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Identification of Oncogenic
Point Mutations and

Hyperphosphorylation
of Anaplastic Lymphoma
Kinase in Lung Cancer'~

Abstract

The oncogenic property of anaplastic lymphoma kinase (ALK) plays an essential role in the pathogenesis of various
cancers and serves as an important therapeutic target. In this study, we identified frequent intragenic loss of hetero-
zygosity and six novel driver mutations within ALK in lung adenocarcinomas. Overexpression of H694R or E1384K
mutant ALK leads to hyperphosphorylation of ALK, and activation of its downstream mediators STAT3, AKT, and
ERK resulted in enhanced cell proliferation, colony formation, cell migration, and tumor growth in xenograft models.
Furthermore, the activated phospho-Y1604 ALK was increasingly detected in 13 human lung cancer cell lines and
263 lung cancer specimens regardless of tumor stages and types. Treatment of two different ALK inhibitors, WHI-
P154 and NVP-TAEB84, resulted in the down-regulation of aberrant ALK signaling, shrinkage of tumor, and suppres-
sion of metastasis and significantly improved survival of ALK mutant-bearing mice. Together, we identified that novel
ALK point mutations possessed tumorigenic effects mainly through hyperphosphorylation of Y1604 and activation of
downstream oncogenic signaling. The upregulated phospho-Y1604 ALK could serve as a diagnostic biomarker for
lung cancer. Furthermore, targeting oncogenic mutant ALKs with inhibitors could be a promising strategy to improve

the therapeutic efficacy of fatal lung cancers.
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Introduction

Lung cancer is the leading cause of cancer mortality worldwide, which
claims approximately 1.3 million deaths annually. Lung cancers are
broadly classified into non—small cell lung cancers (NSCLCs) and
small cell lung cancers (SCLCs), which account for approximately
80% and 20% of total cases, respectively [1]. Among NSCLCs, the
adenocarcinoma constitutes more than 40% of lung cancer patients
and is increasing in recent decades. It has replaced squamous cell car-
cinoma to become the leading subtype of lung cancer [2]. Recent
advances in genetic studies of lung adenocarcinoma revealed somatic
alterations in genes including p53, KRAS, EGFR, HER2, -MET,
LKBI, PIK3CA, and BRAF that conferred selective advantages of can-
cer cells in growth, apoptotic resistance, angiogenesis, and metastasis
[3-13]. EGFR mutations were commonly observed in nonsmoking
adenocarcinomas of Asian female patients (<40%) but were less fre-
quent in those of non-Asian patients. In contrast, KRAS and LKBI mu-
tations were frequently detected in non-Asian and smoking patients
(<30% and <34%, respectively) but were less frequently found in Asian

patients [14-17]. The status of EGFR is an important predicative factor
of successful responses to small-molecule EGFR tyrosine kinase inhib-
itors, gefitinib and erlotinib [5,6]. However, the prognostic impact of
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EGFR-based target therapy on lung adenocarcinoma is controversial. De-
spite recent therapeutic advances, the overall 5-year survival rate for lung
adenocarcinoma remains approximately 15% [18]. Therefore, discovery of
novel targets for development of therapeutic strategies is in urgent need.

Anaplastic lymphoma kinase (ALK) was initially identified in a
chromosomal translocation ©(2;5)(p23;q35) associated with approxi-
mately 75% of patients with anaplastic large cell lymphoma (ALCL)
[19,20]. That translocation fused the 5" end of the nucleophosmin
(NPM) to the 3" ALK and resulted in the formation of a constitutively
active oncogene encoding a chimeric tyrosine kinase NPM-ALK,
which, in turn, led to enhanced cell proliferation, cell migration, resis-
tance to apoptosis, and cytoskeleton reorganization. The tumorigenic
property of NPM-ALK is mediated through activation of multiple in-
terconnecting signaling pathways including Ras/ERK, JAK3/STAT?3,
and PI3K/AKT pathways [21]. Recently, another oncogene with the
5" end of the echinoderm microtubule-associated protein-like 4 (EML4)
fused to 3" ALK was identified in lung adenocarcinomas with a prev-
alence of ~7% of total lung cancers [22]. EML4-ALK also encodes a
ligand-independent and constitutively active tyrosine kinase with on-
cogenic activity [23]. Treatments with ALK inhibitors resulted in
shrinkage of lung tumors in EML4-ALK transgenic and xenografted
models, which supported EML4-ALK to be a novel driver mutation
and therapeutic target in NSCLCs [24,25]. Recent efforts of sequenc-
ing 623 genes involved in tumorigenesis of lung adenocarcinoma from
188 white patients identified four additional ALK point mutations on
different protein domains (P496L, P542R, S6311, and V1135E), depos-
ited in the database of Catalogue of Somatic Mutations in Cancer [26].
Similar to other cancers with somatic alterations in tyrosine kinases, two
ALK secondary mutations, C1156Y and L1196M, were identified within
the kinase domain of EML4-ALK in a patient with NSCLC who
became resistant to ALK inhibitor crizotinib after successful treatment
for 5 months [27]. Furthermore, ALK alterations were observed in other
tumors such as inflammatory myofibroblastic tumors caused by 7PM4-
ALK oncogene, diffuse large B-cell lymphoma caused by CLTC-ALK
oncogene, and sporadic and familial neuroblastomas caused by ALK
point mutations [28-32].

Because ALK was located within the frequent loss of heterozygosity
(LOH) region in our previous report [33] and its alterations in lung can-
cers remained to be determined, we therefore screened ALK point muta-
tions and examined their pathogenic roles in lung adenocarcinomas.

Materials and Methods

Patients with Lung Adenocarcinoma

Forty-eight pairs of lung adenocarcinoma and their tumor-adjacent
nonneoplastic tissues were obtained from patients who underwent sur-
gical resection at the National Taiwan University Hospital from June
2000 to December 2002, after approval from the research ethics com-
mittee of the hospital. All clinical data of patients were recorded, includ-
ing sex, age, smoking status, location of the tumor, and ensuing distinct
metastases after surgery. There were 29 men and 19 women, with a
mean age of 64 years, ranging from 38 to 79 years. All women were non-
smokers and 15 men had smoking history. Clinicopathologic features of
48 patients are listed in Table W1. All specimens either OCT-embedded
frozen or formalin-fixed tissues were sectioned and stained with hema-
toxylin and eosin for microscopic examination. Histologic diagnosis and
pathologic features were obtained according to the International Stag-
ing System for Lung Cancer, including tumor cell type, direct invasion
to surrounding structures, and regional lymph node metastasis.

DNA Extraction from Microdissected Lung Adenocarcinomas
and Mutation Detection

Lung adenocarcinoma sections (4 pm) either OCT-embedded fro-
zen tissues or deparaffinized formaldehyde-fixed, paraffin-embedded
tissues were stained with hematoxylin and eosin for pathologic distinc-
tion of tumor and nonneoplastic cells as per the pathologist on each
sample. Microdissection experiments were performed using either the
PixCell II laser capture microdissection apparatus (Arcturus Biosciences,
Mountain View, CA) or the Laser Microdissection System (Leica LMD,
Wetzlar, Germany) according to manufacturer’s instructions. Greater
than 70% purity of cancerous and tumor-adjacent normal cells on
8 to 10 tissue sections (100-300 cells per section) were isolated and
pooled separately to yield approximately 2000 to 4000 cells per sample.
An estimated 1000 microdissected cells were digested in 50 pl of lysis
buffer (10 mM Tris-HCI, pH 8.0, 1% Tween-20) and incubated with
6% Chelex 100 (Sigma, St Louis, MO) and 0.1 mg/ml proteinase K
for 24 hours at 56°C. The protease-treated DNA mixture was heat
inactivated after incubating for 10 minutes at 95°C and made ready
for polymerase chain reaction (PCR). The exon and intron boundaries
of ALK were based on annotations in the Ensembl database (http://
www.ensembl.org), and their primers were designed by the Primer3
Web site (htep://frodo.wi.mit.edu/primer3/) (Table W2). LCM-purified
samples were amplified in a 10-pl volume contained 0.05 pM prim-
ers, 250 pM of each dNTPs, 2.5 mM MgCl,, and 0.5 U of FastTaq
DNA polymerase (Roche Applied Science, Mannheim, Germany) at
95°C for 10 minutes and cycled at 94°C for 10 seconds and at 55°C
for 10 seconds and at 72°C for 20 seconds for 45 to 60 cycles. PCR prod-
ucts were purified by ExoSAP-IT PCR Clean-up Kit (GE Healthcare,
Buckinghamshire, United Kingdom) in 96-well format and sequenced
by ABI 3730 DNA sequencing analyzer (Life Technologies, Carlsbad,
CA). Mutation detection was conducted by using Sequencher 4.1.4
(Gene Codes, Ann Arbor, MI). Mutated exons were confirmed again
by reversed primer. Mutation data also validated by two additional
researchers and by using Mutation Survivor software (version 3.0;
SoftGenetics, State College, PA).

Cell Lines

Thirteen human lung cancer cell lines (A549, CL1-0, CL1-3, CL1-5,
H23, H226BR, H358, H460, H661, H928, H1299, H1435, and
H1437) were included in this study. Two near-normal bronchial epithe-
lial cells (BEAS-2B and NL20) were kindly provided by Dr Cheng-Wen
Wu from our institute and by Dr Wayne Chang from the National In-
stitute of Cancer Research of the National Health Research Institutes at
Miaoli, Taiwan, respectively. K562 (chronic myeloid leukemia cell line;
NPM-ALK"), SU-DHL (ALCL cell line; NPM-ALK"), and three neuro-
blastoma cell lines (IMR32 [wild-type ALK], SH-SY-5Y [F1174K mu-
tant ALK], and SK-N-SH [F1174K mutant ALK]) served as antibody
controls for phospho-Y1604 ALK and ALK [30-32,34,35]. NIH3T3
cells were used to further confirm the oncogenic property of ALK mu-

tations. All cell culture conditions and culture media were according to
the ATCC (Manassas, VA) standard protocols.

Antibodies and Reagents

For Western blot analysis, membranes were probed with indi-
cated antibodies against HA (MMS-101R; Covance, Princeton, NJ),
phospho-tyrosine (4G10, 16-101; Upstate Biotechnology, Lake Placid,
NY), STAT3 (sc-482; Santa Cruz, Santa Cruz, CA), and a-tubulin
(MS-581; Thermo, Rockford, IL). Phospho-ALK (Tyr1604, no. 3341),
phospho-AKT (Ser473, no. 9271), phospho-STAT3 (Tyr705, no. 9145),



706  Aberrant ALK as Target in Lung Cancer ~ Wang et al.

Neoplasia Vol. 13, No. 8, 2011

phospho-ERK (Thr202/Tyr204, no. 9101), AKT (no. 9272), and
ERK (no. 4695) antibodies were purchased from Cell Signaling
(Danvers, MA). ALK antibody—conjugated beads (C26G7, no. 5611)
for immunoprecipitation (IP) assay were also from Cell Signaling.
For immunohistochemistry (IHC) staining assay, tissue sections were
stained with the indicated antibodies against phospho-ALK (pY1604,
no. 1891-1; Epitomics, Burlingame, CA), ALK (no. 4204-1; Epitomics),
phospho-STAT3 (Tyr705, no. 9145; Cell Signaling), and phospho-
AKT (Ser473, no. 3787; Cell Signaling). ALK inhibitors WHI-P154
(no. 420104) and NVP-TAE684 (S1108) were purchased from
Calbiochem (La Jolla, CA) and Selleck (Houston, TX), respectively.

ALK Constructs and Cell Transfection

Wild-type ALK construct was subcloned by moving the full-length
ALK ¢DNA purchased from ATCC (ATCC no. 69497; pRMS17-2)
into the pcDNA3.0 vector. Six ALK mutation constructs (S413N,
V597A, H694R, G881D, Y1239H, and E1384K) were generated from
the pcDNA3.0-wild-type ALK construct by site-directed mutagenesis
using QuickChange Kit (Stratagene, La Jolla, CA). The sequences
of wild-type and mutant ALK constructs were confirmed by DNA
sequencing. H1299 and NIH3T3 cells were individually transfected
with ALK constructs by Lipofectamine 2000 (Invitrogen, Carlsbad,
CA) and independently selected for transfectants derived from mixed
G418 (800 pg/ml) resistant clones.

Western Blot and IP Analysis

Cells were lysed in RIPA buffer (20 mM Tris, 150 mM NaCl,
1 mM EDTA, 1% NP-40, 1 mM phenylmethylsulfonyl fluoride,
and 1 mM dithiothreitol) with addition of protease inhibitor cocktail
(1697498; Roche). For phosphorylated protein detection, additional
phosphatase inhibitor cockrail (no. 524625; Calbiochem) was added
into RIPA/protease inhibitor mixture. Protein concentration was mea-
sured by BCA protein assay kit (Pierce Chemical, Rockford, IL). Equal
amounts of cell lysates were subjected to SDS-PAGE, transferred to
NC membranes, and probed with the indicated antibody for protein
detection. For IP assay, equal amounts of cell lysate were first incu-
bated with the anti-HA antibody for 1 hour and, subsequently, reacted
with protein A/G—conjugated beads overnight at 4°C or directly in-
cubated with the anti-ALK antibody—conjugated beads. The pulled-
down beads were washed and subjected to Western blot analysis for
protein detection.

Immunohistochemistry

THC assays were performed on six human lung cancer tissue sections
with ALK mutations, four human lung cancer sections without ALK
mutations, two normal human lung sections (LUNO1 and LUNO02)
from Pantomics (Richmond, CA), five human lung cancer tissue arrays
containing 37 normal lung sections and 263 lung cancer sections from
Pantomics (LUC961, LUC962, LUC1501, LUC1502, and LUC1503),
three human tissue arrays from US Biomax (Rockville, MD) including
ALCL (NHL803b), rhabdomyosarcoma (SO751), and normal lymph
node (NHL801), and OCT-embedded frozen tumor sections prepared
from the xenografted nude mice. After deparaffinization, all sections
were treated with 3% H,O, buffer for 30 minutes to inactivate the
endogenous peroxidase activities and then incubated in 0.01 M sodium
citrate buffer for antigen retrieval. After blocking with 10% normal goat
serum, these sections were reacted with indicated antibodies at 4°C for
overnight. Subsequently, these sections were incubated with HRP poly-

mer conjugate (no. 87-9663; Invitrogen), diaminobenzidine staining,
and then Mayer hematoxylin (§3309; DAKO, Glostrup, Denmark).

Cell Proliferation Assay

A total of 1 x 10 cells in each well were seeded in 96-well plate. After
the indicated culture time, 10 pl of WST-1 reagent (11644807001;
Roche) was added into each well for incubation at 37°C for 40 minutes,
and the absorbance was then measured at 450 nm.

Boyden Chamber Assay

Cell migration capability was examined by Boyden chamber assay. A
total of 2 x 10 cells were seeded into the cell migration insert (353097;
Falcon, Franklin Lakes, NJ) containing 350 ul of Dulbecco modified
Eagle medium and then placed into the well containing 750 pl of 10%
fetal bovine serum/Dulbecco modified Eagle medium in a 24-well plate
(353504; Falcon). After 18 hours of incubation, migrated cells were
fixed with 100% methanol and stained with Giemsa solution (Merck,
Whitehouse Station, NJ). The number of migrated cells was counted by
the Image-Pro Plus analysis program (MediaCybernetic, Bethesda, MD).

Anchorage-Independent Growth Assay

A total of 2 x 10* cells were first mixed with a final 0.3% agarose
solution and plated into the 60-mm plate dish coated with 0.5% aga-
rose solution. After 28 days of incubation, these plates were dehydrated
at room temperature and then stained with 0.3% crystal violet solution
for colony visualization. The number of colonies formed was counted
by the Image-Pro Plus analysis program.

In Vitro Kinase Assay

In vitro ALK activity of H1299 transfectants was measured by uni-
versal tyrosine kinase assay kit (MK410; Takara, Shiga, Japan). In brief,
cells were first lysed in lysis buffer. After quantifying the protein concen-
tration using the BCA assay, equal amounts of cell lysates were immuno-
precipitated using the anti-HA antibody, and the ALK-precipitated
complex was then added into the wells coated with poly-Glu-Tyr sub-
strate. After 30 minutes of incubation, the peroxidase-conjugated anti-
phosphotyrosine antibody was added into the wells. After incubating
with the Horseradish peroxidase (HRP) substrate solution, the wells
were read in an ELISA reader set at an absorbance of 450 nm.

Immunofluorescence

After the cells were fixed in 4% formaldehyde/phosphate-buffered
saline and permeabilized in 0.5% Triton X-100/phosphate-buffered
saline, the ALK protein was stained with the anti-HA primary anti-
body and secondary antibody conjugated with tetramethylrhodamine-
5-isothiocyanate and was visualized under a confocal laser scanning
microscope. The nuclei were counterstained with 4’-6-diamidino-2-

phenylindole (DAPI).

Short Hairpin RNA—Lentivirus Infection

ALK short hairpin RNA (shRNA) constructed in pLKO.1 lentiviral
vector was obtained from the National RNAi Core Facility of Taiwan,
with a targeted sequence of CTGGTCATAGCTCCTTGGAAT.
For lentivirus production, 293T cells were cotransfected with ALK
shRNA in pLKO.1 lentiviral vector, packaging plasmids pMD.G and
pCMVARS8.91. After 4 days of transfection, virus-containing media
were collected and filtered. H1299 cells that stably expressed wild-
type and mutant ALKs were infected with virus-containing media in
the presence of polybrene.
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In Vivo Xenograft Tumor Formation Assay

The animal protocol was approved by the Institutional Animal
Safety Committee of Academia Sinica. A total of 1 x 10° H1299 cells
that stably expressed wild-type or mutated ALKs were mixed with
Matrigel (356237; BD, Franklin Lakes, NJ) and then subcutaneously
injected into the right flank of 4-week-old BALB/c NU mice. Tumor
volumes were measured weekly and calculated according to the for-
mula: volume = length x width® x 0.52. When the mean tumor
volume reached 20 to 50 mm?>, nude mice were randomly divided
into two groups and treated with the ALK inhibitor WHI-P154 or
NVP-TAE684 daily. WHI-P154 was dissolved in dimethyl sulf-
oxide (DMSO) and intravenously injected at 1 mg/kg per day. NVP-
TAEG684 was resuspended in 10% 1-methyl-2-pyrrolidinone/90% PEG
300 (Sigma, St Louis, MO) solution administered daily by oral gavage at
10-mg/kg concentration as described previously [36].

In Vivo Metastasis Assay

For in vivo metastatic assay, H1299 cells that stably expressed wild-
type or mutant ALKs were infected by GFP-lentivirus to generate the
GFP fluorescence-labeled cells. A total of 2 x 10° cells were injected into
nude mice through tail vein. To investigate the effect of WHI-P154 on
lung metastasis, nude mice were intravenously injected with WHI-P154
(1 mg/kg per day) daily 14 days after injecting GFP-labeled H1299
stable cells. Survival rate was recorded daily, and the injected mice were
killed after 105 days. Lung metastases of GFP-labeled H1299 stable

cells were visualized using a fluorescence stereomicroscope.

Statistical Analysis

Data are presented as mean + SD. For the comparison of different
groups, Student’s # tests were used to determine the statistical signifi-
cance. For IHC correlation between the expression of phospho-Y1604
ALK and the total ALK, the Pearson correlation coefficient was calcu-
lated in SAS (SAS Institute, Inc, Cary, NC). For survival analysis, a
multiple-comparison adjustment to the P values for the paired com-
parison between wild type with each group was also calculated in SAS.

Results

Identification of Tumorigenic Somatic ALK Mutations
Because ALK is located within the 2p23 chromosomal region that
was previously found to have LOH at a frequency of 69.4% (25/36)
using the microsatellite marker AFM198wc5 and have chromosomal
amplification using comparative genome hybridization analysis
[33,37,38], we hypothesized that ALK underwent unequal allelic
amplification and resulted in frequent LOH. Therefore, ALK gene
was selected for further mutational analyses. Consistent with our ex-
pectation, six novel ALK mutations different from the four mutations
reported in the Catalogue of Somatic Mutations in Cancer database
were discovered in 48 lung adenocarcinomas, but no ALK mutation
was found in 13 lung cancer cell lines. The ALK mutations were
confirmed by forward and reverse sequencing (Figure W1). The seven
K-7as mutations including two hot spot mutations at codons 12 and
13 were served as system control. These six novel mutations were
distributed in different protein domains, including S413N in the
MAMI1 domain, V597A in the MAM2, H694R in area without a de-
fined domain, G881D in the glycine-rich domain, and Y1239H and
E1384K in the kinase domain. Although all six mutations occurred in

T2 stage patients, the small sample size precluded us from drawing a
conclusive link between these mutations and clinical stages.

To determine whether these mutations were gain-of-function
driver mutations, we individually introduced these six ALK mutations
into the lung cancer cell line H1299, which expressed ALK protein at a
level lower than other lung cancer cell lines (Figure 24) and was com-
monly used for lung cancer studies [39,40]. As shown in Figure 14,
overexpression of wild-type ALK slightly increased phospho-Y1604
ALK (p-ALK; Figure 1A4) and overall phosphorylated tyrosine signals
of ALK around 250 kd (4G10; Figure 14) compared with the mock
control. Overexpression of V597A, H694R, G881D, or E1384K
significantly enhanced the levels of phospho-Y1604 and the overall
phosphorylated tyrosine signal of ALK, but the effect of S413N or
Y1239H seemed negligible compared with that of wild-type ALK.
These data suggested that the first four ALK mutations conferred a
higher kinase activity.

To investigate the effect of individual mutant ALKs on the down-
stream signaling pathways, we examined the phosphorylation status of
three known ALK effectors, namely, STAT3, AKT, and ERK. Again,
overexpression of wild-type ALK slightly increased phospho-STAT3,
phospho-AKT, and phospho-ERK compared with mock control. As
expected, the V597A, H694R, G881D, and E1384K four mutants each
revealed significantly enhanced downstream signaling but the S413N
or Y1239H mutant did not. These results were in good agreement with
the kinase activities of these mutants. Notably, among the four activat-
ing mutants, differences in the capability to activate each downstream
signaling pathway were also observed. Specifically, the H694R or
E1384K mutant led to further increases in the phosphorylation status
of all three (STAT3, AKT, and ERK) signaling molecules compared with
the wild-type counterpart. However, the V597A mutant mainly induced
a higher level of phospho-ERK, but not of phospho-AKT or phospho-
STAT3, and the G881D mutant significantly increased phospho-AKT
and phospho-ERK expression, but left the expression of phospho-
STAT3 comparable to that by wild-type ALK.

Next, we correlated the expression of phosphorylated ALK of lung
adenocarcinomas with their mutational status by polymer-amplified
IHC analyses using tissue sections of six ALK mutation-bearing
patients, four tumors without ALK mutations from this group of
48 NSCLC patients and 2 nonneoplastic controls (Figure 1B). As shown,
tumors carrying V597A, H694R, G881D, and E1384K mutations (/ff
column) showed a higher phospho-Y1604 ALK staining intensity than
two normal lungs (nos. 1 and 2; right column) and four adenocarcinomas
(case nos. 1, 17, 19, and 30; right column) without ALK mutation.
However, all tumors had higher phospho-Y1604 ALK intensity than
normal lung sections did. These results were consistent with those ob-
tained from the studies in H1299 cells,

To further determine the tumorigenic effects of these ALK muta-
tions, we conducted iz vivo tumor formation assay in nude mice. In
comparison with the tumors of mock control, wild-type ALK slightly
increased tumor weight 5 weeks after injection of H1299 stable
cells. Tumors stably expressing each of the six ALK mutant proteins
were significantly larger than those expressing wild-type ALK or
control (Figure 1C). Altogether, these results indicated that all of
these six ALK mutations were in fact gain-of-function driver muta-
tions 7 vivo. Among them, H694R and E1384K mutants increased
constitutive phosphorylation of Y7604 ALK and its downstream
STAT3, AKT, and ERK signaling efforts and exhibited the highest
ability to promote tumor growth compared with the other four
ALK mutations.



708  Aberrant ALK as Target in Lung Cancer ~ Wang et al. Neoplasia Vol. 13, No. 8, 2011

Increased Phospho-Y1604 ALK as a Diagnostic Marker compared with normal lung sections, we investigated the expression
JSor Lung Cancer level of the endogenous phospho-Y1604 ALK in 13 different lung

Given that all of the 10 lung adenocarcinoma specimens we exam-  cancer cell lines and in 5 other cancer cell lines known to express total
ined showed an increase in the expression of phospho-Y1604 ALK and phospho-Y1604 ALK as control. As shown in Figure 24, the
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Figure 2. Hyperphosphorylation of ALK in lung cancer. (A) Phospho-Y1604 ALK expression in lung cancer cell lines and near-normal
bronchial epithelial cells. The lysates of 13 lung cancer cell lines and 2 near-normal bronchial epithelial cells lines as indicated were
treated with IP assay using anti-ALK antibody and subjected to Western blot analysis for detection of total and phospho-Y1604 ALK
protein expression. K562 (NPM-ALK™), SU-DHL (NPM-ALK™), and three neuroblastoma cells IMR32 (wild-type ALK), SH-SY-5Y
(F1174L mutant ALK), and SK-N-SH (F1174L mutant ALK) served as antibody controls. The a-tubulin was used as an internal control.
(B) IHC analysis of phospho-Y1604 and total ALK expression in normal lung and lung cancer specimens. Tissue arrays contained most
subtypes of lung cancer (total cases = 263) including SCLCs, adenocarcinomas (Ad), squamous cell carcinomas (SQ), and other sub-
types. The red lines displayed the intensity by mean = SD. **P < .01.

expression level of phospho-Y1604 ALK in all of the 13 lung cancer cell
lines was higher than that in the 2 immortalized near-normal bronchial
epithelial cells. We next examined the expression of endogenous
phospho-Y1604 ALK in clinical specimens using IHC staining con-
ducted on 5 lung cancer tissue arrays with a total of 37 normal lung
tissues and 263 lung cancer tissues including 13 small cell lung cancers,
55 adenocarcinomas, 126 squamous cell carcinomas, and 69 other sub-
types of lung cancers. The staining intensity was blindly and indepen-
dently evaluated by two pathologists using a semiquantitative score
ranging from 0 to 4, with 4 indicative of the highest intensity and
0 indicative of lacking signal. The representative specimens assigned a
score of 0, 1, 2, 3, or 4 from each tissue array are illustrated in
Figure W2. As shown in Figure 2B, across all types of lung cancers
and stages, tumors scored significantly higher than nonneoplastic lung
tissues, with a mean score of 2.9684 + 0.6852 versus 0.554 + 0.3340
(P < .001), respectively. The diagnostic sensitivity of IHC score
greater than 1 and greater than 2 for lung cancers reached 99.6%
and 92.8%, respectively. The same specimens were also scored with
IHC staining of total ALK. Regardless of cancer subtypes and stages,
the sensitivity of cancer detection for total ALK score greater than
1 and greater than 2 was significantly lower and reached only
61.59% (162/263) and 18.3% (48/263), respectively. Statistical
analysis revealed lack of correlation between the intensity of phos-
pho-Y1604 and that of total ALK in lung cancer samples (P = .4449;
Table W3). Altogether, our results demonstrated that activation of
ALK played an important role not only in adenocarcinoma but also
in other types of lung cancers. More importantly, the increased
expression of phospho-Y1604 ALK could be an early step in lung

cancer development and potentially be a useful diagnostic marker for
lung cancer.

Tumorigenic Signaling of H694R and E1384K Mutations
in Mouse Xenograft Models

To further explore molecular mechanism underlying ALK mutations-
mediated tumorigenesis, we selected H694R and E1384K ALK mu-
tants for further studies because they demonstrated the highest ability
to promote growth of the xenograft tumors. To confirm the results of
H694R and E1384K mutants obtained in H1299 cells (Figure 14), we
repeated the studies by overexpressing H694R and E1384K in
NIH3T3 cells, which is another cell line commonly used to assess onco-
genic property of ALK alterations in non—lung cancer genetic back-
ground [23,29]. Consistent with the results of the H1299 cell model,
overexpression of H694R or E1384K mutant in NIH3T3 cells signifi-
cantly enhanced the kinase activity and the downstream signaling of
ALK as compared with wild-type counterpart (Figure 34).

The enhanced tyrosine kinase activity of H694R and of E1384K
was further validated by iz vitro kinase assay (Figure W3). In addi-
tion, we also examined the effects of H694R and E1384K mutations
on protein stability and subcellular localization of ALK protein. Our
results showed that wild-type, H694R, or E1384K mutant ALK pro-
teins shared a half-life of approximately 3.5 hours after cycloheximide
treatment and uniform cytoplasmic localization (Figure W4).

Next, we examined the oncogenic effects of H694R and E1384K
mutations in H1299 and NIH3T3 stable cells. In comparison with
mock control, overexpression of wild-type ALK only slightly enhanced
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Figure 3. Transforming activity of ALK H694R and E1384K mutations in H1299 and NIH3T3 cells. (A) Expression of phospho-Y1604 ALK,
overall tyrosine phosphorylation of ALK, and downstream efforts of STAT3, AKT, and ERK in ALK transfectants of NIH3T3 cells using IP
(anti-HA antibody) and Western blot analyses. The a-tubulin served as an internal control. Oncogenic effects of H694R and E1384K
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of H694R and E1384K transfectants of H1299. The xenografted tumor volume is displayed in the photograph (top panel) and in tumor
growth curves (bottom panel) after 5 weeks of subcutaneous inoculation (four mice per group). (F) IHC analysis of phospho-Y1604 ALK
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proliferative activity after 7 days and showed a significant increase in cell
migration assay and anchorage-independent growth (AIG) in soft agar.
In contrast, the expression of H694R or E1384K mutant ALK exhib-
ited significantly increased oncogenic properties in all three assays com-
pared with the wild-type counterpart (Figure 3, B-D).

To validate the oncogenic property of H694R and E1384K mutants
in vivo, H1299 cells were injected into nude mice, and the growth
curve of the xenografted tumors was measured. Again, cells stably ex-
pressing wild-type ALK had slightly increased tumor volume 5 weeks
after injection. In contrast, the tumors expressing H694R or E1384K
showed a significant upshift in the growth curve as early as 2 weeks after
injection, and the difference continued to expand throughout the assay
period (Figure 3E). No significant difference in the growth curve was
noted between the tumors with ALK mutants.

To correlate the tumorigenic ability of ALK mutations with their
kinase activities, we performed IHC staining on sections from xeno-
grafted tumors using antibodies against phospho-Y1604 ALK, phospho-
STAT3, and phospho-AKT. Our results consistently showed that the
ALK activity, as measured by the phosphorylated proteins of ALK,
STAT3, and AKT, only marginally increased in tumors expressing
wild-type ALK but was significantly upregulated in H694R and
E1384K mutant-expressing xenografted tumors (Figure 3F). Taken
together, our findings illustrated that H694R and E1384K mutations
led to constitutive activation of ALK activity and its downstream effec-
tors STAT3, AKT, and ERK, which, in turn, promoted tumorigenesis
without altering ALK protein stability or subcellular localization.

HG694R and E1384K Mutation-Bearing Tumors Sensitive
to Treatment of ALK Inhibitors

To investigate whether small-molecule ALK inhibitor could sup-
press ALK mutation-mediated tumorigenic properties, cells or xeno-
grafted tumors expressing wild-type, H694R, or E1384K mutant
ALKs were treated with WHI-P154, which could repress kinase ac-
tivity of ALK [23,41,42]. The results demonstrated that WHI-P154
treatment showed a dose-dependent inhibition of growth in cells ex-
pressing wild-type or mutant ALKs (Figure 44). Analytically, the
half-maximal cell growth-inhibitory concentration (ICsq) of H694R
and E1384K mutations were 2.28- to 2.86-folds lower than that of
wild-type. It was concluded that cells expressing H694R or E1384K
mutant ALK were even more sensitive to inhibitory effect of WHI-P154
than cells expressing wild-type ALK (Table W4).

The effects of WHI-P154 on cell migration and AIG were also
examined in H1299 stable cells. Consistently, WHI-P154 treatments
resulted in a profound inhibition of cell migration and AIG in H1299
expressing either wild-type or mutant ALKs compared with DMSO
control (Figure 44). Given the stronger effects of mutant ALK than
wild-type ALK on the cell migration and AIG, it was no surprise that
WHI-P154 inhibited the mutant ALK more than the wild-type. No-
tably, the oncogenic effects of mutant ALK became comparable to the
wild-type ALK in both assays after WHI-P154 treatment, indicating
the ALK inhibitor reversed the property of mutant ALK back to the
basal level. As shown in Figure 4B, WHI-P154 treatment repressed
phosphorylation of ALK Y1604 in a dose-dependent manner, suggest-
ing that WHI-P154 inhibited the aforementioned oncogenic effects of
ALK by suppressing its kinase activity.

Because the WHI-P154 was recently reported to be an inhibitor
of JAK3/STAT3 as well, to further validate the therapeutic efficacy
of ALK inhibitor in mutations-induced oncogenesis, a more specific

ALK inhibitor NVP-TAE684 was included [36]. Similarly, TAE684

treatment efficiently inhibited the cell proliferation and phospho-
Y1604 ALK expression of H694R or E1384K mutant ALK, but also
to a degree higher than that of wild-type ALK (Figure 5, A and B).
Altogether, our results showed that oncogenic ALK mutations could
be a potential therapeutic target and ALK inhibitors could be therapeu-
tic agents in lung adenocarcinomas.

Inhibition of Tumor Metastasis and Improvement of Survival
by WHI-P154

To evaluate if the inhibitory effect of WHI-P154 on the oncogenic
property of mutant ALKs at the molecular level could be translated
into improved clinical outcomes, we next examined two important
parameters, namely, pulmonary metastasis and animal survival, using
an in vivo subcutaneous xenograft mouse model. When the xeno-
grafted tumors grew to volumes around 20 to 50 mm?, mice were
randomly divided into two groups and treated with WHI-P154 or
DMSO daily. As expected, WHI-P154—treated H694R- or E1384K-
bearing tumors showed a significant reduction in their growth com-
pared with DMSO-treated tumors (Figure 4C). In agreement with
the reduction in tumor growth, a significant decrease in the expression
of phospho-Y1604 ALK was detected in WHI-P154—treated tumors
compared with DMSO-treated counterparts (Figure 4D). The thera-
peutic efficacy of the ALK inhibitor on the xenograft mouse model
was further validated with TAE684. Consistently, TAE684 treatment
repressed H694R- and E1384K-induced tumor growth compared with
DMSO control (Figure 5C).

To investigate if the ALK inhibitors prevented lung metastasis,
H1299 cells coexpressing GFP/H694R or GFP/E1384K mutant
ALK were injected through the tail veins, and systemic metastases were
examined. Both H694R- and E1384K-expressing cells showed higher
capability in lung metastasis compared with wild-type and mock con-
trol. More importantly, WHI-P154 treatment significantly suppressed
lung metastasis in mice injected with H1299 cells expressing mutant
ALK proteins (Figure 4F). Furthermore, mice with metastatic tumors
expressing H694R or E1384K mutations started to die prematurely
from day 60 (Figure 4F). Particularly, mice injected with E1384K-
bearing cells were associated with a high metastatic rate and poor sur-
vival (P = .0246) compared with mice bearing cells expressing wild-type
ALK or mock control. In contrast, WHI-P154 treatment rescued mice
injected with cells expressing H694R or E1384K mutant ALK from
premature death and reversed the survival back to the level of the con-
trol mice (Figure 4F). Taken together, in this study, we demonstrated
that ALK mutations resulted in constitutive activation of ALK activity
and its downstream oncogenic signaling, which, in turn, led to tumor-
igenesis. Targeting the aberrant ALK signaling pathway activated by
mutations with ALK inhibitors not only suppressed tumorigenesis
and metastasis but also prolonged the survival of mice bearing tumors
induced by mutant ALK.

Discussion

In this study, we provided evidence that ALK was involved in the
pathogenesis of lung cancers. Our data showed that ALK could be
aberrantly activated not only through fusion with other partner genes
but also through other mechanisms such as somatic point mutations.
Therefore, ALK alterations could occur through defects in heterogeneous
regulatory mechanisms. The long-term increase of phospho-Y1604
ALK either by fusion or by point mutations resulted in constitutive
activation of its downstream STAT3, AKT and ERK signaling path-
ways and subsequent tumor formation and progression. Treatment
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Figure 4. Therapeutic effects of ALK inhibitor WHI-P154 on HB694R- and E1384K-mediated tumorigenesis of H1299 transfectants. (A)
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Figure 5. Therapeutic effects of ALK inhibitor TAE684 on H694R- and E1384K-mediated tumorigenesis of H1299 transfectants. (A) Dosage
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of ALK inhibitors on the xenografted tumors could also inhibit growth
and metastasis of these tumors. Our results further indicated that ALK
activation contributed not only to the early stage of tumorigenesis but
also to the continuous growth and/or metastasis of the tumors. There-
fore, ALK alterations in the form of aberrant increase in Y1604 phos-
phorylation or point mutations could potentially serve as a diagnosis
biomarker and therapeutic target for lung cancer.

Previous studies showed that endogenous ALK protein expression
was difficult to detect in lung tissues by IHC [43,44]; however, we
were able to detect endogenous ALK expression in lung cancer sections
using the antibody produced by Epitomics. After extensively screening

most of the commercially available ALK antibodies, we found that, by
IHC or by Western blot analyses, the signals of ALK recognized by the
Epitomics antibody were consistently stronger than those obtained by
DAKO ALK antibody commonly used in previous studies [45]
(Figure W5, B and C). The specificity of this ALK antibody was also
validated in this study using IHC assay and Western blot analyses. As
shown in Figure W54, both ALCL and rhabdomyosarcoma reported to
have higher ALK expression indeed were showed to have strong total
ALK staining intensity compared with normal lymph node using Epi-
tomics ALK antibody [46]. The same specimens were also examined for
phospho-ALK expression. Again, ALCL tissue sections showed strong
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phospho-ALK signal, and the rhabdomyosarcoma tissue sections
seemed more variable but showed a clear trend of lower intensity. In
addition, on the Western blot, the Epitomics antibody recognized a
band with an appropriate molecular weight of ALK (Figure W5C).

Mutations in ALK we identified showed differential effects on the
tumorigenesis. Therefore, it may be of great significance for therapeutic
implications to correlate these mutations with their oncogenic func-
tions based on protein structure information. However, given that
ALK is a 250-kd protein with structural information only available
for the tyrosine kinase domain, it may be difficult to fully address this
issue. We directly assessed the tumorigenic property of these six iden-
tified ALK mutations by analyzing their kinase activities and iz vivo
tumor formation capabilities in nude mice. As shown in our results,
HG694R and E1384K mutations possessed the strongest oncogenic
property. Because H694R mutation is located outside the kinase do-
main, it is difficult to predict the impact of this mutation on the struc-
ture of the kinase domain. In contrast, E1384K mutation is localized in
the kinase domain and resides within the alpha-helix (aI) near-activation
loop [47]. The nearest amino acid residue on ALK structure is R1231
positioned at another alpha-helix (aE). We speculate that E1384K
mutation alters the electronegative 1384 glutamic acid (E) residue to
an electropositive lysine (K) residue and may disrupt the interaction be-
tween these two alpha helices through electrostatic repulsive forces and
result in conformational change and increased kinase activity.

In addition to H694R and E1384K mutations, the four remaining
ALK mutations also showed a significant increase in their ability to
promote tumorigenesis iz vivo compared with wild-type ALK, indi-
cating that these ALK mutations could also be gain-of-function driver
mutations. However, only V597A and G881D increased phospho-
Y1604 ALK expression, but S413N and Y1239H mutations did
not. The H694R and E1384K mutations could activate STAT3,
AKT, and ERK; V597A only activated ERK, and G881D activated
AKT and ERK. These findings indicated that each individual ALK
mutation selectively targeted specific downstream mediators. Our
mutations behaved similarly to the F1174L ALK mutation previously
identified in neuroblastoma. Overexpression of F1174L mutant ALK
significantly increased phospho-Y1604 ALK, and phosphorylation of
downstream targets STAT3 and AKT, but ERK phosphorylation was
not affected [32]. These results suggest that ALK mutations may me-
diate tumorigenesis through increased ALK activity, noncanonical
phosphorylation sites and/or kinase activity—independent manner such
as ligand-binding activation or acquiring mutation-specific protein in-
teractions. In our preliminary data, transient expression of ligand pleio-
trophin in or addition of recombinant pleiotrophin to H1299 cells
expressing mutant ALK did not show a significant change in the phos-
phorylation status of Y1604.

In our study, we selected NIH3T3 (normal mouse fibroblast) and
H1299 (lung cancer cell carried heterozygous N-7as Q61K mutation)
cells to evaluate alteration in kinase activity; downstream activation
of STAT3, AKT, and ERK effectors; and tumorigenic effects by
H694R and E1384K mutations. Our results suggested that host
cell genetic background such as N-ras Q61K mutation in H1299
is unlikely to participate in ALK mutation—mediated tumorigenesis.
First, the expression of mutant ALKs in H1299 and NIH3T3 showed a
similar activation of downstream ALK signaling and oncogenic effects.
Second, overexpression of wild-type and mutant ALKs increased
phospho-Y1604 ALK, phospho-STAT3, phospho-AKT, and phospho-
ERK, which failed to be activated by the overexpression of the
kinase-dead K1150R mutant (equivalent to the K210R NPM-ALK

mutant) or was repressed after TAE684 treatment (Figure W6, 4
and B). Finally, treatment of ALK-specific shRNA suppressed H694R
and E1384K mutations—mediated cell growth (Figure W7). These
results indicate that ALK mutations conferred a driver function to stim-
ulate STAT3, AKT, and ERK in a kinase activity—dependent manner
and worked independently of the active GTP-bound state of N-ras
Q61K mutation in lung cancer.

Because WHI-P154 is an ALK inhibitor that may also target
STAT3, we therefore treated H694R- and E1384K-bearing H1299
cells with the more specific ALK inhibitor NVP-TAE684. As shown
in Figure 5, A and C, TAE684 treatment demonstrated similar ther-
apeutic benefits to that by WHI-P154 treatment both iz vitro and
in vivo. In addition, the increased sensitivity of H694R and E1384K
mutations to specific siRNA knockdown compared with the wild-type
counterpart (48% and 52% vs 27%; Figure W7) and the ALK inhibitor
WHI-P154 or NVP-TAEG84 in various functional assays showed that
the acquired somatic mutations not only rendered lung cancer cells
addictive to constitutive ALK activity to gain advantage of growth and
survival but also served as a suitable target for lung adenocarcinoma
treatment. In addition, although molecular mechanisms of suppressing
cancer metastasis by WHI-P154 remain to be determined, prolonged
survival of mice injected with H694R- and E1384K-bearing cells clearly
suggested the therapeutic benefits of ALK inhibitor in lung cancer.

To further delineate the potential role of ALK somatic alterations
as a diagnostic biomarker and predictor of therapeutic benefits for
lung cancer, several tasks need to be conducted in the near future.
First, phosphorylation status and mutations of ALK should be closely
examined in larger cohorts and across different ethnic populations in
relations to various risk factors for potential disparities. Second, efforts
should be directed to study the etiological mechanisms of aberrantly
increased ALK phosphorylation and mutations in lung cancer that
eventually alter protein structures, enhance ALK tyrosine kinase activ-
ity, and constitutively activate downstream oncogenic signaling path-
ways. These efforts will benefit not only our understanding of the
heterogeneous mechanisms ALK signaling induces tumor formation
but also the clinical management of ALK-mutated lung cancer patients.
Finally, the ALK inhibitor WHI-P154 inhibited tumor progression
and prolonged survival in mouse lung cancer models mainly through
the suppression of the canonical ALK pathway; however, it also “off
target” to suppress STAT3 pathway in ALK mutation-bearing cells.
Our results raise a possibility of a combinatorial therapy for lung can-
cers composed of other more specific ALK inhibitors with WHI-P154
or inhibitor targeting ALK downstream mediators for a synergistic
benefit. This study should facilitate the development of new ALK in-
hibitors for personalized lung cancer treatment.
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Table W1. ALK Mutants in 48 Lung Adenocarcinoma Patients.

Cases Gender Age (y) Smoking TNM Stage ALK Mutants
To1 M 64 Yes T4 111B

T02 F 68 No T2 1B

T03 M 65 Yes T2 1IB G2145A, S413N
To04 M 38 Yes T2 1B

To05 M 62 Yes T2 1B A2988G, H694R
T06 M 56 No T2 A

TO07 F 73 No T2 B

T08 F 56 No T1 1A

T09 M 77 Yes T3 11B

T10 M 73 Yes T4 111B

TI1 M 56 Yes T2 1B G35494, G881D
T12 M 77 Yes T2 1IB

T13 M 73 No T2 1B

T14 M 65 Yes T2 1B

T15 F 48 No T2 1A

Ti16 M 68 No T2 1B

T17 M 55 Yes T2 1B

T18 M 51 Yes T2 1IB

T19 F 76 No T2 1IB

T20 M 76 No T2 1B

T21 M 79 Yes T3 1IIA

T22 M 63 No T4 1IB

T23 F 70 No T1 1A

T24 M 59 Yes T3 1A

T25 M 72 No T2 1A T4622C, YI239H
T26 M 59 No T2 1B

T27 M 72 No T2 1B

T28 M 59 Yes T2 1A

T29 M 40 No T2 1B

T30 M 69 No T2 1B

T31 M 57 No T1 1A

T32 M 62 No T1 1A

T33 F 51 No T2 1B

T34 F 60 No T2 A

T35 F 64 No T2 1B

T36 F 70 No T2 1IIA

T37 F 63 No T2 A

T38 F 68 No T2 1A G5057A, E1384K
T39 F 69 No T2 B T12697C, V5974
T40 F 70 No T2 1A

T41 F 55 No T2 B

T42 F 62 No T2 1B

T43 F 49 No T3 1A

T44 F 71 No T1 JIFN

T45 F 67 No T2 B

T46 M 48 Yes T2 1B

T47 M 41 No T2 1B

T48 M 74 No T2 1B




Table W2. ALK Sequencing Primers.

ALK Primers

Primer Name Sequence

ALKO1-1F TCTGGAGATCAGGTGGAAGG
ALKO1-1R TGAACAGCTCGCTGAGAT
ALKO1-2F CCTCGCTCTTCCGTGTCTAC
ALKO1-2R AACACTAAATCCCGGCACAC
ALKO02ex-F TCAGGGTCCTGAGGTCAACT
ALKO2ex-R ATAGGGAGCTGAGGGAATGC
ALKO3ex-F TGAAGGCCAACCTCCTAGTG
ALKO03ex-R CCAAGAAGCCATGGAAAGTC
ALKO4ex-F GTCCACCTGCATCAGGCTAT
ALKO4ex-R GAAGTCAGAGGGACCCACAA
ALKO5ex-F AAAAGGAATGCCAGTGGTGAG
ALKO5ex-R CCAAACATGGTTGCAGGTTA
ALKOGex-F AGGGAACATGGACCACTCTGCTG
ALKOGex-R TGGGCATAGAGGACTTCCAATGTCACA
ALKO07ex-F TTGGGGGCTTCTCTTCATTA
ALKO7ex-R GAAAGCCCAAGGTGTGAAGA
ALKO8ex-F AGGTGGGCTTTCTTCTCCAT
ALKO8ex-R AGAGGTGGCCCTCTTGTTCT
ALKO09ex-F TCTTGGTGAGACAGGTGGTG
ALKO09ex-R GAGAAGGGTATTGGGGGAGA
ALK11_10ex-F GGGATTAGCGAGCCTTTTTC
ALK11_10ex-R ACAGCTCCCCACCCTAAAGA
ALK12ex-F CATCTTGGATGGAGGGTTTG
ALK12ex-R ATCTCCCCATCTCCAACCTT
ALK13ex-F GAAGTGGGGGAGAAGAATCC
ALK13ex-R AACTTCCAGGAGGAGGGTGT
ALK14ex-F TTCTGTCTGCTGCAAAGTGG
ALK14ex-R TCATGAGGCTCTGACATTGC
ALK15ex-F GAAGCACAGCTCGGTTTCTC
ALK15ex-R AGCTCCAGGTCAGCAAGATG
ALK16ex-F GCCAGCATGGCTAATTGAAC
ALK16ex-R GGACTAAGCAGGGAGGGAGT
ALK17ex-F CCCAGTGACCCCCTAACTTT
ALK17ex-R TTAGCTTGGTGGGAGGACTG
ALK18ex-F TCCAGTGGCTATGGGACCTA
ALK18ex-R CATGACCCACCTTTCACACA
ALK19ex-F CTCATGGTCCCCTGAAAAGA
ALK19ex-R TCACCATCGTGATGGACACT
ALK20ex-F TCAGAGCTCAGGGGAGGATA
ALK20ex-R GAGTCTGCGGTGCTGTGATA
ALK22 2lex-F CCCAGCTGCCTCATTATTGT
ALK22_21lex-R AACCATCAAGGGTTGTTCCA
ALK23ex-F ACCTGCTCACCAGCAAGATT
ALK23ex-R TCCATTCTCTTCCACCCAGT
ALK24ex-F CATTTCCCCTAATCCTTTTCCA
ALK24ex-R GTGATCCCAGATTTAGGCCTTC
ALK25ex-F GCCTCTCGTGGTTTGTTTTGTC
ALK25ex-R CCCAGGGTAGGGTCCAATAATC
ALK26ex-F CCTGCTCTCCTCCTGAACC
ALK26ex-R CAGGGATACCTGGAGGATGA
ALK27ex-F GAATGTGGGTGGGTGTGTCT
ALK27ex-R CAGTCACATTCGCATCTTGG
ALK28ex-F CCTTTACACCTGCGCACTCT
ALK28ex-R AAATGGGCAAATGGAGACAC
ALK29-1F AAATCCTGGTTTCCTCATCTG
ALK29-1R GTGTGGCTCCTTCTTTGCTA
ALK29-2F AAGGGGGACACGTGAATATG

ALK29-2R TTGGCACAAAACAAAACGTG
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Figure W1. Electropherograms of six ALK somatic mutations. Snapshots of mutations are presented after alignment of sequencing
data from the paired tumor and tumor-adjacent normal tissues of lung adenocarcinoma with majority of the forward and reversed se-
quencing validation.
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Figure W2. Representative images of IHC scoring intensity of phosphorylated Y1604 (A) and total ALK (B) in sections of lung cancer
patients ranked from 0 to 4 randomly selected from the indicated tissue arrays.

Table W3. Correlation between Phosphorylated Y1064 ALK and Total ALK Expression.

THC Staining Antibody n IHC Intensity P
Phospho-ALK 263 2.9684 + 0.6852
ALK 263 1.2274 + 0.7707 4449

Data show mean + SD.
No correlation between p-ALK and ALK (Pearson coefficient, » = 0.04703).
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Figure W3. /n vitro kinase activity of ALK mutations H694R and
E1384K. The ALK activities of wild-type, H694R, and E1384K
ALK mutations in H1299 stable cells were measured by ELISA re-
actions at 492 nm. Data are shown as mean = SD. **P < .001.
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Figure W4. Protein stability and subcellular localization of H694R and E1384K. (A) Protein stability of H694R and E1384K. The ALK
protein expression of H1299 cells that stably expressed wild-type, H694R, and E1384K ALK mutations was examined after cyclohexi-
mide treatment by Western blot analysis using anti-HA antibody (top panel). Addition of MG132 to stop protein degradation is used as a
positive control. The remaining protein quantification is shown at the bottom panel, and the half-life of ALK protein is labeled with a
dashed line. (B) Subcellular localization of HE94R and E1384K. The immunofluorescence image for ALK protein was examined in H1299
cells that stably expressed wild-type, H694R, and E1384K ALK mutations.



Table W4. ICs, of WHI-P154 in ALK Mutations.

ALK ICs (Cell Proliferation Inhibition by WHI-P154; pM)
WT 26.9375
HG694R 11.7901
E1384K 9.4238
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Figure W5. Comparisons of phospho-Y1604 and total ALK antibodies using IHC and Western blot analyses. (A) IHC analysis on sections
of ALCL, rhabdomyosarcoma, and normal lymph node with phospho-Y1604 ALK antibody (right panel) and total ALK antibody (left panel)
from Epitomics. (B) Lung cancer tissue arrays (Biomax) from the same patients were used to compare the expression intensity of ALK
protein by IHC assay using two ALK antibodies. The IHC results of the entire arrays (Luc1501) and a representative image (1501-E14) are
shown at the upper panel, and the quantification result is shown at the bottom panel. (C) Lysates of H1299 cells that stably expressed
wild-type ALK were used to examine the sensitivity of these two ALK antibodies by Western blot analysis. Anti-HA antibody served as a
positive control for HA-ALK expression, and the a-tubulin served as a loading control.
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Figure W6. Overexpression of wild-type ALK enhanced p-STAT3, p-AKT, and p-ERK protein expression in a kinase-dependent manner.
(A) Treatment of TAEEG84 on wild-type ALK overexpressing H1299 cells decreased p-STAT3, p-AKT, and p-ERK expression in a dose-
dependent manner detected by Western blot analysis. (B) Overexpression of ALK K1150R kinase-dead mutant and mock control in
H1299 has no effects on the phosphorylation of the protein expression levels of p-Y1604 ALK, p-STAT3, p-AKT, and p-ERK by Western

blot analysis. The o-tubulin served as a loading control.
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Figure W7. ALK down-regulation (A) and growth-inhibitory effects
(B) of ALK shRNA treatments on wild-type, mutant H694R, and
E1384K ALK transfectants of H1299 cells. The luciferase shRNA

was the control. The a-tubulin served as a loading control.





