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Résumé

Sur un anneau local noethérien, les résolutions libres minimales finies ont une certaine p
de rigidité lorsque la caractéristique de l’anneau égale la caractéristique de son corps
(théorème 1). Cette propriété évoque le critère de Buchsbaum et Eisenbud où il n’est pas q
de caractéristique ; cependant, personne ne sait si rigidité reste valable en caractéristiqu
Conjecturons seulement ceci : sur tout anneau local de Gorenstein, d’égale caractéristique
toutes les résolutions libres minimales finies sont rigides (au sens de la définition 1).

L’objet de cette note est de montrer, au théorème 2, que la conjecture précédente, qui es
une conjecture d’algèbre linéaire pour une classe restreinte d’anneaux, équivaut a la conje
l’élément canonique de Hochster qui, elle, porte sur toute la classe des anneaux locaux noe
Ceci est fait via l’approximation par les modules de Cohen–Macaulay maximaux et les enve
de dimension injective finie. Cette théorie, due à Auslander et Buchweitz, s’applique notamme
modules de type fini sur un anneau de Gorenstein.
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1. Introduction

Throughout,(A,m, k) stands for a (commutative) noetherian local ring with its maxi
ideal and residue class field. We’ll only deal with such rings, and all modules will be fin
generated unless otherwise stated. For ad-dimensional ring, letF be a free resolution ofk.
Let x = x1, . . . , xd be any system of parameters inA; the surjection ofA/(x1, . . . , xd)

onto k lifts to a map from the Koszul complexK (x,A) to F. One says that the ringA
satisfies the Canonical Element Conjecture (CEC) provided the mapKd(x,A)→ Fd is
never null.

This conjecture was introduced by M. Hochster in [11] and proved for equicharacte
rings. Thanks to Heitmann’s recent breakthrough, the result is known in the un
characteristic case when dimA � 3 [9]; also various special cases have been pro
Furthermore, there are several versions of CEC, which boil down to the same thing. F
Hochster and others have shown that CEC is equivalent with a number of conje
which at first sight appear rather distinct. The present note will not take up any o
instead, it will add one more item to the list.

In order to prepare for the other notion in the title, consider anA-homomorphism
f :Am → An between free modules. Choosing bases for these, we can describef as an
n× m matrix with coefficients inA. As an example, takeA = k[[X,Y ]]/(XY) with k a
field of characteristic�= 2. On certain bases, suppose the mapf :A2 → A is given by the
matrix (x, y), where the lower case letters denote the images ofX andY in A. A change
of base inA2 achieves the row matrix(x + y, x − y) as description off . Bothx andy are
zero divisors inA, butx + y andx − y are not.

In such a rectangular matrix, the elements in each particular column generate a
c ⊂A which we call a column ideal. We write grc for the length of a longest regula
sequence contained inc; in casec =A, we put grc = ∞. In our example, the grade depen
on base choice. This motivates

Definition 1. Let

F = 0 → Fs → ·· · → Fi
di→ Fi−1 → ·· · → F0

be an acyclic complex of free’s over(A,m, k) which is minimal in the sense thatk ⊗A F
has null differentials. We say thatF is ‘stiff’ if, regardless of base choice, grc � i for every
column ideal belonging todi for i = 1, . . . , s. We call the ringA stiff if every such complex
over it is stiff.

We prove

Theorem 1.Every noetherian local ring of equal characteristic is stiff.

Theorem 2.Consider rings(A,m, k) of a fixed residual characteristic. Then every ring
this type satisfies CEC if and only if every Gorenstein ring of this type is stiff.

Half a year after we had done this work, we belatedly discovered that Theor
albeit in a different formulation, had already been obtained in [12, Theorem 6.12
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[7, Theorem 2.4]. The first of these articles uses the Frobenius endomorphism in
characteristic and ‘lifts’ to characteristic 0 using Artin approximation. This argume
sketched in the second paper, but then another proof is given using big Cohen–Ma
modules. Our proof in essence was the same as the latter. However, we believe it
direct and transparent, and include it for this reason.

2. Preliminaries

Before embarking on the proof of Theorem 1, we need to establish a few nota
conventions and preliminary facts. Many of these topics were discussed in [17], so w
this as a blanket reference.

Let (A,m, k) be our usual ring, which we drop from notation unless confusing. S
we shall also deal with infinitely generated modules, it is convenient to work with
depth. Write ext−(X,Y )= inf{n: Extn(X,Y ) �= 0} for two modulesX andY ; this number
is a nonnegative integer or∞, as in other cases where we follow the same conven
For anyA-moduleX we write E-dpX = ext−(k,X); whenX is finitely generated, this i
equal to the usual depth ofX by way of regular sequences, for which we now write dpX.
Let p be a prime ideal inA, and putk(p) for the residue field of the local ringAp. Then
there are the Bass numbersµn(p,X)= dimk(p)ExtnAp

(k(p),Xp) [17, Theorem 3.3.3]. Also

µn(p,X) = µn(pAp,Xp). Bringing into play local cohomologyHnm, we find h−
m(X) =

E-dpX = µ−(m,X), the first identity being taken care of by [17, Proposition 5.3.15
E-dpX <∞, then E-dpX � dimA [17, Corollary 10.2.2], and ifA maps onto any ringB,
then E-dpA Y = E-dpB Y for everyB-moduleY [17, Proposition 4.1.4]. We also writ
tor+(X,Y )= sup{n: Torn(X,Y ) �= 0}; this time it is a nonnegative integer or−∞.

We record an immediate consequence of the Acyclicity Lemma, e.g., [17, T
rem 6.1.1], as

Lemma 3.In a non-exact complex of modules, not necessarily finitely generated,X = 0→
Xm → ·· · →X1 →X0, for everyi � 1 let eitherHi (X)= 0 or E-dpHi (X)= 0, and also
E-dpXi = q . Thenq <m.

The next inequality has presumably been noticed before.

Lemma 4.For any of our ringsA, let p be a prime ideal. Then

dpA� dpAp + dimA/p.

Proof. Putr = dpAp, t = dimA/p. Let p = p0 ⊂ · · · ⊂ pt = m be a strict saturated cha
of prime ideals. Thenµr(p,A)= µr(pAp,Ap) �= 0 and iterated use of Bass’ Lemma [1
Proposition 3.3.4] gives usµr+t (m,A) �= 0. Therefore dpA� r + t . ✷

A big Cohen–Macaulay moduleC overA is defined to be a not necessarily finite
generated module on which some system of parameters inA forms a regular sequenc
Then C �= mC and E-dpC = dimA for such a module. A big Cohen–Macaul
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moduleC is called ‘balanced’ if every system of parameters inA is regular onC.
Hochster constructed big Cohen–Macaulay modules wheneverA is equicharacteristic [10
Theorem 5.1], and also constructed balanced ones. Bartijn and Strooker showed
completion of a big Cohen–Macaulay module with respect to the maximal ideal ofA is
always balanced [2, Theorems 1.7 and 2.6], [17, Theorem 5.2.3].

Dealing with infinitely generated modules, we need the small support, a select
primes at which localization behaves decently. LetX be anA-module, then suppX = {p ∈
SpecA: E-dpAp

Xp <∞}. Small supports go back to Foxby [8, Section 2] who used t−
rather than ext−, but this amounts to the same thing [17, Corollary 6.1.10]. Sharp sho
in [14, Theorem 3.2] that, for a balanced big Cohen–Macaulay module, supp has
properties with respect to height and dimension. For our purposes we record

Proposition 5. Let C be a balanced big Cohen–Macaulay module overA and let p ∈
suppC. Then

E-dpAp
Cp = htp = dimAp and htp + dimA/p = dimA,

whilepCp �= Cp.

3. Towards Theorem 1

First we sharpen a result of Evans–Griffith [6, Theorem 1.11], replacing their htp by
dpAp. It seems also that the original proof required some mild condition on the ring.

Theorem 6.LetM be a finitely generatedA-module of finite projective dimension andp

a prime ideal inA. Assume that C is a balanced big Cohen–Macaulay module overA/p.
ThentorA+(C,M)� dpAp.

Proof. SinceC �= mC andC⊗AM �= 0, puttingt = tor+(C,M), we see that 0� t � dpA,
ast does not exceed the projective dimension ofM which in turn is not greater than dpA by
the Auslander–Buchsbaum identity. Letq be a prime which is minimal in SuppTort (C,M),

so that q ⊃ p. Thus the nonnullAq-module Tor
Aq

t (Cq,Mq) = TorAt (C,M)q is only
supported in the maximal ideal of the local ringAq, so E-dpAq

of this module is 0.
Let

F = 0 → Fs → ·· · → F1
d1→ F0

be a minimal freeAq-resolution of the moduleMq = cokerd1. This module’s projective
dimension iss � dpAq. By our choice ofq, we also know thatt � s.

Now consider the complexCq ⊗Aq
Fq which we truncate at degreet − 1, writing

F−1 = 0 in caset = 0. Its homology is concentrated in degreet , where its Ext-depth
is 0. The Ext-depth of all its chain modules is E-dpAq

Cq, so Lemma 3 tells us tha
E-dpAq

Cq � s − t <∞. In particular,q ∈ suppC.
We apply Proposition 5 to the ringA/p to obtain E-dpAq

Cq = E-dp(A/p)q Cq =
dim(A/p)q = dimAq/pAq. Next we invoke Lemma 4 for the ringAq and find dpAq �
dpAp + dimAq/pAq.
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Tying all this together we establish the result

t � s − E-dpAq
Cq = s − dimAq/pAq � dpAq − dimAq/pAq � dpAp. ✷

The statement we want is now an easy corollary.

Proof of Theorem 1. Let F be a complex as in Definition 1 over an equicharacter
ring A, and consider itsith boundary mapdi , 1 � i � s. Let c be, say, the first colum
ideal in some matrix description ofdi . Take a prime idealp ⊃ c with grc = dpAp. There
exists a balanced big Cohen–Macaulay moduleC overA/p. The ith boundary map o
the complexC ⊗A F maps the first copy ofC in C ⊗A Fi to 0 sincecC = 0. This first
copy itself is not in the image of the previous map because the complexF is minimal
andC �= mC. PuttingM = cokerd1, we see that TorAi (C,M) �= 0. With Theorem 6 then
i � dpAp = grc. ✷

At this point, what can one do in mixed characteristic? Ifp is the residual characteristi
we can replace a column idealc belonging to theith mapdi by the idealc + (p)= a and
take a prime idealq containing it such that dpAq = gra. TensoringF with a balanced big
Cohen–Macaulay module overA/q, and taking into account that grc � gra � grc + 1, we
obtain

Proposition 7.Let F be a complex as in Definition1. Then the column ideals belonging
di always have grade at leasti − 1.

4. Stiffness depends on first syzygies

In order to prepare for Theorem 2, we explain what we mean by this title and prov
straightforward proof of the appropriate statement.

Definition 2. Let Γ be a class of rings such that, ifA ∈ Γ andx ∈ m is a non zerodivisor
thenA/(x) ∈ Γ . We call such a class ‘consistent’.

Examples of consistent classes would be all rings of positive residual characteris
class of all Gorenstein rings, or their intersection.

Proposition 8.LetΓ be a consistent class of rings. Then everyA ∈ Γ is stiff if and only if
for every complexF as in Definition1 over every such ring,grc � 1 for every column idea
belonging to the first boundary mapd1, no matter what bases.

Proof. Assume the second condition and letF be a complex of lengths as in Definition 1
over a ringA in Γ . We have to show thatF is stiff.

For s = 1 this is our assumption. So takes � 2 and suppose that the result has b
proved for complexes of lesser length. Letc be a column ideal in some matrix descripti
of di , 2 � i � s. By our assumption, this ideal contains a non-zero divisorx ∈ m. Write
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M = cokerd1; then TorAj (A/(x),M)= 0 for j � 2. Therefore, when we tensor withA/(x)
and clap bars on theFi ’s anddi ’s,

0 → �Fs → ·· · → �F2
d̄2→ �F1

becomes a minimal acyclic complex of free’s over the ringA/(x). The idealc/(x) is a
column ideal of the (i− 1)st map in this new complex. The induction hypothesis allow
to conclude that its grade is at leasti − 1. But x was chosen inc, so grc � i, and we are
done. ✷

This proposition tells us that ‘in bulk’ the column ideals of the first boundary map
in control of stiffness. A form of ‘reduction to first syzygies’ is already present in
Lemma 2.5].

In the proposition, there is a sufficient condition that grc � 1 for each column idealc
in any matrix description ofd1 for every complexF as in Definition 1. For use in th
next section, we state this as: in any syzygyZ of finite projective dimension, Annz = 0
for every minimal generatorz of Z. Indeed, the columns of the matrix describe minim
generators ofZ = im d1 as a syzygy inF0, and the equivalence becomes evident.

5. Towards Theorem 2

In [16], we developed various concepts stemming from the seminal paper [
M. Auslander and R.-O. Buchweitz, and showed how they intertwine with several o
Homological Conjectures, including CEC. Auslander–Buchweitz theory essentially w
for Cohen–Macaulay rings with dualizing module, and becomes even nicer for Gore
rings. For some time now, our point of view has been that these homological conjectu
all rings, can be interpreted as statements about modules over Gorenstein rings [15
Thus ‘representation theory’ of Gorenstein rings becomes pivotal. In this vein we
from [15, Section 4] and [16, Section 6.4]

Theorem 9.The Canonical Element Conjecture is true for all rings of a certain resid
characteristic, if and only if for every unmixed nonnull idealb of zerodivisors in a
Gorenstein ringR of this residual characteristic, one hasδ(R/b)= 0.

Here δ is Auslander’s invariant. For a moduleM over a Gorenstein ringR, the
expressionδ(M)= 0 means that there exists a maximal Cohen–Macaulay module ovR,
which has no free direct summand and which surjects ontoM. In general,δ(M)= nmeans
that among all maximal Cohen–Macaulay modules mapping ontoM, the integern is the
smallest rank of their free summand which occurs, e.g., [16, Proposition 4.2]. In the
of the above theorem, however, a new and somehow related characterization ofδ-
invariant is crucial. This time look at all possible surjectionsp :Rt → M from finitely
generated free modules ontoM. Put d for the dimension ofR, then ExtdR(k,R

t ) is a
t-dimensional vector space overk. For every suchp, the dimension of its image und
ExtdR(k,p) equalsδ(M) [16, Theorem 4.1(iv)]. Covertly, this description ofδ also plays a
role in our treatment of the next result.
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Before stating and proving this, we recall a few facts about modules over a Gore
local ringR which are just about standard. A moduleM is a syzygy iff it is torsionless
iff AssM ⊂ AssR. For a cyclic moduleR/b this is the case iffb consists of zero divisor
and is unmixed iffb is an annihilator ideal, i.e.b = Anna for some ideala ⊂ R. We
also indiscriminately speak of finite injective dimension or finite projective dimens
since over a Gorenstein ring these designations apply to the same modules, e
Theorem 10.1.9]. This allows for a quick proof of

Proposition 10.LetR be a Gorenstein ring. Thenδ(R/b)= 0 for every unmixed nonnu
ideal of zero divisorsb if and only if Annz = 0 for every minimal generatorz of every
syzygy of finite projective dimension.

Proof. Suppose the condition on theδ’s is satisfied, and letZ be a syzygy of finite
projective dimension andz ∈ Z. Sincez also lives in a free module, Annz = b is an
annihilator ideal, so thatδ(Rz)= 0 unlessb = 0. If not, the injection ofRz intoZ takesz
into mZ by [16, Proposition 4.5(iii)], soz is not a minimal generator.

Now assume the condition on minimal generators, and letb ⊂ R be a nonnull unmixed
ideal of zero divisors. Take a hull of finite injective dimension ofR/b [1, Section 0],
[16, Sections 1 and 3]. In other words, there is a short exact sequence

0 → R/b →Z →C → 0

whereZ has finite injective dimension andC is maximal Cohen–Macaulay. Since AssZ ⊂
AssR/b∪AssC and all the primes on the right hand side belong to AssR, we see thatZ is
a syzygy. By assumption,R/b cannot hit a minimal generator ofZ, so lands inmZ, which
means thatZ/mZ � C/mC. Henceδ(R/b)= 0 by [16, Proposition 4.4]. ✷

We are poised to clinch the second claim in the introduction.

Proof of Theorem 2. Combine Theorem 9, Propositions 8 and 10 with the remark a
end of Section 4 which interprets columns as minimal generators of syzygies.✷

With Theorem 1 and the fact that CEC holds in equal characteristic, one notices th
word ‘residual’ in the statement of Theorem 2 may be replaced by ‘mixed’.

6. More about stiffness

Very recently, we became aware that Hochster and Huneke had continued
investigations on topics around stiffness after [12]. In their long and exciting article
Sections 10.7–10.12 contain extensions of their earlier results and of [7] which we b
present from our point of view.

Their work, like that of Evans and Griffith, is based on order ideals. LetM be anA-
module, andm ∈M. PutM∗ = HomA(M,A). ThenM∗(m) is the ideal which is generate
in A by the images ofm under all the maps inM∗. This order ideal used to be denot
by OM(m), but fashion appears to be changing. Their main result in this direction
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Theorem 10.8] reads: letA be of positive characteristic, and letz be a minimal generato
in an ith syzygyZ of finite projective dimension. Then grZ∗(z)� i. We argue that ever
stiff ring has this property.

Indeed, letG be a finite free resolution of someM in which Z is an ith syzygy of
which z is a minimal generator. By an old but basic result of Eilenberg [5, Theorem
G is a direct sum of a minimal free resolutionF of M and a free resolutionH of 0. Then
Z = U ⊕ V whereU andV are ith syzygies inF respectivelyH. Let z = u + v be the
corresponding decomposition. SincemZ = mU ⊕ mV , u and/orv needs to be a minima
generator of the syzygy to which it belongs. In caseV �= 0 andv is a minimal generator
grV ∗(v) = ∞ becauseH splits andV is free. If u is a minimal generator ofU , then by
stiffness its column idealc has grade� i for any choice of bases in the complexF. But
c = F ∗

i−1(u)⊂U∗(u). By the canonical projections ofZ onto its components one sees th
Z∗(z)⊃U∗(u)+ V ∗(v), so grZ∗(z)� i in all cases.

For the next two theorems we first derive a couple of immediate consequen
stiffness. In a stiff complexF of lengths take i < s. Then grc � i for all column ideals
belonging todi , regardless of bases, so such an ideal contains a regular sequence o
at leasti. The number of nonnull generators of the ideal is at most the number of rows
matrixX depictingdi , sayfi−1 = rkFi−1. Thereforefi−1 � i. Since alsofi � i + 1, we
see thatZ = imdi requires at leasti + 1 generators and also thati × i minors occur inX.
In Theorem 14 we shall denote byci,t ,1� t � i, the ideal generated by all thet × t minors
which occur int fixed columns ofX. Notice that, and this is the point of the exercise,
are not concerned with bases nor with whicht columns we concentrate on.

In [13, Corollary 10.10] a considerable strengthening of the Evans–Griffith sy
theorem [6, Corollary 3.16] is proved for rings of positive characteristic using
Theorem 10.8]. With the above, one can state

Theorem 11.LetZ be anith syzygy of finite projective dimension over a stiff ring. IfZ is
not free, then it requires at leasti+ 1 generators. In any case, ifz1, . . . , zt , 1 � t � i, form
part of a minimal system of generators forZ, then they generate a free submoduleG ofZ.
Moreover the factor moduleZ/G is an(i − t)th syzygy.

The next result we aim for is a stiff version of [13, Corollary 10.11]. Since we’ll o
a slightly different proof, we make some preparations. Among ways to recognize sy
of finite projective dimension, this one is useful [13, Lemma 10.9]:

Lemma 12.For a moduleM of finite projective dimension over a ringA, the following
conditions are equivalent.

(i) M is anith syzygy;
(ii) For every prime idealp in A, eitherdpMp � i or Mp is free.

Corollary 13. If in a short exact sequence of modules the two outer terms areith syzygies
of finite projective dimension, so is the middle term.
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Next recall the celebrated Buchsbaum–Eisenbud criterion [4, Theorem], [17,
rem 6.2.3] which tells us when a finite free complex is exact. LetF be such a comple
of lengths with boundary mapsdi . For any mapφ between free modules, putIu(φ) for
the ideal ofA generated by theu× u minors in a matrix description ofφ; this does not
depend on choice of bases. The rank ofφ then is the largestu for which Iu(φ) �= 0. Put
ri = fi − fi+1 + · · · ± fs, 1 � i � s. ThenF is acyclic if and only if grIri (di) � i for
all i. In this case, moreover, rkdi = ri [3, Theorem 1]. Observe that here minimality n
characteristic are mentioned.

Now comes the assertion we’re after, which paraphrases [13, Corollary 10.11]. We
notation.

Theorem 14.Let F be a complex of lengths as in Definition1 over a stiff ringA. Then
grci,t � i − t + 1 for 1 � t � i < s.

Proof. A set of t columns of a matrix describingdi corresponds to a partz1, . . . , zt of a
minimal set of generators ofZi = imdi . The submatrix formed by these columns descri
the injectiong of the moduleG = Az1 + · · · + Azt , which is free by Theorem 11, int
Fi−1. There is an exact sequence 0→ Zi/G→ Fi−1/G→ Zi−1 → 0. In this sequence
the modulesZi/G andZi−1 are (i − t)th syzygies, the former by Theorem 11. In view
Corollary 13, so isFi−1/G. Henceg is the last boundary map in an acyclic complex
free’s of lengthi − t + 1. We conclude with the Buchsbaum–Eisenbud criterion.✷
Question 15.For t = 1, the conclusion of the theorem just reasserts stiffness. Ast grows,
larger and larger submatrices come into play, but int fixed columns at a time. An
their determinants generate smaller and smaller ideals. What is the connexion w
Buchsbaum–Eisenbud criterion, which we playfully employed in our proof? Aficiona
of multilinear algebra are kindly invited to shed light on this.
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