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Résumé

Sur un anneau local noethérien, les résolutions libres minimales finies ont une certaine propriété
de rigidité lorsque la caractéristique de I'anneau égale la caractéristique de son corps résiduel
(théoreme 1). Cette propriété évoque le critere de Buchsbaum et Eisenbud ou il n'est pas question
de caractéristique ; cependant, personne ne sait si rigidité reste valable en caractéristique mixte.
Conjecturons seulement ceci : sur tout anneau local de Gorenstein, d’égale caractéristique ou non,
toutes les résolutions libres minimales finies sont rigides (au sens de la définition 1).

L'objet de cette note est de montrer, au théoréme 2, que la conjecture précédente, qui est en fait
une conjecture d’algébre linéaire pour une classe restreinte d’anneaux, équivaut a la conjecture de
I’élément canonique de Hochster qui, elle, porte sur toute la classe des anneaux locaux noethériens.
Ceci est fait via I'approximation par les modules de Cohen—Macaulay maximaux et les enveloppes
de dimension injective finie. Cette théorie, due & Auslander et Buchweitz, s’applique notamment aux
modules de type fini sur un anneau de Gorenstein.
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1. Introduction

Throughout(A, m, k) stands for a (commutative) noetherian local ring with its maximal

ideal and residue class field. We’ll only deal with such rings, and all modules will be finitely
generated unless otherwise stated. Rérdimensional ring, leE be a free resolution df.
Let X = x1,...,xqs be any system of parameters i the surjection ofA/(x1, ..., x4)
onto k lifts to a map from the Koszul compleX (x, A) to F. One says that the ring
satisfies the Canonical Element Conjecture (CEC) provided the Kijy&p, A) — Fy is
never null.

This conjecture was introduced by M. Hochster in [11] and proved for equicharacteristic
rings. Thanks to Heitmann’s recent breakthrough, the result is known in the unequal
characteristic case when diin< 3 [9]; also various special cases have been proved.
Furthermore, there are several versions of CEC, which boil down to the same thing. Finally,
Hochster and others have shown that CEC is equivalent with a number of conjectures,
which at first sight appear rather distinct. The present note will not take up any of this;
instead, it will add one more item to the list.

In order to prepare for the other notion in the title, consideraahomomorphism
f:A™ — A" between free modules. Choosing bases for these, we can degcaiban
n x m matrix with coefficients inA. As an example, takd = k[[X, Y]]/(XY) with k a
field of characteristig£ 2. On certain bases, suppose the nfapi? — A is given by the
matrix (x, y), where the lower case letters denote the images ahdY in A. A change
of base inA? achieves the row matrig + y, x — y) as description of’ . Bothx andy are
zero divisors inA, butx 4+ y andx — y are not.

In such a rectangular matrix, the elements in each particular column generate an ideal
¢ C A which we call a column ideal. We write grfor the length of a longest regular
sequence containedinin casec = A, we put grc = oco. In our example, the grade depends
on base choice. This motivates

Definition 1. Let
F=0— Fs—>--~—>Fiﬁ>Fi_1—>-~-—>Fo

be an acyclic complex of free's ovéA, m, k) which is minimal in the sense thatR 4 F
has null differentials. We say thatis ‘stiff’ if, regardless of base choice, ge i for every
columnideal belonging ta; fori =1, ..., s. We call the ringA stiff if every such complex
over it is stiff.

We prove
Theorem 1.Every noetherian local ring of equal characteristic is stiff.

Theorem 2.Consider ringg(A, m, k) of a fixed residual characteristic. Then every ring of
this type satisfies CEC if and only if every Gorenstein ring of this type is stiff.

Half a year after we had done this work, we belatedly discovered that Theorem 1,
albeit in a different formulation, had already been obtained in [12, Theorem 6.12] and
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[7, Theorem 2.4]. The first of these articles uses the Frobenius endomorphism in finite
characteristic and 'lifts’ to characteristic O using Artin approximation. This argument is
sketched in the second paper, but then another proof is given using big Cohen—Macaulay
modules. Our proof in essence was the same as the latter. However, we believe it is more
direct and transparent, and include it for this reason.

2. Preliminaries

Before embarking on the proof of Theorem 1, we need to establish a few notational
conventions and preliminary facts. Many of these topics were discussed in [17], SO we use
this as a blanket reference.

Let (A, m, k) be our usual ring, which we drop from notation unless confusing. Since
we shall also deal with infinitely generated modules, it is convenient to work with Ext-
depth. Write ext (X, Y) = inf{n: Ext*(X, Y) # 0} for two modulesX andY; this number
is a nonnegative integer o, as in other cases where we follow the same convention.
For anyA-moduleX we write E-dpX = ext™ (k, X); whenX is finitely generated, this is
equal to the usual depth &f by way of regular sequences, for which we now writeXdp
Letp be a prime ideal iM, and putk(p) for the residue field of the local ring,. Then
there are the Bass number(p, X) = dim Ext'/gp (k(p), Xp) [17, Theorem 3.3.3]. Also
w'(p, X) = u"(pAp, Xp). Bringing into play local cohomologiy,, we find hy, (X) =
E-dpX = pn~(m, X), the first identity being taken care of by [17, Proposition 5.3.15]. If
E-dpX < oo, then E-dpX < dim A [17, Corollary 10.2.2], and i maps onto any rin@,
then E-dp Y = E-dp; Y for every B-moduleY [17, Proposition 4.1.4]. We also write
tory (X, Y) =supn: Tor,(X,Y) # 0}; this time it is a nonnegative integer emo.

We record an immediate consequence of the Acyclicity Lemma, e.g., [17, Theo-
rem6.1.1], as

Lemma 3.1n a non-exact complex of modules, not necessarily finitely genebated) —
Xm — -+ — X1— X, for everyi > 1 let eitherH; (X) = 0 or E-dpH; (X) =0, and also
E-dpX; =¢. Theng < m.

The next inequality has presumably been noticed before.

Lemma 4. For any of our ringsA, letp be a prime ideal. Then

dpA <dpA, +dimA/p.

Proof. Putr =dpA,,t =dimA/p. Letp =po C --- C p; = m be a strict saturated chain
of prime ideals. Them (p, A) = " (pAp, Ap) # 0 and iterated use of Bass’ Lemma [17,
Proposition 3.3.4] gives ys' ™ (m, A) # 0. Thereforedpt <r +¢. O

A big Cohen—Macaulay modul€ over A is defined to be a not necessarily finitely
generated module on which some system of parameteAsforms a regular sequence.
Then C # mC and E-dpC = dimA for such a module. A big Cohen—Macaulay
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module C is called ‘balanced’ if every system of parametersAnis regular onC.
Hochster constructed big Cohen—Macaulay modules wheneigequicharacteristic [10,
Theorem 5.1], and also constructed balanced ones. Bartijn and Strooker showed that the
completion of a big Cohen—Macaulay module with respect to the maximal ide4lisf
always balanced [2, Theorems 1.7 and 2.6], [17, Theorem 5.2.3].

Dealing with infinitely generated modules, we need the small support, a selection of
primes at which localization behaves decently. Kdbe anA-module, then supl = {p €
SpecA: E—dpAp Xp < oo}. Small supports go back to Foxby [8, Section 2] who used tor
rather than ext, but this amounts to the same thing [17, Corollary 6.1.10]. Sharp showed
in [14, Theorem 3.2] that, for a balanced big Cohen—Macaulay module, supp has good
properties with respect to height and dimension. For our purposes we record

Proposition 5. Let C be a balanced big Cohen—Macaulay module odeand letp €
suppC. Then

E—dpAp Cp=htp=dimA, and htp+dimA/p=dimA,
whilepCy # Cy.

3. Towards Theorem 1

First we sharpen a result of Evans—Griffith [6, Theorem 1.11], replacing thgibyt
dpA,. It seems also that the original proof required some mild condition on the ring.

Theorem 6.Let M be a finitely generated-module of finite projective dimension apd
a prime ideal inA. Assume that C is a balanced big Cohen—Macaulay module Ayer
Thentor{ (C, M) < dpA,.

Proof. SinceC #mC andC ®4 M # 0, puttingr = tor (C, M), we see that & r < dpA,
ast does not exceed the projective dimensionoivhich in turn is not greater than dpby
the Auslander—Buchsbaum identity. lggbe a prime which is minimal in Supp Ta6C, M),
so thatq D p. Thus the nonnullA;-module Tof“(Cq,Mq) = Tor,A(C, M)q is only
supported in the maximal ideal of the local riAg, so E-d|;z‘q of this module is 0.

Let

d
F:O—)FY—>'~—>F1—1> Fo

be a minimal freeA ;-resolution of the modulé/, = cokerd:. This module’s projective
dimension iss < dpA,. By our choice ofy, we also know that < s.

Now consider the compleX’y ®4, Fq which we truncate at degree— 1, writing
F_1 =0 in caser = 0. Its homology is concentrated in degreewhere its Ext-depth
is 0. The Ext-depth of all its chain modules is Exdi’q, so Lemma 3 tells us that
E- dpA Cq <5 —t < o0. In particular,g € suppC.

We' apply Proposition 5 to the ring/p to obtain E- dg Cq = E-dpa/py, Cq =
dim(A/p)q = dimA,/pA4. Next we invoke Lemma 4 for the' ring, and find cjpé\q
dpAp +dimA,/pA,.
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Tying all this together we establish the result

1<s—E-dpy Cq=s5s—dimAg/pAg <dpAg —dimAg/pAg <dpAy. O
The statement we want is now an easy corollary.

Proof of Theorem 1. Let F be a complex as in Definition 1 over an equicharacteristic
ring A, and consider itgth boundary ma/;, 1 <i < s. Let ¢ be, say, the first column
ideal in some matrix description af. Take a prime ideap O ¢ with grc =dpA,. There
exists a balanced big Cohen—Macaulay modtlever A/p. The ith boundary map of
the complexC ® 4 F maps the first copy of in C ®4 F; to 0 sincecC = 0. This first
copy itself is not in the image of the previous map because the confplexminimal
andC # mC. PuttingM = cokerd;, we see that T(;f‘r(C, M) # 0. With Theorem 6 then

i <dpAp=grc. O

At this point, what can one do in mixed characteristicg i§ the residual characteristic,
we can replace a column ideabelonging to theth mapd; by the ideak + (p) = a and
take a prime ideaj containing it such that dp, = gra. Tensoring- with a balanced big
Cohen—Macaulay module ovdr/q, and taking into account that g gra < grc+ 1, we
obtain

Proposition 7.LetF be a complex as in Definitioh Then the column ideals belonging to
d; always have grade at least- 1.

4. Stiffness depends on first syzygies

In order to prepare for Theorem 2, we explain what we mean by this title and provide a
straightforward proof of the appropriate statement.

Definition 2. Let I" be a class of rings such that,Afe I andx € m is a non zerodivisor,
thenA/(x) € I'. We call such a class ‘consistent’.

Examples of consistent classes would be all rings of positive residual characteristic, the
class of all Gorenstein rings, or their intersection.

Proposition 8.Let I' be a consistent class of rings. Then evarg I' is stiff if and only if
for every complek as in Definitionl over every such ringgrc > 1 for every column ideal
belonging to the first boundary maf, no matter what bases.

Proof. Assume the second condition andfebe a complex of length as in Definition 1
over aringA in I'. We have to show that is stiff.

For s = 1 this is our assumption. So take> 2 and suppose that the result has been
proved for complexes of lesser length. lcdie a column ideal in some matrix description
of d;, 2<i < s. By our assumption, this ideal contains a non-zero divisarm. Write
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M = cokerdy; then Tojl‘.‘(A/(x), M) =0for j > 2. Therefore, when we tensor wity (x)
and clap bars on thg;’s andd;’s,

becomes a minimal acyclic complex of free’s over the rigx). The idealc/(x) is a
column ideal of thei(— 1)st map in this new complex. The induction hypothesis allows us

to conclude that its grade is at least 1. Butx was chosen ir, so grc > i, and we are
done. O

This proposition tells us that ‘in bulk’ the column ideals of the first boundary map are
in control of stiffness. A form of ‘reduction to first syzygies’ is already present in [7,
Lemma 2.5].

In the proposition, there is a sufficient condition that gr1 for each column ideal
in any matrix description ofl; for every complext as in Definition 1. For use in the
next section, we state this as: in any syzygyf finite projective dimension, Ann= 0
for every minimal generatar of Z. Indeed, the columns of the matrix describe minimal
generators of =imdj as a syzygy inFp, and the equivalence becomes evident.

5. Towards Theorem 2

In [16], we developed various concepts stemming from the seminal paper [1] of
M. Auslander and R.-O. Buchweitz, and showed how they intertwine with several of the
Homological Conjectures, including CEC. Auslander—Buchweitz theory essentially works
for Cohen—Macaulay rings with dualizing module, and becomes even nicer for Gorenstein
rings. For some time now, our point of view has been that these homological conjectures for
all rings, can be interpreted as statements about modules over Gorenstein rings [15,16,18].
Thus ‘representation theory’ of Gorenstein rings becomes pivotal. In this vein we quote
from [15, Section 4] and [16, Section 6.4]

Theorem 9.The Canonical Element Conjecture is true for all rings of a certain residual
characteristic, if and only if for every unmixed nonnull iddalof zerodivisors in a
Gorenstein ringR of this residual characteristic, one h@sR/b) = 0.

Here § is Auslander’s invariant. For a modul® over a Gorenstein ringk, the
expressiors (M) = 0 means that there exists a maximal Cohen—Macaulay modulagver
which has no free direct summand and which surjects dhtbh general§ (M) = n means
that among all maximal Cohen—Macaulay modules mapping dhtthe integem is the
smallest rank of their free summand which occurs, e.g., [16, Proposition 4.2]. In the proof
of the above theorem, however, a new and somehow related characterizationsef the
invariant is crucial. This time look at all possible surjectignsR’ — M from finitely
generated free modules ontd. Putd for the dimension ofR, then Exg(k, R") is a
t-dimensional vector space over For every suclp, the dimension of its image under
Ext‘;’2 (k, p) equalss(M) [16, Theorem 4.1(iv)]. Covertly, this description d&lso plays a
role in our treatment of the next result.
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Before stating and proving this, we recall a few facts about modules over a Gorenstein
local ring R which are just about standard. A modwig is a syzygy iff it is torsionless
iff Ass M C AssR. For a cyclic moduler/b this is the case ifb consists of zero divisors
and is unmixed iffb is an annihilator ideal, i.eb = Anna for some ideala C R. We
also indiscriminately speak of finite injective dimension or finite projective dimension,
since over a Gorenstein ring these designations apply to the same modules, e.g. [17,
Theorem 10.1.9]. This allows for a quick proof of

Proposition 10.Let R be a Gorenstein ring. Thef(R/b) = O for every unmixed nonnull
ideal of zero divisord if and only if Annz = O for every minimal generator of every
syzygy of finite projective dimension.

Proof. Suppose the condition on this is satisfied, and leZ be a syzygy of finite
projective dimension and € Z. Sincez also lives in a free module, A= b is an
annihilator ideal, so that(Rz) = 0 unlessh = 0. If not, the injection ofRz into Z takesz
intomZ by [16, Proposition 4.5(iii)], sa@ is not a minimal generator.

Now assume the condition on minimal generators, anfl etk be a nonnull unmixed
ideal of zero divisors. Take a hull of finite injective dimension®fb [1, Section 0],
[16, Sections 1 and 3]. In other words, there is a short exact sequence

O—-R/b—->Z—->C—0

whereZ has finite injective dimension ar@is maximal Cohen—Macaulay. Since Aés-
AssR/bUAssC and all the primes on the right hand side belong to Rsse see that is
a syzygy. By assumptiorR /b cannot hit a minimal generator &f, so lands innZ, which
means thaZ /mZ ~ C/mC. Hences(R/b) = 0 by [16, Proposition 4.4]. O

We are poised to clinch the second claim in the introduction.

Proof of Theorem 2. Combine Theorem 9, Propositions 8 and 10 with the remark at the
end of Section 4 which interprets columns as minimal generators of syzygies.

With Theorem 1 and the fact that CEC holds in equal characteristic, one notices that the
word ‘residual’ in the statement of Theorem 2 may be replaced by ‘mixed’.

6. More about stiffness

Very recently, we became aware that Hochster and Huneke had continued their
investigations on topics around stiffness after [12]. In their long and exciting article [13],
Sections 10.7-10.12 contain extensions of their earlier results and of [7] which we briefly
present from our point of view.

Their work, like that of Evans and Griffith, is based on order ideals.Mebe anA-
module, andn € M. PutM* =Homy (M, A). ThenM*(m) is the ideal which is generated
in A by the images ofz under all the maps id/*. This order ideal used to be denoted
by O, (m), but fashion appears to be changing. Their main result in this direction [13,
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Theorem 10.8] reads: let be of positive characteristic, and lebe a minimal generator
in anith syzygyZ of finite projective dimension. Then gr(z) > i. We argue that every
stiff ring has this property.

Indeed, letG be a finite free resolution of som# in which Z is anith syzygy of
which z is a minimal generator. By an old but basic result of Eilenberg [5, Theorem 8],
G is a direct sum of a minimal free resolutiénof M and a free resolutiokl of 0. Then
Z =U & V whereU andV areith syzygies inF respectivelyH. Let z = u + v be the
corresponding decomposition. Sine& = mU @ mV, u and/orv needs to be a minimal
generator of the syzygy to which it belongs. In cadse: 0 andv is a minimal generator,
grV*(v) = oo becauseH splits andV is free. Ifu is a minimal generator of/, then by
stiffness its column ideal has grade> i for any choice of bases in the complEx But
¢=F" ,(u) C U*(u). By the canonical projections af onto its components one sees that
Z*(z) D U*(u) + V*(v), S0 grZ*(z) > i in all cases.

For the next two theorems we first derive a couple of immediate consequences of
stiffness. In a stiff comple¥ of lengths takei < s. Then gr > i for all column ideals
belonging tad;, regardless of bases, so such an ideal contains a regular sequence of length
atleast. The number of nonnull generators of the ideal is at most the number of rows in the
matrix X depictingd;, say fi—1 =rk F;_1. Thereforef;_1 > i. Since alsof; > i + 1, we
see thatZ = imd; requires at least+ 1 generators and also thiak i minors occur inX.

In Theorem 14 we shall denote by, 1 < ¢ < i, the ideal generated by all thex r minors
which occur int fixed columns ofX. Notice that, and this is the point of the exercise, we
are not concerned with bases nor with whiablumns we concentrate on.

In [13, Corollary 10.10] a considerable strengthening of the Evans—Griffith syzygy
theorem [6, Corollary 3.16] is proved for rings of positive characteristic using [13,
Theorem 10.8]. With the above, one can state

Theorem 11.Let Z be anith syzygy of finite projective dimension over a stiff ringZ lis
not free, then it requires at least- 1 generators. In any case,if, ..., z;, 1 <t <i, form
part of a minimal system of generators f6r then they generate a free submodglef Z.
Moreover the factor modulg/G is an (i — ¢)th syzygy.

The next result we aim for is a stiff version of [13, Corollary 10.11]. Since we'll offer
a slightly different proof, we make some preparations. Among ways to recognize syzygies
of finite projective dimension, this one is useful [13, Lemma 10.9]:

Lemma 12.For a moduleM of finite projective dimension over a ring, the following
conditions are equivalent.

(i) M is anith syzygy
(ify Forevery prime ideap in A, eitherdpM,, > i or M, is free.

Corollary 13. If in a short exact sequence of modules the two outer termilagyzygies
of finite projective dimension, so is the middle term.
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Next recall the celebrated Buchsbaum—Eisenbud criterion [4, Theorem], [17, Theo-
rem 6.2.3] which tells us when a finite free complex is exact. Edéte such a complex
of lengths with boundary mapg;. For any mapp between free modules, paif(¢) for
the ideal ofA generated by the x u minors in a matrix description af; this does not
depend on choice of bases. The rankpaten is the largest for which 7, (¢) # 0. Put
ri=fi — fiya+---£ fs, 1<i <s. ThenF is acyclic if and only if gi7,, (d;) > i for
all i. In this case, moreover, tk = r; [3, Theorem 1]. Observe that here minimality nor
characteristic are mentioned.

Now comes the assertion we're after, which paraphrases [13, Corollary 10.11]. We keep
notation.

Theorem 14.Let F be a complex of length as in Definitionl over a stiff ringA. Then
oreiyzi—t+1forl<r<i<s.

Proof. A set ofr columns of a matrix describing; corresponds to a part,...,z, ofa
minimal set of generators &f; = imd,. The submatrix formed by these columns describes
the injectiong of the moduleG = Az; + --- + Az;, which is free by Theorem 11, into
F;_1. There is an exact sequence0Z;/G — F;_1/G — Z;—_1 — 0. In this sequence,
the modulesZ; /G andZ;_1 are { — t)th syzygies, the former by Theorem 11. In view of
Corollary 13, so isF;_1/G. Henceg is the last boundary map in an acyclic complex of
free’s of lengthi — 7 + 1. We conclude with the Buchsbaum—-Eisenbud criterian.

Question 15.For¢ = 1, the conclusion of the theorem just reasserts stiffness.ghsws,

larger and larger submatrices come into play, but ifixed columns at a time. And
their determinants generate smaller and smaller ideals. What is the connexion with the
Buchsbaum-Eisenbud criterion, which we playfully employed in our proof? Aficionado’s
of multilinear algebra are kindly invited to shed light on this.
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