On Relational Homomorphisms of Automata

Raymond T. Yeh
Computer Science Department, The Pennsylvania State University, University Park, Pennsylvania 16802

This paper investigates the concepts of relational homomorphisms and their closely associated concepts of generalized congruence relations on automata which are in general incomplete, nondeterministic, and infinite. The concept of generalized isomorphism, which is a natural extension of the isomorphism concept in dealing with nondeterministic automata, is also studied.

LIST OF SYMBOLS

X, Y, Z, S, T, A	sets
$\theta, \delta, \lambda, \phi, \psi, r, \sigma$	relations
\circ	composition
U	union
\cap	intersection
\subseteq	inclusion
\times	direct product
\forall	for all
\exists	there exist
ϵ	membership
\rightarrow	implication
Λ	logical and
	I. INTRODUCTION

The closely related concepts of homomorphism and the substitution property are extremely useful in the structural theory of complete and deterministic automata. However, not much has been done on the structural theory of incomplete and nondeterministic automata. One of the reasons for this is probably the lack of tools to adequately study such structures. And it is our conviction that "relational homomorphisms" investigated in this paper are part of the tools desired for such studies. Although many authors (Ginzburg and Yoeli, 1960; Keisler, 1960;

Lyndon, 1959; and Thatcher, 1965), have investigated the concept of relational homomorphism on algebraic systems, their definitions fail to have the important feature that the relation $\phi \circ \phi^{-1}$ defined by the homomorphism ϕ satisfies the substitution property when extended to partial on relational structures such as incomplete and nondeterministic automata, whereas our definition in this paper does preserve this property. And because of this, we are able to extend many of the results such as isomorphism theorems in algebra to the more general structure of incomplete, nondeterministic automata.

This paper investigates the concept of generalized (or relational) homomorphism as well as the more restricted concept of generalized congruence relation. It can be shown that a generalized functional homomorphism on deterministic automata coincides with the ordinary homomorphism. Also, generalized congruence relation adsorbs the concepts of partition with substitution property and set systems, and is associated with generalized homomorphism similar to the relationship between homomorphism and congruence relation in the complete and deterministic case. Furthermore, each of the concepts mentioned above have two versions depending on whether the automata under consideration are complete. And this difference reveals why certain properties (such as substitution property) which hold in the complete and deterministic automata can be extended to the general case. Finally, properties of relational isomorphism, which is a weaker form of isomorphism, between automata are also studied.

II. PRELIMINARY

In this section we give basic definitions and general background which are necessary for the understanding of the following theory.

Let X, Y, and Z be arbitrary sets, $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y, \theta \subseteq X \times Y$ and $\sigma \subseteq Y \times Z$, define composition " o " by the following rules:

$$
\begin{aligned}
\theta \circ \sigma & =\{(x, z) \mid(\ni y \in Y)[(x, y) \in \theta \wedge(y, z) \in \sigma]\} ; \\
X^{\prime} \circ \theta & =\left\{y \in Y \mid\left(\ni x \in X^{\prime}\right)[(x, y) \in \theta] ;\right. \\
\theta \circ Y^{\prime} & =\left\{x \in X \mid\left(\ni y \in Y^{\prime}\right)[(x, y) \in \theta]\right\} .
\end{aligned}
$$

We define $I_{\bar{X}}=\{(x, x) \mid x \in X\}$ and $\theta^{-1}=\{(y, x) \mid(x, y) \in \theta\}$.
An automaton M is a triple (S, A, δ), where S is an arbitrary nonempty set (of states), A is a finite set (of input symbols), and $\delta \subseteq(S \times A) \times S$ is called the transition relation of M. Clearly, M can
also be represented by the triple ($S, A,\left\{\delta_{a}\right\}_{a \in A}$) where $\delta_{a}=\{(s, t) \mid$ $((s, a), t) \in \delta\}$. We also extend δ_{a} to δ_{x} for x in the free monoid A^{*} generated by A by the rules:
(i) $\delta_{e}=I_{s}$, where e is the empty word of A^{*};
(ii) If $x=a_{2} a_{2} \cdots a_{n}$, then $\delta_{x}=\delta_{a_{1}} \circ \delta_{a_{2}} \circ \cdots \circ \delta_{a_{n}}$.

We say an automaton M is deterministic if δ_{a} is single-valued for all a in A. Otherwise, M is nondeterministic. We say M is complete if

$$
(\forall a \in A)(\forall s \in S)\left[s \circ \delta_{a} \neq \varnothing\right] .
$$

Otherwise, M is said to be incomplete.
In this paper, we will restrict ourselves to the discussion of only those automata which have the same input alphabet A.

Let $M=(S, A, \delta)$ and $N=(T, A, \lambda)$ be two automata, we define the product automaton, $M \times N$, of M and N to be the automaton $(S \times T, A, \tau)$, where $\forall a \in A$,

$$
\tau_{a}=\left\{\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right) \mid\left(s, s^{\prime}\right) \in \delta_{a} \wedge\left(t, t^{\prime}\right) \in \lambda_{a}\right\} .
$$

We say N is a subautomaton of M if and only if $T \subseteq S$ and $(\forall a \in A)$. [$\lambda_{a}=\delta_{a} \cap T^{2}$]. Clearly, every subset of S determines a unique subautomaton of M. We say N is a semi-complete subautomaton of M if furthermore $(\forall a \in A)(\forall t \in T)\left[t \circ \delta_{a} \neq \varnothing \rightarrow t \circ \lambda_{a} \neq \varnothing\right]$. We say N is an M-complete subautomaton of M if N is a subautomaton of N and $(\forall a \in A)(\forall t \in T)(\forall s \in S)\left[(t, s) \in \delta_{a} \rightarrow(t, s) \in \lambda_{a}\right]$. In case N is complete, then we say N is a complete subautomaton of M.

In the sequel, we assume that automata M and N will always be represented by the triples (S, A, δ) and (T, A, λ) respectively unless stated otherwise.

III. GENERALIZED CONGRUENCE RELATIONS

Definition 1. A relation ${ }^{1} \theta$ on S is said to satisfy the (dual) substitution property on M if and only if $(\forall a \in A)\left[\delta_{a}^{-1} \circ \theta \circ \delta_{a} \subseteq \theta\right]((\forall a \in A)$. $\left[\delta_{a} \circ \theta \circ \delta_{a}^{-1} \subseteq \theta\right]$).

Definition 2. $\theta \subseteq S^{2}$ is called a (dual) generalized congruence relation^{2} (GCR) on M if and only if θ is reflexive, symmetric and satisfies the (dual) substitution property on M. We say θ is a generalized produc-

[^0]tive congruence relation (GPCR) on M if furthermore ($\forall a A)\left[\theta \circ \delta_{a} \circ S\right.$ $\left.\subseteq \delta_{a} \circ S\right]$.

We note that in case M is a complete automaton, then the two concepts defined above are identical.

The following closure theorem follows directly from properties of sets.
Theorem 1. The partly ordered set of GCR (GPCR) on M, ordered by set inclusion, forms a complete, distributive lattice which is a sublatiice of the lattice of all reftexive and symmetric relations on S.

Definition 3. A family of nonempty distinct subsets $C=\left\{S_{i}\right\}_{i \in I}$, I is an index set, of S is called a cover with substitution property ${ }^{3}$ (or SP cover for short) on M if, and only if,
(i) $\cup_{i \in I} S_{i}=S$, and
(ii) $(\forall a \in A)\left(\forall S_{i} \in C\right)\left(\exists S_{j} \in C\right)\left[S_{i} \circ \delta_{a} \subseteq S_{j}\right]$.

We note that every SP cover C on M determines a unique GCR θ_{σ} on M by the rule:

$$
\theta_{c}=\left\{(s, t) \in S^{2} \mid(\ni D \in C)[\{s, t\} \subseteq D]\right\} .
$$

On the other hand, every GCR θ on M defines a SP cover C_{θ} on M by the rule:

$$
C_{\theta}=\{T \subseteq S \mid(\forall s \in S)[s \in T \rightleftarrows(\forall t \in T)[(s, t) \in \theta]]\} .
$$

The correspondence between GCR and SP cover on an automaton M is, nevertheless, not one to one. Since there are in general more than GCR as shown by the SP covers which define the following example. Example. Let $M=(S, A, \delta)$ be defined as follows:
$S=\{1,2,3,4,5,6\}$,
$A=\{a\}$,
$\delta_{a}=\{(1,2),(1,5),(2,4),(2,5),(3,2),(4,3),(5,4),(6,6),(6,3)\}$.
Let $C_{1}=\{\{1,2,3\},\{2,4,5\},\{3,4,6\}\}$ and $C_{2}=C_{1} \cup\{2,3,4\}$.
Clearly, $C_{1} \neq C_{2}$. However, $\theta_{C_{1}}=\theta_{C_{2}}$.
Notation: If θ is a relation on M, and N a subautomaton of M, then denote by $\theta_{N}\left(\theta_{T}\right)$ the relation θ restricted to N (the set T).

Theorem 2. A GCR θ on N is a GPCR if, and only if, N is a subautomaton of a complete automaton M so that θ can be extended to a GCR Θ on M such that $\left(\forall t \in T^{\prime}\right)[t \circ \theta=t \circ \Theta]$.

[^1]Proof. Suppose N is a subautomaton of a complete automaton M, and θ is an extension of θ on M such that $(\forall t \in T)[t \circ \theta=t \circ \theta]$.

$$
s \in \theta \circ \lambda_{a} \circ T \rightarrow(\ni t \in T)(\ni \mu \in T)\left[(s, t) \in \theta \wedge(t, u) \in \lambda_{a}\right] .
$$

M is complete implies that there exists $s^{\prime} \in S$ such that $\left(s, s^{\prime}\right) \in \delta_{a}$. Since Θ is a GCR, so $\left(s^{\prime}, \mu\right) \in \Theta . \mu \in T$ implies $\mu \circ \theta=\mu \circ \Theta$, and hence s^{\prime} must be an element of T such that $\left(s, s^{\prime}\right) \in \lambda_{a}$. Thus, $(\forall a \in A)$. $\left[\theta \circ \lambda_{a} \circ T \subseteq \lambda_{a} \circ T\right]$ and θ is a GRCR on N.

Conversely, suppose θ is a GPCR on N. Let $C_{\theta}=\left\{T_{i}\right\}_{i \in I}$ for some index set I. Construct a complete automaton M by the following rules:
(i) $S=T \cup\{\beta\}$, where $\beta \in T$;
(ii) $(\forall a \in A)\left[\delta_{a}=\lambda_{a} \cup\{\beta, \beta\} \cup\left\{(s, \beta) \mid s \circ \lambda_{a}=\varnothing\right\}\right.$

Since θ is a GPCR, we see that if $s \circ \lambda_{a}=\varnothing$, then ($\left.\forall T_{i}, T_{j} \in C_{\theta}\right)$ $\left[s \in T_{i} \wedge T_{i} \cap T_{j} \neq \varnothing \rightarrow T_{j} \circ \lambda_{\alpha}=\varnothing\right]$. Now, it is quite clear that M is a complete automaton which has N as its subautomaton. If we let $C=\left\{T_{i}\right\}_{i \in Y} \cup\{\beta\}$, and $\Theta=\theta_{c}$, then C is a SP cover on M and Θ is a GCR on M such that $\Theta_{N}=\theta$. Furthermore, $(\forall t \in T)[t \circ \theta=t \circ \Theta]$, and the theorem is proved.

Theorem 3. To each relation θ on S, there corresponds a unique maximal GCR (GPCR) $m(\theta)$ and a unique minimal GCR (GPCR) $M(\theta)$ on M satisfying $M(\theta) \subseteq \theta \subseteq m(\theta)$. Furthermore, if F is a family of relations σ on S, then
(i) $M\left(\mathrm{U}_{\sigma \in F^{\prime} \sigma}\right)=\bigcup_{\sigma \in F} M(\sigma)$;
(ii) $m\left(\cup_{\sigma \in \mathcal{F}} \sigma\right)=\bigcup_{\sigma \in \mathbb{F}} m(\sigma)$;
(iii) $M\left(\bigcap_{\sigma \in F} \sigma\right)=\bigcap_{\sigma \in \mathcal{F}} M(\sigma)$;
(iv) $m\left(\bigcap_{\sigma \in \mathcal{F}} \sigma\right)=\bigcap_{\sigma \in \mathcal{F}} m(\sigma)$.

Proof. Define $M(\theta)=\sup C$, where C is the family of all GCR (GPCR) ρ on M such that $\rho \subseteq \theta$. Similarly, define $m(\theta)=\inf C^{\prime}$, where C^{\prime} is the family of all GCR (GPCR) δ on M such that $\theta \subseteq \delta$. Clearly, $M(\theta) \subseteq \theta \subseteq m(\theta)$, and properties (i) through (iv) follow directly from Theorem 1.

It is also clear that the above theorem holds for dual generalized congruence relations as well. For a given relation θ on M, we will denote by $M_{d}(\theta)$ and $m_{d}(\theta)$ the unique maximal and minimal dual GCR on M such that, $M_{d}(\theta) \subseteq \theta \subseteq m_{d}(\theta)$.

Defintition 4. Let θ be a relation on a set X. Define the trace, $T(\theta)$, of θ by the rule:

$$
T(\theta)=\left\{\begin{array}{l}
1, \text { if there exist an } x \text { in } X \text { such that }(x, x) \in \theta . \\
0, \text { if for all } x \text { in } X,(x, x) \notin \theta .
\end{array}\right.
$$

Lemma 1. Let θ and ρ be relations on a set X then
(i) $T(\theta)=T\left(\theta^{-1}\right)$;
(ii) $T(\theta \circ \rho)=T(\rho \circ \theta)$;
(iii) $\theta \subseteq \rho \rightleftarrows T\left(\theta \circ \bar{\rho}^{-1}\right)=0$, where $\bar{\rho}=X^{2}-\rho$.

Proof. We will only prove (iii) since (i) and (ii) are quite trivial. Suppose $\theta \subseteq \rho$. If there exists $x \in X$ such that $(x, x) \in \theta \circ \bar{\rho}^{-1}$, then there exists $y \in X$ such that $(x, y) \in \theta$ and $(y, x) \in \bar{\rho}^{-1}$. Since $(y, x) \in$ $\bar{\rho}^{-1} \rightleftarrows(x, y) \notin \rho$ and since $\theta \subseteq \rho$, we arrive at a contradiction. Thus, $(\forall x \in X)\left[(x, x) \notin \theta \circ \bar{\rho}^{-1}\right]$ which implies that $T\left(\theta \circ \rho^{-1}\right)=0$.
Conversely, if $T\left(\theta \circ \bar{\rho}^{-1}\right)=0$ and we assume that $\theta \nsubseteq \rho$. Then there exist x and y in X such that $(x, y) \in \theta$ but $(x, y) \notin \rho$. I.e., $(x, y) \in \bar{\rho}$. But then $(x, x) \in \theta \circ \bar{\rho}^{-1}$ which implies that $T\left(\theta \circ \bar{\rho}^{-1}\right)=1$, a contradiction. Thus, we must have $\theta \subseteq \rho$

Lemma 2. If θ is a relation on S, then θ satisfies the substitution property on M if, and only if, $\bar{\theta}=S^{2}-\theta$ satisfies the dual substitution property on M.

$$
\text { Proof. } \begin{aligned}
\forall a \in A, \delta_{a}^{-1} \circ \theta \circ \delta_{a} \subseteq \theta & \rightleftarrows T\left(\delta_{a}^{-1} \circ \theta \circ \delta_{a} \circ \bar{\theta}^{-1}\right)=0 \\
& \rightleftarrows T\left(\delta_{a} \circ \bar{\theta}^{-1} \circ \delta_{a}^{-1} \circ \theta\right)=0 \\
& \rightleftarrows \delta_{a} \circ \bar{\theta}^{-1} \circ \delta_{a}^{-1} \subseteq \bar{\theta}^{-1} \\
& \rightleftarrows \delta_{a} \circ \bar{\theta} \circ \delta_{a}^{-1} \subseteq \bar{\theta} .
\end{aligned}
$$

Notations. If θ and ρ are two relations on a set X, then we denote by ρ_{θ} the relation $\theta^{-1} \circ \rho \circ \theta$. For each automaton M, let $S(M)$ be the semi-group generated by $\left\{\delta_{\alpha}\right\}_{\alpha \in A} \cup I_{S}$ under composition. For each $\alpha \in S(M)$, let $l(\alpha)$ be the number of elements of $\left\{\delta_{a}\right\}_{a \in A}$ contained in the minimum representation of α, and $l\left(I_{s}\right)=0$.

Definition 5. If θ is any relation on M, we define the SP closure θ^{*} of θ on M by the rule:

$$
\theta^{*}=\bigcup_{\alpha \in S(M)} \theta_{\alpha} .
$$

Lemma 3. Let θ, ρ be relations on M, then
(i) θ^{*} is the smallest relation satisfying the substitution property which contains θ;
(ii) $\theta \subseteq \rho \rightarrow \theta^{*} \subseteq \rho^{*}$;
(iii) $\theta^{* *}=\theta^{*}$.

Proof. We will only prove condition (i) here since the proof of (ii) and (iii) are quite trivial. It is obvious that $\theta \subseteq \theta^{*}$. For all a in A, $\delta_{a}^{-1} \circ \theta^{*} \circ \delta_{a}=\bigcap_{\alpha \in \mathcal{S}}(M) \delta_{a}^{-1} \circ \theta_{\alpha} \circ \delta_{a}=\bigcup_{\alpha \in S}(M) \delta_{a}^{-1} \circ \alpha^{-1} \circ \theta \circ \alpha \circ \delta_{a} \subseteq \theta^{*}$.

If γ is another relation satisfying the substitution property and containing θ, then $\theta_{\alpha} \subseteq \gamma$ for $l(\alpha)=0$. Assume that $\theta_{\alpha} \subseteq \gamma$, for all $\alpha \in S(M)$ such that $l(\alpha) \leqq n$, and let $\beta \in S(M)$ such that $l(\beta)=n+1$. Then $\beta=\alpha \circ \delta_{a}$ for some $a \in A$ and some $\alpha \in S(M)$ such that $l(\alpha) \leqq n$, and

$$
\theta_{\beta}=\delta_{a}^{-1} \circ \alpha^{-1} \circ \theta \circ \alpha \circ \delta_{a} \subseteq \delta_{a}^{-1} \circ \gamma \circ \delta_{a} \subseteq \gamma
$$

Thus, $\alpha \in S(M), \theta_{\alpha} \subseteq \gamma$ and hence $\theta^{*} \subseteq \gamma$. This shows that θ^{*} is the minimal relation satisfying the substitution property and containing θ.

The following theorem gives rules for computing the maximal and minimal GCR a given relation on M.

Theorem 4. If θ is a reflexive and symmetric relation on M, then
(i) $m(\theta)=\theta^{*}$;
(ii) $M(\theta)=M_{d}{ }^{\wedge}(\hat{\theta})$ where $\hat{\theta}=\bar{\theta} \cup \bar{\theta}^{-1} \cup I_{S}$.

Proof. (i) If ρ is any GCR on M such that $\theta \subseteq \rho$. Then by lemma 3 above, $\theta^{*} \subseteq \rho$. In particular, $\theta^{*} \subseteq m(\theta)$. However, θ^{*} is a GCR containing θ, hence, $m(\theta) \subseteq \theta^{*}$ and therefore, $m(\theta)=\theta^{*}$.
(ii) We first note that $m_{d}(\theta)$ can also be obtained in a similar fashion as in (i). $m_{d}(\hat{\theta})$ satisfies the dual substitution property implies that $m_{d}(\theta)$ satisfies the substitution property by lemma 2 . Since $m_{d}{ }^{\wedge}(\hat{\theta})$ is reflexive and symmetric by definition, $m_{\vec{d}}{ }^{\wedge}(\hat{\theta})$ is a GCR. $\hat{\theta} \subseteq m_{d}(\hat{\theta}) \rightarrow$ $m_{d} \wedge(\hat{\theta}) \subseteq \hat{\theta}=\theta$. Thus, $m_{d} \wedge^{\wedge}(\hat{\theta}) \subseteq M(\theta)$. Since $m_{d}(\theta) \subseteq \rho$ for all dual GCR ρ on M such that $\hat{\theta} \subseteq \rho$, and since $M(\theta) \subseteq \theta$ and $M(\theta)=M^{\wedge}(\theta)$, so $M(\theta) \subseteq m_{d} \wedge(\hat{\theta})$. This implies that $m_{d} \wedge(\hat{\theta})=M(\theta)$, and the theorem is proved.

IV. GENERALIZED HOMOMORPHISM

In this section, the concept of generalized (rational) homomorphism between automata and their relationship with generalized congruence relation will be discussed.

Defintition 6. $\phi \subseteq S \times T$ is called a generalized homornhism ${ }^{4}$ (GH)

[^2]from M to N if and only if
$$
(\forall a \in A)\left[\delta^{-1} \circ \phi \circ \lambda_{a} \subseteq \phi\right] .
$$

It is clear that $\phi \subseteq S^{2}$ is a GH from M to itself if and only if satisfies the substitution property on M. Thus, following Theorem 1, the family of all GH from M to N forms a complete, distributive lattice under set inclusion.

Theorem 5. If $\phi \subseteq S \times T$, then the following statements are equivalent.
(i) ϕ is a GH from M to N.
(ii) ϕ^{-1} is a GH from N to M.
(iii) $(\forall a \in A)\left[\lambda_{\alpha} \subseteq \overline{\left.\phi^{-1} \circ \delta_{a} \circ \bar{\phi}\right]}\right.$.
(iv) ϕ determines an $M \times N$-complete subautomaton of $M \times N$.

Proof. (ii) \rightleftarrows (i) \rightleftarrows (iii). $\forall a \in A$,

$$
\begin{aligned}
\lambda_{a}^{-1} \circ \phi^{-1} \circ \delta_{a} \subseteq \phi^{-1} & \rightleftarrows \delta_{a}^{-1} \circ \phi \circ \lambda_{a} \subseteq \phi \\
& \rightleftarrows T\left(\delta_{a}^{-1} \circ \phi \circ \lambda_{a} \circ \bar{\phi}^{-1}\right)=0 \\
& \rightleftarrows T\left(\bar{\phi}^{-1} \circ \delta_{a}^{-1} \circ \phi \circ \lambda_{a}\right)=0 \\
& \rightleftarrows \bar{\phi}^{-1} \circ \delta_{a}^{-1} \circ \phi \subseteq \bar{\lambda}_{a}^{-1} \\
& \rightleftarrows \phi^{-1} \circ \delta_{a} \circ \bar{\phi} \subseteq \bar{\lambda}_{a} \\
& \rightleftarrows \lambda_{a} \subseteq \bar{\phi}^{-1} \circ \delta_{a} \circ \bar{\phi}
\end{aligned}
$$

(i) \rightleftarrows (iv). Suppose that ϕ is a GH from M to N. Let ($\phi, A, \tau_{a}{ }^{\prime}$) be the subautomaton of $M \times N=\left(S \times T, A, \tau_{a}\right)$ determined by ϕ. If $(s, t) \in \phi$, and if there exists $\left(s^{\prime}, t^{\prime}\right) \in \phi \subseteq S \times T$ such that $((s, t)$, $\left.\left(s^{\prime}, t^{\prime}\right)\right) \in \tau_{a}$, then since $\delta_{a}^{-1} \circ \phi \circ \lambda_{a} \subseteq \phi$, and $\left(s, s^{\prime}\right) \in \delta_{a},\left(t, t^{\prime}\right) \in \tau_{a}$, we must have $\left(s^{\prime}, t^{\prime}\right) \in \phi$; i.e., $\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right) \in \phi^{2}$. Since $\tau_{a}{ }^{\prime}=\phi^{2} \cap \tau_{a}$, $\left((s, t),\left(s^{\prime}, t^{\prime}\right)\right) \in \tau_{a}^{\prime}$ and $\left(\phi, A, \tau_{a}^{\prime}\right)$ is an $M \times N$-complete subautomaton of $M \times N$.

Hedetniemi's definition of a full homomorphism (1966), Keisler's definition of a strong homomorphism (1960), and Thatcher's definition of homomorphism (1965) coincide in the structure of automata. Namely, $\phi \subseteq S \times T$ is a homomorphism (in their sense) from M to N if and only if

$$
(\forall a \in A)\left[\phi^{-1} \circ \delta_{a} \circ \phi=\lambda_{a}\right] .
$$

Clearly, if $I_{S} \subseteq \phi^{\circ} \phi^{-1}$, then this definition implies Ginzburg and Yoeli's definition of weak homomorphism. On the other hand, Lyndon's definition of homomorphism (1959) embodies only half of the above definition, namely, $(\forall a \in A)\left[\phi^{-1} \circ \delta_{a} \circ \phi \subseteq \lambda_{a}\right]$.

Conversely, if ϕ determines an $M \times N$-complete subautomaton, then $\forall a \in A$,

$$
\begin{aligned}
(s, t) \in \delta_{a}^{-1} \circ \phi \circ \lambda_{a} & \rightarrow\left(\ni\left(s^{\prime}, t^{\prime}\right) \in \phi\right)\left[\left(s^{\prime}, s\right) \in \delta_{a} \wedge\left(t^{\prime}, t\right) \in \lambda_{a}\right] \\
& \rightarrow\left(\left(s^{\prime}, t^{\prime}\right),(s, t)\right) \in \tau_{a} \\
& \rightarrow\left(\left(s^{\prime}, t^{\prime}\right),(s, t)\right) \in \phi^{2}, \text { since }\left(s^{\prime}, t^{\prime}\right) \in \phi
\end{aligned}
$$

and ϕ determines an $M \times N$-complete subautomaton

$$
\rightarrow \delta_{a}^{-1} \circ \phi \circ \lambda_{a} \subseteq \phi
$$

Theorem 6. If $\phi \subseteq S \times T$, then there is a maximal $\mathrm{GH} \phi_{M}$ and a minimal $\mathrm{GH} \phi_{m}$ from M to N such that $\phi_{M} \subseteq \phi \subseteq \phi_{m}$.
Proof. Define ϕ_{m} by the following rules:
(i) $\phi(1)=\phi$
(ii) $\forall k \geqq 1$, define

$$
\begin{aligned}
& \phi(k+1)=\phi(k) \cup\left\{(s, t) \mid(\ni a \in A)\left(\ni\left(s^{\prime}, t^{\prime}\right) \in \phi(k)\right)\right. \\
& \quad\left[\left(s^{\prime}, s\right) \in \delta_{a} \wedge\left(t^{\prime}, t\right) \in \lambda_{a}\right] .
\end{aligned}
$$

(iii) $\phi_{m}=U_{k>1} \phi(k)$.

We now define ϕ_{M} by the following rules:
(i) $\phi[1]=\phi$
(ii) $\forall k \geqq 1$, define

$$
\begin{aligned}
& \phi[k+1]=\phi[k] \cap\left\{(s, t) \mid(\forall a \in A)\left(\forall\left(s^{\prime}, t^{\prime}\right) \in S \times T\right) .\right. \\
& {\left.\left[\left(s, s^{\prime}\right) \in \delta_{a} \wedge\left(t, t^{\prime}\right) \in \lambda_{a} \rightarrow\left(s^{\prime}, t^{\prime}\right) \in \phi[k]\right]\right\} . }
\end{aligned}
$$

(iii) $\phi_{M}=\bigcap_{k>1} \phi[k]$.

It is easy to show that ϕ_{m} and ϕ_{M} do satisfy the conditions of the theorem.
Definition 7. Let C be a family of nonempty subsets of S. The quotient automaton, M / C, of M modulo C is defined to be the automaton (C, $A, \delta_{a}{ }^{c}$) such that
$(\forall a \in A)\left(\forall C_{i}, C_{j} \in C\right)\left[\left(C_{i}, C_{j}\right) \in \delta_{a}{ }^{c} \rightleftarrows \varnothing \neq C_{i} \circ \delta_{a} \subseteq C_{j}\right]$.
If θ is a GCR, then we define the quotient automaton, M / θ, of M modulo θ to be $M / C_{\theta}=\left(C_{\theta}, A{ }_{a}^{\theta}\right)$, where $\delta_{a}^{\theta}=\delta_{a}^{C_{\theta}}$.

Theorem 7. Every GCR θ on M determines a unique $\mathrm{GH} \phi(\theta)$ from M to M / θ. Conversely, if ϕ is a GH from M to a complete automaton N such that $I_{s} \subseteq \phi \circ \phi^{-1}$, then ϕ determines a unique GCR $\theta(\phi)$ on M.

Proof. Let θ be a GCR on M. Let $C_{\theta}=\left\{C_{i}\right\}_{i \in I}$ where I is an index set. Define $\phi(\theta)$ from M to M / θ by the rule:

$$
(\forall s \in S)\left(\forall C_{i} \in C_{\theta}\right)\left[\left(s, C_{i}\right) \in \phi(\theta) \rightleftarrows s \in C_{i}\right] .
$$

$$
\begin{aligned}
& \left(s, C_{i}\right) \in \delta_{a}^{-1} \circ \phi(\theta) \circ \delta^{\theta} \\
& \rightleftarrows\left(\ni s^{\prime} \in S\right)\left(\ni C_{j} \in C\right)\left[\left(s^{\prime}, s\right) \in \delta_{a} \wedge\left(s^{\prime}, C_{j}\right) \in \phi(\theta) \wedge\left(C_{j}, C_{i}\right) \in \delta_{a}^{\theta}\right] \\
& \rightarrow s^{\prime} \in C_{j} \wedge C_{j} \circ \delta_{a} \subseteq C_{i} \rightarrow s \in C_{i}, \text { since } s \in s^{\prime} \circ \delta_{a} \\
& \rightarrow \delta_{a}^{-1} \circ \phi(\theta) \circ \delta_{a}^{\theta} \subseteq \phi(\theta) .
\end{aligned}
$$

Thus, $\phi(\theta)$ is a GH from M to M / θ.
Conversely, let ϕ be a GH from M to a complete automaton N, and $I_{s} \subseteq \phi \circ \phi$. We define $\theta(\phi)=\phi \circ \phi^{-1}$. It is quite clear that $\theta(\phi)$ is reflexive and symmetric. Furthermore,
$\forall a \in A, \delta_{a}^{-1} \circ \theta(\phi) \circ \delta_{a}=\delta_{a}^{-1} \circ \phi \circ \phi^{-1} \circ \lambda_{a}$

$$
\subseteq \delta_{a}^{-1} \circ \phi \circ \lambda_{a} \circ \lambda_{a}^{-1} \circ \phi^{-1} \circ \delta_{a} \subseteq \phi \circ \phi^{-1}=\theta(\phi)
$$

Hence, $\theta(\phi)$ is indeed a GCR on M, and the theorem is proved.

V. GENERALIZED PRODUCTIVE HOMOMORPHISM

In the theory of complete and deterministic automata, we say two automata are structurally equivalent if, and only if, they are isomorphic; i.e., one automaton can be obtained from the other by renaming the states. In this section, a stronger version of the GH is given which we will utilize to compare the structures of incomplete, nondeterministic automata.

Definition 8. $\phi \subseteq S \times T$ is called a generalized productive homomorphism (GPH) from M to N if and only if $\forall a \in A$,
(i) $\delta_{a}^{-1} \circ \phi \circ \lambda_{a} \subseteq \phi ;$
(ii) $\phi^{-1} \circ \delta_{a} \circ S \subseteq \lambda_{a} \circ T$;
(iii) $\phi \circ \lambda_{a} \circ T \subseteq \delta_{a} \circ S$.

Clearly, in case M and N are complete, the two definitions of homomorphisms coincide. Conditions (ii) and (iii) in the above definition guarantee that M and N have the same structure, even if they are incomplete, in the sense that a state produces a next state if, and only if, its corresponding states also produce next states under the same input.

It is also clear that the three conditions in definition 8 are equivalent to (i), (ii') $\phi \circ \lambda_{a} \subseteq \delta_{a} \circ \phi$, and (iii') $\phi^{-1} \circ \delta_{a} \subseteq \lambda_{a} \circ \phi^{-1}$.

In the following, we shall give an example to demonstrate the difference between GH and GPH.

Let $M=(S, A, \delta)$ and $N=(T, A, \lambda)$ such that $S=\{a, b, c, d\}$. $T=\{1,2\}, A=\{a\}$, and δ_{a} and λ_{a} are defined by the following matrices.

δ_{a}	a	b	c	d	λ_{a}	1	2
a	0	0	1	0	1	0	1
b	0	0	1	1	2	1	0
c	1	0	0	0			
d	0	0	0	0			

If we define the two relations ϕ and ψ on $S \times T$ by the matrices

ϕ	1	2		ψ	1	2
a	1	0		a	1	0
b	0	0	and	b	1	0
c	0	1		c	0	1
d	0	0		d	0	1

Then ϕ is a GPH and ψ is a GH but not a GPH as shown below.

$$
\begin{aligned}
\delta_{a}^{-1} \circ \psi \circ \lambda_{a}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right] & \times\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \\
& \times\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right] \subseteq \psi \rightarrow \psi \text { is a GH. }
\end{aligned}
$$

However,

$$
\psi \circ \lambda_{a}=\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right] \nsubseteq\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]=\delta_{a} \circ \psi \rightarrow \psi \text { is not a GPH. }
$$

On the other hand,

$$
\begin{aligned}
\delta_{a}^{-1} \circ \phi \circ \lambda_{a} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\phi \rightarrow \phi \text { is a GH. } \\
\phi \circ \lambda_{a} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 0 \\
0 & 0
\end{array}\right] \subseteq\left[\begin{array}{ll}
0 & 1 \\
0 & 1 \\
1 & 0 \\
0 & 0
\end{array}\right]=\delta_{a} \circ \sigma, \text { and } \\
\phi^{-1} \circ \delta_{a} & =\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]=\lambda_{a} \circ \phi
\end{aligned}
$$

Thus ϕ is a GPH.
Theorem 8. A relation θ on S is a GPCR on M if and only if there exists an automaton N and a GPH ϕ from M to N such that $I_{s} \subseteq \phi \circ \phi^{-1}=\theta$.

Proof. Suppose that ϕ is a GPH from M to N such that $I_{S} \subseteq \phi \circ \phi^{-1}$. Let $\theta=\phi \circ \phi^{-1}$. Clearly, θ is reflexive and symmetric. Furthermore, $a \in A$, we have
(i) $\theta \circ \delta_{a} \circ S=\phi \circ \phi^{-1} \circ \delta_{s} \circ S \subseteq \phi \circ \lambda_{a} \circ T \subseteq \delta_{a} \circ S$;
(ii) $\left(s, s^{\prime}\right) \in \delta_{a}^{-1} \circ \theta \circ \delta_{a} \rightleftarrows\left(s, s^{\prime}\right) \in \delta_{a}^{-1} \circ \phi \circ \phi^{-1} \circ \delta_{a}$

$$
\begin{aligned}
& \rightarrow(\ni u, v \in S)(\ni t \in T)\left[(u, s) \in \delta_{a} \wedge(u, t) \in \phi \wedge(t, v) \in\right. \\
& \left.\phi^{-1} \wedge\left(v, s^{\prime}\right) \in \delta_{a}\right] \rightarrow(\ni w \in T)\left[(t, w) \in \lambda_{a}\right], \text { since } \phi^{-1} \circ \delta_{a} \circ S \\
& \subseteq \lambda_{a} \circ T \rightarrow\left(s, s^{\prime}\right) \in \delta_{a}^{-1} \circ \phi \circ \lambda_{a} \circ \lambda_{a}^{-1} \circ \phi^{-1} \circ \delta_{a} \subseteq \phi \circ \phi^{-1}=\theta
\end{aligned}
$$

Thus, θ is a GPCR on M.
Conversely, assume that θ is a GPCR on M. Let $C_{\theta}=\left\{C_{i}\right\}_{i \in I}$, where I is an index set. Let $N=M / \theta=\left(C_{\theta}, A, \delta_{a}^{\theta}\right)$, and define $\phi \subseteq S \times C_{\theta}$ by the rule:

$$
(\forall s \in S)\left(\forall C_{i} \in C\right)\left[\left(s, C_{i}\right) \in \phi \rightleftarrows s \in C_{i}\right] .
$$

By the proof of theorem 6 above, it is clear that

$$
(\forall a \in A)\left[\delta_{a}^{-1} \circ \phi \circ \delta_{a}^{\theta} \subseteq \phi\right] .
$$

Furthermore, $\forall a \in A$, we have
(i) $C_{i} \in \phi^{-1} \circ \delta_{a} \circ S \rightleftarrows(\ni s \in S)\left[\left(s, C_{i}\right) \in \phi \wedge s \circ \delta_{a} \neq \varnothing\right] \rightarrow\left(\ni C_{j}\right.$
$\in C) \cdot\left[\varnothing \neq C_{i} \circ \delta_{a} \subseteq C_{j}\right]$, since C_{θ} is a cover with substitution property on $M \rightarrow \phi^{-1} \circ \delta_{a} \circ S \subseteq \delta_{a}{ }^{\theta} \circ C_{\theta}$;
(ii) $s \in \phi \circ \delta_{a}{ }^{\theta} \circ C_{\theta} \rightleftarrows\left(\ni C_{i} \in C_{\theta}\right)\left[\left(s, C_{i}\right) \in \phi \wedge C_{i} \circ \delta_{a}{ }^{\theta} \neq \varnothing\right]$ $\rightarrow\left(\exists t \in C_{i}\right)\left[t \circ \delta_{a} \neq \varnothing\right] \rightarrow s \circ \delta_{a} \neq \varnothing$, since $(s, t) \in \theta$ and $\theta \circ \delta_{a} \circ S \subseteq \delta_{a} \circ S \rightarrow \phi \circ \delta_{a} \circ C_{\theta} \subseteq \delta_{a} \circ S$.
Since $(\forall s \in S)\left(\ni C_{i} \in C_{\theta}\right)\left[\left(s, C_{i}\right) \in \phi\right]$, therefore ϕ is a GPH from M to N such that $I_{s} \subseteq \phi \circ \phi^{-1}=\theta$.

Definition 9. $\phi \subseteq S \times T$ is called a generalized isomorphism ${ }^{5}$ between M and N if, and only if, ϕ is a GPH from M to N such that $I_{s} \subseteq \phi \circ \phi^{-1}$ and $I_{T} \subseteq \phi^{-1} \circ \phi$.

Notation: We will denote by " $M \sim N$ " the fact that there exists a generalized isomorphism between M and N.

We note that " \sim " defines an equivalence relation on the family of all automata over the same input alphabet A. Since clearly
(i) $M \stackrel{x_{s}}{\sim} M$;
(ii) $M \stackrel{d}{\sim} N \nsim N \stackrel{\phi-1}{\sim} M$.
(iii) $M \stackrel{\phi_{1}}{\sim} N$ and $N \stackrel{\phi_{2}}{\sim} P \rightarrow M \stackrel{\phi_{10 \phi_{2}}^{\sim}}{\sim} P$.

Notation: If N is a subautomaton of M, and θ a relation on M, then denote by $N(\theta)$ the subautomaton of M determined by $T \circ \theta$; i.e., $N(\theta)=\left(T \circ \theta, A, \sigma_{a}\right)$, where $\sigma_{a}=\delta_{a}=\delta_{a} \cap(T \circ \theta)^{2}$.

Theorem 9. If N is a complete subautomaton of M, θ a GPCR on $M, \rho a \operatorname{GPCR}$ on N, then ρ_{θ} is a GPCR on $N(\theta)$ and $N(\theta) / \rho_{\theta} \sim N / \rho$.

Proof. We first note that $N(\theta)=\left(T \circ \theta, A, \sigma_{a}\right)$ is also a complete subautomaton of M. Since $s \in T \circ \theta \rightarrow(\ni t \in T)[(t, s) \in \theta] . N$ being complete then implies that $(\forall a \in A)\left[t \circ \lambda_{a} \neq \varnothing\right]$. Since $\theta \circ \delta_{a} \circ S$ $\subseteq \delta_{a} \circ S$, and $(t, s) \in \theta$, therefore $s \circ \delta_{a} \neq \varnothing$. Furthermore, $\left(\forall s^{\prime} \in s \circ \delta_{a}\right.$) $\cdot\left(\forall t^{\prime} \in t \circ \lambda_{a}\right)\left[\left(t^{\prime}, s^{\prime}\right) \in \theta \wedge t^{\prime} \in T\right]$, and thus $s^{\prime} \in T \circ \theta$ which implies that $(\forall a \in A)(\forall s \in T \circ \theta)\left[s \circ \sigma_{a} \neq \phi\right]$.

We will now show that $\rho_{\theta}=\theta^{-1} \circ \rho \circ \theta=\theta \circ \rho \circ \theta$ is a GPCR on $N(\theta)$. Clearly, ρ_{θ} is reflexive and symmetric. $\forall a \in A$, we have

$$
\begin{equation*}
\sigma_{a}^{-1} \circ \rho \circ \sigma_{a} \subseteq \sigma_{a}^{-1} \circ \theta \circ \lambda_{a} \circ \lambda_{a}^{-1} \circ \rho \circ \lambda_{a} \circ \lambda_{a}^{-1} \circ \theta \circ \sigma_{a} \subseteq \sigma_{\theta} \tag{i}
\end{equation*}
$$

[^3](ii) $s \in \theta \circ \rho \circ \theta \circ \sigma_{a} \circ(T \circ \theta) \rightleftarrows\left(\ni t, t^{\prime} \in T\right)\left(\ni s^{\prime}, s^{\prime \prime} \in S\right)$ $\left[(s, t) \in \theta \wedge\left(t, t^{\prime}\right) \in \rho \wedge\left(t^{\prime}, s^{\prime}\right) \in \theta \wedge\left(s^{\prime}, s^{\prime \prime}\right) \in \sigma_{a} \wedge\right.$ $\left.s^{\prime \prime} \in T \circ \theta\right] \rightarrow \theta \circ \rho \circ\left(\theta \circ \sigma_{a} \circ(T \circ \theta)\right) \subseteq \theta \circ \rho \circ \sigma_{a} \circ T \subseteq$ $\theta \circ \sigma_{a} \circ T$, since N is complete and $t^{\prime} \in T \rightarrow \theta \circ \sigma_{a} \circ T \subseteq$ $\sigma_{a} \circ T \circ \theta$, since $s \in T \circ \theta$ and $N(\theta)$ is complete.
Thus, ρ_{θ} is a GPCR on $N(\theta)$.
Let $C_{\rho \theta}=\left\{X_{i\}_{i \in I}}\right.$ and $C=\left\{Y_{j}\right\}_{j \in J}$, where I and J are index sets, then define $\phi \subseteq C_{\rho \theta} \times C_{\rho}$ by the rule:
$$
\left(X_{i}, Y_{j}\right) \in \phi \rightleftarrows\left(X_{i} \cap Y_{j}\right) \neq \varnothing
$$

Since $T \subseteq T \circ \theta$, so for each $X_{i} \in C_{\rho g}$, there exists an $Y_{j} \in C_{\rho}$ such that $X_{i} \cap Y_{j} \neq \varnothing$ and vice versa. Therefore, $I_{C \rho_{g}} \subseteq \phi \circ \phi^{-1}$ and $I_{C_{\rho}}$ $\subseteq \Phi^{-1} \circ \phi . \operatorname{Let} N(\theta) / \rho_{\theta}=\left(C_{\rho_{\theta}}, A, \hat{\sigma}_{a}\right)$ and $N / \rho=\left(C, A, \hat{\lambda}_{a}\right)$. Then
$\left(\forall X_{i} \in C_{\rho_{\theta}}\right)\left(\forall Y_{j} \in C_{\rho}\right)\left[\left(X_{i}, Y_{j}\right) \in \hat{\sigma}_{a}^{-1} \circ \phi \circ \hat{\lambda}_{a}\right] \rightleftarrows\left(\ni X_{k} \in C_{\rho_{\theta}}\right)$
$\left(\ni Y_{l} \in C_{f}\right)\left[\left(X_{k}, X_{i}\right) \in \hat{\sigma}_{a} \wedge\left(X_{k}, Y_{l}\right) \in \phi \wedge\left(Y_{i}, Y_{j}\right) \in \hat{\lambda}_{a}\right] \rightarrow$
$X_{k} \cap Y_{l} \neq \varnothing \rightarrow X_{i} \cap Y_{j} \neq \varnothing$, since N is complete, $\rightarrow \hat{\sigma}_{a}^{-1} \circ \phi \circ \hat{\lambda}_{a} \subseteq$ ϕ. Also,
$\left(\forall Y_{i} \in C_{\rho}\right)\left[Y_{i} \in \phi^{-1} \circ \hat{\sigma}_{a} \circ C_{\rho_{\theta}}\right] \rightleftarrows\left(\ni X_{j}, X_{b} \in C_{\rho \theta}\right)\left[\left(X_{j}, Y_{i}\right) \in \phi \wedge\right.$ $\left.\left(X_{j}, X_{k}\right) \in \sigma_{a}\right] \rightarrow(\exists t \in T)\left[t \in X_{j} \cap T_{i}\right] \rightarrow X_{k} \cap T \neq \varnothing$, since N is complete $\rightarrow\left(\ni Y_{l} \in C_{\rho}\right)\left[X_{k} \cap Y_{l} \neq \varnothing\right]$, since C_{ρ} is a cover with substitution property on $T \rightarrow(\forall a \in A)\left[\phi^{-1} \circ \hat{\sigma}_{a} \circ C_{\rho g} \subseteq \hat{\lambda}_{a} \circ C_{\rho}\right]$.
Similarly, we can prove that $(\forall a \in A)\left[\phi \circ \hat{\lambda}_{\alpha} \circ C_{\rho} \subseteq \hat{\sigma}_{a} \circ C_{\rho_{g}}\right]$. Thus, ϕ is indeed a generalized isomorphism and hence $N(\theta) / \rho_{\theta} \sim N / \rho$.

Theorem 10. If ϕ is a GPH from M to N such that $I_{s} \subseteq \phi \circ \phi^{-1}$, then $M / \theta(\phi) \sim M \phi$. Where $M \phi=\left(S \circ \phi, A, \hat{\lambda}_{a}\right)$ is the subautomaton of N determined by $S \circ \phi$, and $\theta(\phi)=\phi \circ \phi^{-1}$.

Proof. $\theta(\phi)=\phi \circ \phi^{-1}$ is a GPCR on M by Theorem 8. By the same theorem, there exists a GPH ψ such that $M \stackrel{\sim}{\sim} M / \theta(\phi)$. Since clearly, $M \stackrel{\phi}{\sim} M \phi$, so $M / \theta(\phi) \psi \stackrel{10}{\stackrel{10 \rho}{\circ}} M_{\phi}$.

Theorem 11. If N is a semi-complete subautomaton of M, and θ a GPCR on M, then $N / \theta_{N} \sim N(\theta) / \theta$.

Proof. θ determines a GPH ϕ from M to M / θ by Theorem 8. Let $\psi=$ $\phi \mid N$, the restriction of ϕ to N. Since N is semi-complete subautomaton of M, we see that ψ is a GPH from N to $N(\theta) / \theta$ such that ($\forall t \in T$) $\left[t \circ \psi=\left\{C_{i} \in C_{\theta} \mid t \in C_{i}\right\}\right]$. Furthermore, $I_{T} \subseteq \psi \circ \psi^{-1}$ and $I_{T_{0 \theta} / \theta} \subseteq$ $\psi^{-1} \circ \psi$ and $\psi \circ \psi^{-1}=\theta \cap T^{2}=\theta_{N}$, where $T \circ \theta / \theta$ is the state set of $N(\theta) /$ θ. Thus, by Theorem 10, we must have $N / \theta_{N} \sim N(\theta) / \theta$.

Theorem 12. If M is a complete automaton, θ and σ are GCR on M such that $\sigma \subseteq \theta$ then $(M / \sigma) / \theta_{\phi(\sigma)} \sim M / \theta$. Where $\phi(\sigma)$ is the GH from M to M / σ determined by σ.

Proof. Let $C \sigma=\left\{X_{i}\right\}_{i \in I}$ and $C \theta=\left\{Y_{j}\right\}_{j_{\in J}}$, where I and J are index sets. Sefine $\phi \subseteq C_{\sigma} \times C_{\theta}$ by the rule:

$$
\left(\forall X_{i} \in C_{\sigma}\right)\left(\forall Y_{j} \in C_{\theta}\right)\left[\left(X_{i}, Y_{j}\right) \in \phi \rightrightarrows X_{i} \cap Y_{j} \neq \varnothing\right]
$$

Let $M / \sigma=\left(C_{\sigma}, A, \delta_{a}{ }^{\prime}\right)$ and $M / \delta=\left(C_{\theta}, A, \delta_{a}^{\prime \prime}\right)$. Then

$$
\begin{aligned}
& \left(X_{i}, Y_{j}\right) \in \delta_{a}^{\prime-1} \circ \phi \circ \delta_{a}^{\prime \prime} \\
& \quad \rightleftarrows\left(\ni X_{i}^{\prime} \in C_{\sigma}\right)\left(\ni Y_{j}^{\prime} \in C_{\theta}\right)\left[\left(X_{i}^{\prime}, X_{i}\right) \in \delta_{a}^{\prime} \wedge\left(X_{i}^{\prime}, Y_{j}^{\prime}\right) \in \phi\right. \\
& \\
& \left.\wedge\left(Y_{j}^{\prime}, Y_{j}\right) \in \delta_{a}^{\prime \prime}\right] \\
& \quad \rightarrow X_{i}^{\prime} \cap Y_{j}^{\prime} \neq \varnothing \\
& \quad \rightarrow\left(\forall X_{i}^{\prime \prime} \in X_{i}^{\prime} \circ \delta_{a}^{\prime}\right)\left(\forall Y_{j}^{\prime \prime} \in Y_{j}^{\prime} \circ \delta_{a}^{\prime \prime}\right)\left[X_{i}^{\prime \prime} \cap Y_{j}^{\prime \prime} \neq \varnothing\right]
\end{aligned}
$$

since M being complete implies that both M / σ and M / θ are complete
$\rightarrow X_{i} \cap Y_{j} \neq \varnothing$
$\rightarrow(\forall a \in A)\left[\delta_{a}^{\prime-1} \circ \phi \circ \delta_{a}^{\prime \prime} \subseteq \phi\right]$.
Now, G / σ and G / θ are complete implies that $\forall a \in A, \phi^{-1} \circ \delta_{a}{ }^{\prime} \circ C_{\sigma} \subseteq$ $\delta_{a}{ }^{\prime \prime} \circ C_{\theta}$ and $\phi \circ \delta_{a}^{\prime \prime} \circ C_{\theta} \subseteq \delta_{a}{ }^{\prime} \circ C_{\sigma}$. Thus, ϕ is a GPH from G / σ to G / δ. By Theorem 10, we have $(M / \sigma) / \phi \circ \phi \stackrel{-1}{\sim} M / \theta$. We must now show that $\phi \circ \phi^{-1}=\theta_{\phi(\sigma)}=\phi(\sigma)^{-1} \circ \theta \circ \phi(\sigma)$.

$$
\begin{aligned}
\left(\forall X_{i}, X_{j} \in C_{\sigma}\right)\left[\left(X_{i}\right.\right. & \left.\left., X_{j}\right) \in \phi \circ \phi^{-1}\right] \\
& \rightleftarrows\left(\ni Y_{k} \in C_{\theta}\right)\left[X_{i} \cap Y_{k} \neq \varnothing \wedge X_{j} \cap Y_{k} \neq \varnothing\right. \\
& \rightleftarrows\left(\ni x \in X_{i}\right)\left(\ni y \in X_{j}\right)[(x, y) \in \theta] \\
& \rightleftarrows\left(X_{i}, X_{j}\right) \in \phi(\sigma)^{-1} \circ \theta \circ \phi(\sigma) \\
& \rightarrow \theta_{\phi(\sigma)}^{\prime}=\phi \circ \phi^{-1}
\end{aligned}
$$

Therefore, $(M / \sigma) / \theta_{\phi(\sigma)} \sim M / \theta$.
VI. CONCLUDING REMARKS

In this paper a general approach to compare the structures of incomplete, nondeterministic automata has been developed via the concept of relational homomorphism. The concept of structural equivalence, we
believe, is an important one in the sense that certain essential structures of two systems are preserved without demanding them to be the same. If we consider automata with output, then it can be shown that structural equivalence (with an additional condition on output) lies between the concepts of isomorphism and behavioral equivalence. Furthermore, in many cases when behavioral equivalence is demanded, structural equivalence is there also.

It appears that the results obtained in this paper may be used to discuss the structural properties of graphs or formal grammars.

Acknowledgment

The author is indebted to Professor David E. Muller for suggesting the problem.
Received: August 14, 1967; revised July 11, 1968.

BIBLIOGRAPHY

Ginzburg, A., and Yoeli, M. (1965), Products of automata and the problem of covering. Am. Math. Soc. 116, 253-266.
Grazer, G. (1966), "Universal Algebra." To be published by D. Van-Nostrand Company, Inc.
Hartmanis, J., and Stearns, R. E. (1966), "Algebraic Structure Theory of Sequential Machines." Prentice Hall, Inc.
Hedetniemi, S. (1966), "Homomorphisms of Graphs and Automata." Ph.D. Dissertation, University of Michigan, Ann Arbor.
Keisler, H. J. (1960), The theory of models with generalized atomic formulas. J. Symbolic Logic, 25, 1-26.

Lyndon, R. C. (1959), Properties preserved under homomorphisms. Pacific J. Math. 9, 143-154.
Thatcher, J. W. (1965), "Homomorphisms For Relational Systems." IBM Research Notes, IBM, Yorktown Heights.
Yeh, R. T. (1966), "Weak Congruence Relations On Graphs." Doctoral Dissertation, University of Illinois, Urbana.

[^0]: ${ }^{1}$ Only binary relations will be considered in this paper.
 ${ }^{2}$ If θ is an equitalence relation, then a GCR becomes a congruence relation in the ordinary algebraic sense.

[^1]: ${ }^{3}$ Hartmanis and Stearns (1966) call it a set system and Yoeli (1963) calls it an admissible partition.

[^2]: ${ }^{4}$ In the conventional automata theory, a function $\phi: S \rightarrow T$ is a homomorphism from M to N if and only if $(\forall a \in A)\left[\delta_{a} \circ \phi=\phi \circ \lambda_{a}\right]$. It is not hard to show that in case M and N are complete and deterministic, and ϕ is a function from S to T, then ϕ is a $G H$ from M to N if and only if ϕ is a homomorphism from M to N.

 Ginzburg and Yoeli (1965) defined $\phi \subseteq S \times T$ to be a weak homomorphism from M to N if and only if (i) $1_{S} \subseteq \phi^{\circ} \phi^{-1}$ and (ii) ($\left.\forall x \in A^{*}\right)\left[\phi^{-1} \delta_{x} \subseteq \lambda_{\left.x^{\circ} \phi^{-1}\right] \text {. It is easy }}\right.$ to see that weak homomorphism implies $G H$ and that the two definitions are equivalent in case N is also complete.

[^3]: ${ }^{5}$ If M and N are complete and deterministic, then $\phi: S \rightarrow T$ is an isomorphism between M and N if and only if ϕ is a homorphism from M to N such that ϕ is also one to one. It is obvious that ϕ is an isomorphism between M and N implies that ϕ is a generalized isomorphism between M and N.

