€Aa(mE)m(E)fa.2) + Aa(Ma). (5.13)
Similarly defining
E{(t) = E} (t) + A4(04)
with
—__ M
04 = h4 — Eﬁaq4 s (5.14)
we obtain
d
EE?(U = —€Ay(mENM(E2) Pu.2) + As(Ms), (5.15)
where
Ms(r,....85) = —21'[04(51 62,863,864 +85)(a+ Ss)]sym- (5.16)

Now we give pointwise bounds for the multipliers. We will only be interested in the value of the
multiplier on the hyperplane & + & + - - - + § = 0. There is a flexibility of choosing the multiplier m.
In application, we consider m(&¢) is smooth, monotone, and of the form

1, €] <N,

e (5.17)
N7IEF7, 18] > 2N.

m(§)={
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It is easy to see that if m is of the form (5.17), then m? satisfies

m?(&) ~m*E') for |&] ~ €],

2
(m?)® =0 (m|s(|§))’

2
(m?)" &) =0 ("L;?) (5.8)

We will need two mean value formulas which follow immediately from the fundamental theorem
of calculus. If |n|, || < |&], then we have

lag +m) —a@®| < Inl ‘;‘U[‘)E"a/(é/) . (5.19)
and the double mean value formula that
lag +n+2) —aE +mn) —aE + 1) +a@| <l lglurl)slla”(s/)l. (5.20)

In order to use the formulas, we extend the surface supported multiplier o3 to the whole space as in
[6].

Proposition 5.2. If m is of the form (5.17), then for each dyadic A < w there is an extension of o3 from the

diagonal set
{¢61.82,8) € I3R), [&1] ~ 1, 1&), &3] ~ 1}
to the full dyadic set
{(1,82,83) € R, [E1] ~ 1, |82, I83] ~ ]
which satisfies

|01 85208 0361, 62, &3)| < Cm? (AP PP, (5.21)
where C is independent of €.
Proof. Since on the hyperplane & + &, + &3 =0,
hs =i(57 +& +&3) = 3ig15283
is with a size about A2 and

Ms(&1, &2, &3) = —i[mEDME + &) (& + )], = 1(M2(EDE +m? (E2)E + m*(§3)E3),

sym

if A ~ u, we extend o3 by setting

_im*EDE +mP(§2)6 + m? (§3)83)
3iE1 5283 — €(1€1 27 + 8212 + &)

03(1,62,83) = (5.22)
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and if A < u, we extend o3 by setting

_imPED& +m? (&5 —mP (61 + &) (1 + )

J62,83) = . 5.23
73182 85) 3iE15263 — € (161127 + 162129 + &%) (6-23)
From (5.19) and (5.18), we see that (5.21) holds. O
We define on the hyperplane {(§1, &2, &3) € I3(R), |&1] = A, [&2], |&3] ~ 1}
: 2 2 2
o5 (61, 62, E3) = i(m*(&1)&1 +m”(£2)&2 + m*(£3)&3) (5.24)

3iE15E + €(& 2 + &2 + &)%)

and extend it as for o3. Then (5.21) also holds for o5, and on the hyperplane &1 + & + &3 =0 we get

€€ 12%,m? (I |min) 1€ | min

.y, <
3@ &2,89) — 03 G182 8| S = L e

(5.25)

where

18 lmax = max (€11, €21, 1&31),  |&lmin = min(|&1], 1621, 1&3])-

Now we give the pointwise bounds for o4 which is key to estimate the growth of E;‘(t). It has the
same bound as in the KdV case.

Proposition 5.3. Assume m is of the form (5.17). In the region where |&;| ~ Nj, |§; + &| ~ Nji for Ni, N j,
dyadic,

IMa (51,562, 83,84) _ m?(min(Nj, N ji))
lhg —€Baal ™~ (N4 N1)(N+ N2)(N+N3)(N+Ng)'

(5.26)

Proof. From symmetry, we can assume that N; > Ny > N3 > Ng4. Since & + & + & + &4 =0, then
N1 ~ N;. We can also assume that N; ~ N, 2> N, otherwise My vanishes, since mz(é) =1if |&§] <N.
If max(Nq2, N13, N14) < N1, then & ~ —&, &4 ~ —&;, which contradicts that & + & + &3 + & =0.
Hence we get max(N12, Ni3, N1g) ~ Nq. The right side of (5.26) may be reexpressed as

m?(min(Nj, N jx))
N12(N + N3)(N + Ng)’

(5.27)

Since & +& +& +£& =0, then hy =&} + & +& +£] =3(&1 + £2) (&1 + £3) (61 + £4), and we can
write that
CMa(€1.62.83.80) = [03(61. 62, 83 + ) (&3 + 80|,y

=03(51,.62.83 +864) (&3 +84) +03(61,83, 62 + E4) (52 + &)
+03(51, 84,82 +83) (52 + 83) +03(62, 83,61 + E4) (51 + 6a)
+03(52, 84,81+ 83) (61 +83) +03(83, 84,61 + &) (51 + &2)

=[03(61, 62,83+ £4) — 05 (=3, —£4. 63+ £4)| (€3 + £2)
+ [03(61.83. 62 + §4) — 05 (—&2, —E4. 62+ E2) | (E2 + £2)
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+ [03(61. 4. 62+ &3) — 05 (—&2. —E3.E2 + §3)|(E2 + £3)

=I14+1+1I

The bound (5.26) will follow from case-by-case analysis.
Case 1. [N4| > 5.
Case 1a. Ny2, N13, N14 2 N1.

For this case, we just use (5.21), then we get

IMa(81, 62,83, 84)| _ [Ma(81,82,83,60)| _ m?(Na)
lha — €Bual ™ |h4l ~ N1N2N3Ng’

which is acceptable.
Case 1b. N1 < N1, N13 2 Ny, N1a 2 Ny.
Contribution of 1. We just use (5.21), then we get

1] L m?(min(N4, N12))
lhg —€Ba,al ~ 1hal =  N1N2N3N4

which is acceptable.
Contribution of II. We first write

1=[03(&1.83.6 + &) — 05 (&2, —E4, &2+ E2)| (62 + &4)
=[03(61.83. &2+ 1) — 05 (61,83, &2+ E0)| (52 + £4)

+ [0 (1.83. 62+ &) — 05 (&2, —E4, &2+ E2) | (62 + £4)

=1l +1I.
Then from (5.25) we get

2
1L 5 1L S m (N4) .
lhg — €Ba,al ™ |€Ba,al ~ N1N1N1N3

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)

We now consider II,. If Ny 2 N3, then using (5.19) and (5.21), or else if N1 <« N3, then using (5.19)

twice and (5.21), then

I, S m2(N4)

|lha — €Baal ~ ha ™~ N1N1NiN3’

Contribution of III. This is identical to II.
Case 1c. Nip < N1, N13 < N1, N14 2 Ny.

Since N1 < N1, Ni3 < N1, then N; ~ Ny ~ N3 ~ Ng.

(5.33)
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Contribution of 1. We first write

I=[03(51.62. 83+ 1) — 05 (51.62. 63+ £4) | (63 + £4)
+ [05 (61,862, 83 + &4) — 05 (—E3.52.E3 +£4) | (63 + £4)
+[03 (—&3,862. 63+ £4) — 05 (—&3, —E4, 83 + E4) | (63 + £2)
=L+ +Is. (5.34)

We use (5.25) for the first term and (5.21), (5.19) for the last two terms, then we get

I I I Iz _m*(Np)
< +—=+—=5 . 5.35
(ha— €Baal ~ ePaal  Thal  hal ~ N3 (5:35)
Contribution of II. This is identical to L.
Contribution of IIl. We first write
Il =[03(81, 64,62 +&3) — 05 (—&2, —£3. 62+ £3) | (E2 + £3)
=[03(61.62.52+83) — 05 (51.64. 62+ 63)|(E2 + &3)
+1/2[05 (51.£4. 62+ &3) — 05 (=62, —83. 62 + &3)
—05 (=&, —&.6+8)+ 05 (E4.61.62+8) |6+ &)
=l +1II,. (5.36)
We use (5.25) for the first term and (5.20) four times for the second term, then we get
il i} il 2(N
< 1 2 m°(N1) (5.37)

hs — €Baal ~ l€Bual  |hal ¥ N4

Case 1d. N < N1, N13 2 N1, Nig < Njy.
This case is identical to Case 1c.
Case 2. Ny < N/2.

In this case we have m%(min(N;, Nj)) =1, and N3 ~ |&1 4 &3] = |&2 + &4] ~ N1. We discuss this
case in the following two subcases.

Case2a. N1 /4> N1 2 N/2.

Since Ny <« N/2 and |&3+&4| = |§1+&2| 2 N/2, then N3 Z N/2. From |hyg| ~ N12N2, then we bound
the six terms in (5.28) respectively, and get

[Ma| < [Ma| < 1 7
|hg — € By 4l [h4l N%N3N

(5.38)

which is acceptable.
Case 2b. N1 < N/2.

Since N1 = N34 < N/2 and N4 < N/2, then we must have N3 <« N/2, and N3 ~ N1g4 ~ Nj.
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Contribution of L. Since N3, N4, N34 < N/2, then we have o5 (—£3, —&4, £3+&4) = 0. Thus it follows
from (5.21) that

I _losEnbb el _ 1
lhg — €Bu.al ~ N? ~ N}

(5.39)

Contribution of II and IIl. We have two items of N3, N4, N12 in the denominator, which will cause
a problem. Thus we cannot deal with II and IIl separately, but we need to exploit the cancellation
between II and IIl. We rewrite
I+ = [03(51.£3. 62 + £4) — 05 (=62, —Ea. 62 + §4) | (52 + &a)
+ [03(61.6a. 62+ &3) — 05 (=62, —E3. 62+ §3)| (62 + £3)
=[03(51,83, & +81) — 05 (=62, 1,52+ 62)|&4
+[03(61.6a. 62+ &3) — 05 (—&2. —E3. 62+ £3) |&3
+ [03(61.83. 62 + &) — 05 (—€2. —E4. 62 + £a)
+03(61,62. 62+ 83) — 05 (&2, —83. 0+ £3) |&2
=L+ ]2+ s (5.40)

We first consider Ji. From

[J1l < [[o3(61,&3, &2 + &4) — 03(—&2, =64, &2 + £4) 164l
\hg — €Bu,al |ha]

n [[03(—&2, —4, & + &4) — 05 (=2, —&4, &2 + E4) 4]

€ Bar,al

(5.41)

and (5.25) for the second term, (5.19) if Ni2 <« N3 (in this case, N3 ~ Ny), and (5.21) if N2 = N3 for
the first term, then we get

Al 1

—_— < (5.42)
lha — €Ba.al ~ NT

The term J, is identical to the term J;. Now we consider J3. We first assume that N1, = N3. Then
by the symmetry of o3, we get
J3=[03(61.83. 62 +&4) — 05 (—&2, —4.E2 4+ £1)
+03(61.64. 62+ 83) — 05 (&2, —63. &2+ 83) |&
=[03(61.83. &2 +&4) — 03(—&2 — £3, 63, &2)
+ 0361, 64, 62 + §3) — 03(—&2 — €4, 2. £2) | 2. (543)

From (5.19) and N1 2 N3, we get

sl sl 1

— S = . 5.44
lha — €Ba.al ~ Ihal ™ N{ (544

If Ny < N3, then N3 ~ N4. We first write
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J3=[03(61.83. 52 +&4) — 05 (51.63.62 4+ £4)
+03(—&2. —83. 60+ £3) — 05 (&2, —£3. 62+ E3) |&2
+ 03 (&2, 83,62+ £4) — 05 (—&2, &4, 62 + E4)
+03(51.64. 62 + &) —03(61. —83. &2+ §3) | &2
+ [0 (1,83, 62+ &) — 05 (—&2,83, &2 + £a)
+03(61, 3.5 + &) — 03(—62. —£3. 52 + £3) |&2
= J31+ J32+ J33. (5.45)

It follows from (5.19) that

Ussl sl o 1

—_— . 5.46
lha — €Ba.al = |hal ™ N{ (546)

It remains to bound J3; and J3;. First we consider Js;. Since m?(&3) = 1, we rewrite J3; by

Js1=[03(61,83. 6 + &) — 05 (51.63. 62+ &)
+03(—&, —8.6+8) —0; (&, —8.6+8)]&
= AE1.83. 6 + E) (M* (& + & +mP (&2 + &2) (&2 + 82)) &2
+ A(—&, 83,5 + &) (—m* (€& — &3+ M (&2 + &) (&2 + &) &2
=[A(1.863.6+8) — A(—&. —83. 52+ &3) |32
—[AEr1. 8.6 +8) — A(—&2, —E3. 62+ §3)|&2
x [—m? (€)8 +m* (&2 + £3) (&2 + &3)]
+A1,83,5 +840)6
x [M*(EDE +mP (&2 + £4) (&2 + E2) — mP (E)E2 + M (&2 + £3) (82 + &), (5.47)

where

2€(|&11%% + 6212 + |£31%%)
|E162831% 4+ €2(1&112% + &2 + |&32*)2”

A1,862,83) =

It is easy to see that A(&1, &, &3) satisfies

|05, A(§1, &2, 63) | 5%, i=1,2,3. (5.48)

For the first two terms in (5.47) we use (5.19) by writing

A61,83,860+84) — A(—62,—83,6 +&3) = A(61,83, 62 +84) — A(—82, 83,62+ &4)
+ A(—52,83,862 +&4) — A(—62,83,5 + &3).

For the third term, we note that
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m?(£1)&1 +m? (&2 + £4) (62 + £4) — M*(£2)E2 + P (&2 + &) (&2 + &)
=m%(& + £4) (&2 + £4) — M* (E2)E>

—mE+E G+ ST +m G+ )&+ ),
thus we can apply (5.20). Therefore, we get

Unl o sl o 1

lha — €Ba,al ~ |€Ba,al ~ NT’

Last we consider J33. We denote

1 1
16263 — €(|&1 2% + 62127 +1812%)  iE1565
_ €(|E11% + |E27 + |&31%%)
[iE16283 — €(|&112% + 6212 + |£3129)]i&16263

B(&1,62,83) =

It is easy to see that B(&1, &2, &3) satisfies

\85.48@1,52,53”5%, i—1.2.3

Let

M(&1, 62, &3)

63(61,62,63) = i£16253

then we can rewrite J3 by

J2 =05 (—&.83,& + &1) — 05 (—&2, —64. &2 + £a)

+03¢1.60. 52+ 8) — 0351, — 8. 62+ 83) &2
= B(—&2,£4, & + &) [-m*(—E2)E2 — &4 + M* (&2 + £4) (62 + £4) |6

+ B¢ &+ E)[MPENE +Ea+mP (G +8) (62 +83) 6
—B(&2,8,5 +E)[-M* (&8 + & + M (&2 + £2) (52 + £4) &2
— B(51, 83,5 + &)[M* & — & +m° (& + &) (&2 + ))&
+[63(—&2.£3. 62 + £4) — G3(61, —€3. 62 + £3)
—63(—62, —E4. 62+ E4) + 53(61.6a. &2+ E3) |62

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

For the first four terms in (5.54), we can bound them by the same way as for Js3i1, using (5.52) and
the symmetry of B that B(&1, —&2, &3) = B(—&1, &2, &3). For the last term, it follows from (5.53) and

m2(&3) = m%(£4) =1 that

Ji=[03(—62.83. 62+ &) — G3(61, —&3. &2 + &3)
—03(—&2, 4. 62+ 82) + G361, Ea. &2+ E3) |62

_—m@a+EmiE @
—6E3(6 + 1) 2
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_ —mA(E)E — & +mE (& + E) (& + )

PYACETA) iz
N m2(&1)&1 + E4 + m2 (&2 + &3) (62 + &3) :
E164(E; 1 £3) 2
m2(&1)&1 — &3 + m2 (&2 + &3) (62 + &3)
— . 5.55
—£1863(62 + &3) &2 ( )

Note that there is a cancellation. Therefore,

£3+ &4 —m? (£2)E2 + m? (&2 + £4) (€2 + £4)

= E £2(62 +£a) 5
2 2
L BramEh+meh )G+, (5.56)
§364 §1(&2+83)

We rewrite (5.56) by

_&3+854—m 2E)E +mP (& +E)(E +E) +m2(EDE + M2 (52 + E3) (52 + &3)
5364 5(& + &)
53 +&4
&384

&

1 1
= [m*EDE +mE (& +E) (& +€3)][€1(Ez 5 + 56 _'_54)]&2-

Therefore, we use (5.20) for the first term, and (5.19) for the second term, and finally we conclude
that

1
1]l < Uil o (5.57)
lha — Eﬁoz,4| |h4|
which completes the proof of the proposition. O

With the estimate of o4, we immediately get the estimate of Ms. We have the same bound as in
the KdV case.

Proposition 5.4. [f m is of the form (5.17), then

(5.58)

5 é - é;-' m<(N N.
‘M ( N 5)} S |: ( *45) 45
sym

(N + N1)(N + N2)(N + N3)(N + Ngs)
where
Ny45 = min(Ny, N2, N3, N4s, N12, N13, N23).

So far we have showed that the multipliers M;, i = 3, 4,5, have the same bounds as for the KdV
equation. We list now some propositions.

Propeosition 5.5. Let w;(x, t) be functions of space-time with Fourier support |€| ~ Nj, N; dyadic. Then

5
l_[ wi(x, t)dxde| S l_[ Wil p17agsy IWallp-3/4(5) W5 L p=3/4(5).- (5.59)
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Proof. It follows from the same argument as for the proof of Lemma 5.1 in [2] with Proposi-
tion 2.1. O

Proposition 5.6. If the associated multiplier m is of the form (5.17) with s = —3/4+, then
K 5

/As(M5;u1,...,u5)dt SN Muill o (5.60)
0 i=1

3
where =3+ 7—.

Proof. This proposition can be proved by following the proof of Lemma 5.2 in [2] and using Proposi-
tion 5.5. We omit the details. O

Proposition 5.7. Let [ be defined with the multiplier m of the form (5.17) and s = —3 /4. Then
3 4
[EF®) — EF O] S [lu® |2 + | Tu® |- (5.61)

Proof. Since E;‘(t) = E%(r) + A3z(03) + A4(04) and the bound for o3, o4 are the same as in the KdV
case, this proposition follows immediately from Lemma 6.1 in [2]. O

We state a variant local well-posedness result which follows from slight argument in the last
section. This is used to iterate the solution in the I-method.

Proposition 5.8. If s > —3/4, then (1.1) is uniformly locally well-posed for data ¢ satisfying I¢ € L>(R).
Moreover, the solution exists on a time interval [0, §] with lifetime

§~¢ll 5", >0, (5.62)

and the solution satisfies the estimate

ITullFs@ S Il p2- (5.63)

With these propositions and the scaling (4.1), we can show Theorem 1.2 by using the same argu-
ment in [2]. We omit the details.

6. Limit behavior

In this section we prove our third result. It is well known that (1.4) is completely integrable and
has infinite conservation laws, and as a corollary one obtains that let v be a smooth solution to (1.4),
for any ke Z,

sup||v(O) || e < lvoll - (6.1)
teR

There are less symmetries for (1.1). We can still expect that the H* norm of the solution remains
bounded for a finite time T > 0, since the dissipative term behaves well for t > 0. We already see
that for k =0 from (5.1). Now we prove for k =1 which will suffice for our purpose. We do not
pursue for k > 2.
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Assume u is a smooth solution to (1.1). Let H[u] = [; (ux)* — 2u + u®dx, then by Eq. (1.1) and
partial integration

d
aH[u] :/Zuxax(ut) — 2uPu; + 2uu, dx

R

= / ZUX(—Uxxxx - 6|8X|20taxu - (uz)xx) dx
R

+/2u2(uxxx +€]05%u + (uz)x) dx + / —26(A”‘u)2 dx
R R

- / —ZE(A”"‘u)2 +2eu® A%*y — 2¢ (A”‘u)zdx
R

< —€ /(Az‘)‘u)z + 2u? A%%y dx,
R

where we denote A = |dx|. Thus we have
d € 2 2
— H[u] + = [ A% u ] < ju)?. 6.2
o HIl S [ A% u5 < i (6.2)

Using Gagliardo-Nirenberg inequality

3 5/2 0 11/2 4 3
Nullz S lully" " fuxdly, Nullg S Nullzlluxli2

and Cauchy-Schwarz inequality, we get
T 1/2
sup [u(®) | 1 +e1/2</ ||A2°‘u(r)||§dr> <C(T, lI$llyr), VYT >0. (6.3)
[0,T]
0

Assume u. is an L%-strong solution to (1.1) obtained in the last section and v is an L2-strong
solution to (1.4) in [2], with initial data ¢1, ¢, € L? respectively. We still denote by u., v the exten-
sion of ue, v. From the scaling (4.1), we may assume first that ||¢1]l 2, [$2]l;2 < 1. Let w =ue — v,
¢ = ¢1 — ¢2, then w solves

{wt + Waxx + €10x*Yue + (W(v + 1)), =0, teRy, xeR, (6.4)

v(0)=¢.
We first view €|9x|**u, as a perturbation to the difference equation of the KdV equation, and consider
the integral equation of (6.4)

t
w(x, t)=Wg(t)¢—[Wo(t—r)[e\axlz"‘ué+(w(v+u€))x]dt, t>0. (6.5)
0

Then w solves the following integral equation on t € [0, 1],
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t
w(x,t) = w(t)[woa)«ﬁ - / Wo(t — T) Xr, (D) (T)€|dx[*Yuc (T) dT
0

t
—/Wo(t—r)ax(wz(t)w(v—I—ue))(r)dr}. (6.6)
0

By Proposition 4.2 and Propositions 4.3, 4.4, 4.11, we get

IWlpo S li@ll2 +€”“5”Lf0,21f43°‘ + Iwlpo(Ivilgo + lluell o). (6.7)
Since from Theorem 1.2 we have

IVilpo Slig2lle <1, uellpo Slignlle <1,
then we get that
Iwlpo S Il +€lucllyy e (68)

From Proposition 4.1 and (6.3) we get

lue = Viicqoan.2) S o1 — ¢2llz + € /2C(Ig1ll . b2l 2). (6.9)

For general ¢1,¢, € L?, using the scaling (4.1), then we immediately get that there exists
T=T(l¢1ll12. 42]l;2) > O such that

lue = Vileqo.riz) S llor — dallz + €' 2C(T. gl g2l 2).- (6.10)
Therefore, (6.10) automatically holds for any T > 0, due to (5.1) and (6.3).

Proof of Theorem 1.3. For fixed T > 0, we need to prove that Vn > 0, there exists o > 0 such that if
0 <€ <o then

IS5 @) = ST@ | co.1p:ms) < M- (6.11)
We denote g = P<k¢. Then we get
IS5 (@) - ST(‘/’)HC([O,T];HS) <|s7e) - S?WK)”C([O,T];HS)

+ ’|S§(¢K) - ST(QOK)”C([O,T];HS)

+ ”ST(()OK) - ST((P) ”C([O.T];HS)' (612)
From Theorem 1.2 and (6.10), we get
1S5@) = ST@ o,y S 190k = @llis + €' C(T K, N@llae)- (6:13)

We first fix K large enough, then let € go to zero, therefore (6.11) holds. O
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