CUMULATIVE SUBJECT INDEX¹ Volumes 52-55

A

Agreement
Byzantine, without authentication: efficient algorithm for, 52, 257
Algebraic specification
methods for computable data types, completeness, 54, 186
Algebraic systems of equations
over free monoid, and test sets for context free languages, 52, 172
Algorithm
direct branching, for checking equivalence of deterministic pushdown automata, 52, 187
efficient, for Byzantine agreement without authentication, 52, 257
regular languages of star height one, 53, 199
Alternating Turing machine
two-dimensional, with only universal states, 55, 193
Announcements
automata, languages, and programming: 11th colloquium, 52, 365
open mathematical problems, call for, 53, 139
semioticians, prize, 52, 239
Array
as parametrized data type, 52, 139
Asymmetric error detecting codes
properties, optimal, 53, 66
Attribute systems
equivalence problem for, 52, 275
Automata
deterministic pushdown, direct branching algorithm for checking equivalence, 52, 187
pushdown, with bound on size of pushdown store, 54, 217
universal, with uniform bounds on simulation time, 52, 19
Axiomatic systems
for models, stochastic systems with state transition probabilities, 53, 165

B
Backtracking
construct in propositional dynamic logic, 54, 121
Berkling reduction language
and lambda calculus extension, 55, 89
Binary block codes
enumeration of run length sequences, 55 , 222
Block codes
binary, enumeration of run length sequences, 55, 222
Block symmetry
in Shannon entropy characterization, 53, 9
Boolean formula
and unique satisfiability problem, 55, 80
Boolean functions
nondegenerated, time bound for parallel RAM's computation, 55, 102
Bound
lower, circuit size: and non-reducibility to sparse sets, 55,40
tight $\Omega(\log \log n)$, on time for parallel RAM's to compute nondegenerated Boolean functions, 55, 102
uniform, on simulation time: universal automata with, 52, 19
Busy beaver sets
characterization and applications, 52, 52
Byzantine agreement
without authentication, efficient algorithm for, 52, 257

[^0]
C

Calculus
dyadic, and sampling theorems
applications to dyadic sampling representations, 52, 352
theory, 52, 333
lambda, model, 52, 87, 306
Calculus for communicating systems
language, in denotational semantics of concurrency, 54, 70
Cardinality codes
maximum, determination, 53, 66
Cartesian closed monoids
of lambda algebra, 52, 306
Categorical models
and lambda calculus, 52, 306
Cell space
universal, Petri net implementations by, 53, 121
Chance
and time, reasoning with, 53, 165
Channel
\bar{d}-continuous conditionally almost block independent, representation, 55, 238
discrete stationary, with memory: distance measures, 55, 238
distances and representation, 55, 238
Church's thesis
in history of ideas and models of computer science, 54, 3
Circuit-size lower bounds
and non-reducibility to sparse sets, 55, 40
Codes
binary block, enumeration of run length sequences, 55, 222
cardinality, maximum: determination 53 , 66
error detecting, asymmetric: properties, 53, 66
Kerdock, generalized: exponential number, 53, 74
Combinational logic network
linear cost, 55, 20
Combinators
and lambda terms, relation, 52, 87
Comparison
criteria of language learning, 52, 123
Complexity
computational
and busy beaver sets, 53, 52
recursively enumerable sets, $\mathbf{5 2 , 8}$
total variation and differentiation, 53, 21
derivational, context-free grammars, 53,52
distributed protocol designing, 53, 211
$N P$, analogues of semirecursive sets and effective reducibilities and, 52, 36
recursion-theoretic
of relative succinctness of representations of languages, 52, 2
of semantics of predicate logic as programming language, 54, 25
time, deterministic and nondeterministic, 55, 117
validity problem for dynamic logic, 54, 48
Complexity classes
computational, probabilistic: under definitional perturbations, robustness, 54, 143
R and ZPP, robustness under definitional perturbations, 54, 143
Communicating sequential processes
language, in denotational semantics of concurrency, 54, 70
Communication
concept in denotational semantics of concurrency, 54, 70
Computable data types
algebraic specification methods for, 54, 186
Computation
and decision-making, complexity of designing distributed protocols, 53, 211
greatest common divisor, fast parallel matrix and, 52, 241
infinite, propositional dynamic logic extensions for, 55, 175
Computational complexity
and busy beaver sets, 52, 52
recursively enumerable sets, 52, 8
total variation and differentiation, 53, 21
Computational complexity classes
probabilistic, under definitional perturbations: robustness, 54, 143
Computer science
recursion theoretic aspects
history of ideas and models, 54, 3
National Science Foundation sponsored workshop, special issue, introduction, 52, 1; 54, 1

Concurrency

denotational semantics of, 54, 70
Conditionally almost block independent channels
\bar{d}-continuous, distances and representation, 55, 238
Context-free
grammars
derivational complexity, 53, 52
fair derivations in, 55, 108
LL(k) parsing, 53, 141
languages, test sets for, 52, 172
Continuous-time systems
entropy theorem for parameter estimation extension to, $\mathbf{5 3}, 81$
Criteria
language learning, 52, 123

D

Database
relational, and template dependency, $\mathbf{5 5}$, 69
Data types
computable, algebraic specification methods for, 54, 186
parametrized, fixpoint approaches, 52, 139
Decision-making
and computation, complexity of designing distributed protocols, 53, 211
Definitional perturbations
robustness of R and ZPP under, 54, 143
Denotational semantics
of concurrency, 54, 70
Dependencies
template, inference problem for, 55, 69
Derivations
context-free grammars, complexity, 53,52
fair, in context-free grammars, 55, 108
Deterministic pushdown automata
direct branching algorithm for checking equivalence, 52, 187
Differentiation
computational complexity, negative results, 53, 21
Digital images
three-dimensional, recognition of surfaces in, 53, 108
Digital optical disks
and write-once memory, 55, 1

Domain
multidimensional, functions with: dyadic calculus and sampling theorems for, 52, 333, 352
Dyadic calculus
and sampling theorems
applications to dyadic sampling representations, 52, 352
theory, 52, 333
Dyadic sampling representations
dyadic calculus and sampling theorems applied to, 52, 352
Dynamic logic
looping and repeating in, 55, 175
propositional, of looping and converse: elementarily decidable, 54, 121
validity problem, complexity, 54, 48

E

Editorial

Editorial Board, new, 52(1), iii
Effective reducibilities
and NP complexity, 52, 36
Entropy
Shannon, characterization: using extreme symmetry and block symmetry, 53, 9 theorem, for parameter estimation: extension, 53, 81
Enumeration
run length sequences, binary block codes, 55,222
Environmental structures
and lambda calculus, 52, 306
Equations
algebraic systems of, over free monoid: and test sets for context-free languages, 52,172
Equivalence
algorithm for checking, deterministic pushdown automata, 52, 187
problem, for attribute systems, 52,275
Error detecting codes
asymmetric, properties: optimal, 53, 66
Execution sequences
properties, formulas, 53, 165
Exponential number
Kerdock codes, generalized, 53, 74
Extreme symmetry
in Shannon entropy characterization, 53, 9

F

Fairness
derivations in context-free grammars, $\mathbf{5 5}$, 108
Fast parallel matrix
and ged computations, 52, 241
Filter lambda model
characterizations theorems for, 54, 201
Fixpoint
approaches to data types, 52, 139
Free monoid
algebraic systems of equations over, and test sets for context-free languages, 52, 172
Fringe analysis
theory, application to $2-3$ trees and Btrees, 55, 125
Function
Boolean, nondegenerated: time bound for parallel RAM's computation, 55, 102
bounded variation, 53, 21
with multidimensional domain, dyadic calculus and sampling theorems for, 52, 333, 352
Functional programming languages
lambda calculus extension base, 55, 89

Hierarchy
fine, and tape versus pushdown, 54, 217
Hoare's logic
incompleteness result for, 52, 159

Images
digital, three-dimensional: recognition of surfaces in, 53, 108
Incompleteness
result for Hoare's logic, 52, 159
Inductive inference
nearly minimal size programs, tradeoffs in, 52, 68
Inference
inductive, of nearly minimal size programs: tradeoffs in, 52, 68
problem for template dependencies, 55, 69
Information
storage, and balanced search trees, 55, 125
Invariant
global and local, in transition systems, 53, 91

K

Kerdock codes
generalized, exponential number, 53, 74

Lambda algebra
and lambda calculus, 52, 306
Lambda calculus
extension, base for functional programming languages, 55, 89
filter lambda model, 54, 201
model, 52, 87, 306
Language
acquisition, models and learning strategies, 53, 32
Berkling reduction, and lambda calculus extension, 55, 89
context free, test sets for, 52, 172
in denotational semantics of concurrency, 54, 70
functional programming, lambda calculus extension base, 55, 89
learning, criteria, 52, 123
natural, learning strategies, 53, 32
in $N P, 52,36$
picture, description using string languages, 54, 155
programming, predicate logic as, 54, 25
regular, star height one, 53, 199
relative succinctness, recursion-theoretic complexity of, 52,2
reversal-bounded counter machine, fine hierarchy, 54, 217
string, to describe picture languages, 54, 155
Learning
language, criteria, 52, 123
machines, and learning strategies, 53, 32
strategies, 53, 32
Local invariants
in transition systems, 53, 91
Logic
dynamic
looping and repeating in, 55, 175
validity problem, complexity, 54, 48
Hoare's, incompleteness result for, 52, 159
network, combinatorial: linear cost, 55, 20
predicate, as programming language: recursion-theoretic complexity of semantics of, 54,25
propositional dynamic; of looping and converse: elementarily decidable, 54, 121
Looping
construct in propositional dynamic logic, 54, 121
and repeating in dynamic logic, 55, 175
Lower bounds
circuit size, and non-reducibility to sparse sets, 55, 40

M
Machines
inductive inference, and nearly minimal size programs: tradeoffs, 52, 68
multicounter, efficient simulations, 55,20
reversal-bounded counter, fine hierarchy, 54, 217
Turing
alternating, two-dimensional: with only universal states, 55, 193
and Gödel's thinking, 54, 3
k tape, simulation by, 53, 1
Matrix
in fringe analysis problems, 55, 125
parallel, fast: and ged computations, 52, 241
Memory
write-once, reuse, 55, 1
Memory-limitedness
learning strategy, 53, 32
Model
\bar{d}-continuous conditionally almost block independent channels, distance measures, 55, 238
filter lambda, characterization theorems for, 54, 201
lambda calculus, 52, 87, 306
Monoids
Cartesian closed, of lambda algebra, 52, 306
free, algebraic systems of equations over: and test sets for context-free languages, 52, 172
Multicounter machines
simulations, efficient, 55, 20
Multidimensional domain
functions with, dyadic calculus and sampling theorems for, $52,333,352$

N

National Science Foundation
sponsored workshop, recursion theoretic aspects of computer science: special issue, introduction, 52, 1
Negative results
computational complexity of total variation and differentiation, 53, 21
Net
Petri, implementations by universal cell space, 53, 121
Nondegenerated Boolean functions
time bound for parallel RAM's computation, 55, 102
Nondeterministic polynomial (NP) complexity, and analogues of semirecursive sets, 52,36

Nonlinear time
in simulation by k tapes, 53, 1
Nontriviality
learning strategy, 53, 32
NP, see Nondeterministic polynomial
Number
exponential, generalized Kercock codes, 53, 74

0
Optical disks
digital, and write-once memory, 55, 1
Oracle
construction, and unique satisfiability problem, 55, 80
Orientability
and connectedness, surfaces in threedimensional digital images, 53, 108

P

Parallellism
concept in denotational semantics of concurrency, 54, 70
Parallel matrix
fast, and gcd computations, 52, 241
Parallel RAM
computation of nondegenerated Boolean functions, tight $\Omega(\log \log n)$-bound on time for, 55, 102
Parameter
estimation, entropy theorem for, $\mathbf{5 3}, 81$
Parametrized data types
fixpoint approaches, 52, 139
Parser
LL (k), construction, 53, 141
optimization, and derivational complexity of context-free grammars, 53, 52
Parsing
$\mathrm{LL}(k)$, context-free grammars: theory, $\mathbf{5 3}$, 141
Perturbations
definitional, robustness of R and ZPP under, 54, 143
Petri net
implementations by universal cell space, 53, 121
Picture languages
description, using string languages, 54, 155
Ping-pong protocols
security, 55, 57
Polynomial
greatest common divisor, 52, 241
nondeterministic, complexity: and analogues of semirecursive sets, 52, 36
Predicate logic
as programming language, recursiontheoretic complexity of semantics of, 54, 25
Probabilistic computational complexity classes
under definitional perturbations, robustness, 54, 143
Probabilistic programs
reasoning with time and chance, 53, 165
Processes
and denotational semantics of concurrency, 54, 70
Program
nearly minimal size, tradeoffs in inductive inference of, 52, 68
scheme, recursive, 52, 275
Programming language
functional, lambda calculus extension base, 55, 89
predicate logic as, 54, 25
Promptly simple sets
computational complexity notions for recursively enumerable sets, $\mathbf{5 2 , 8}$
Propositional dynamic logic
of looping and converse, elementarily decidable, 54, 121
Protocols
distributed, designing: complexity, 53, 211
ping-pong, security, 55, 57
Pseudomodels
and lambda calculus, 52, 306
Pushdown automata
with bound on size of pushdown store, 54, 217
Pushdown store
and tape for two-way machines, comparison, 54, 217

Q
Queues
and stacks, in data types, 52, 139

R

R, see Complexity classes

Reasoning
with time and chance, 53,165
Recursion theoretic aspects
computer science, National Science Foundation sponsored workshop: special issue, introduction, 52, 1; 54, 1
Recursion-theoretic complexity
relative succinctness of representations of languages, 52, 2
of semantics of predicate logic as programming language, 54, 25
Recursion theoretic formulation
and universal automata, 52, 19
Recursive function
and Gödel's thesis, 54, 3
theory, and busy beaver sets, 52,52
Recursively enumerable sets
computational complexity, 52, 8
Reducibilities
effective and efficient, and $N P$ complexity, 52, 36
Relative succinctness
of representations of languages, recursiontheoretic complexity of, 52,2
Repeating
and looping in dynamic logic, 55, 175
Representation
\bar{d}-continuous conditionally almost block independent channel, as infinite sliding-block coding, 55, 238
sampling, dyadic: dyadic calculus and sampling theorems applied to, 52,352
Reuse
write-once memory, 55, 1
Run length sequences
enumeration, binary block codes, 55, 222

S
Sampling representations
dyadic, dyadic calculus and sampling theorems applied to, 52, 352
Sampling theorems
for functions with multidimensional domain, dyadic calculus and, 52, 333, 352
Satisfiability problem
unique, oracle construction, 55, 80
Search trees
and fringe analysis, 55, 125
Security
ping-pong protocols, 55,57
Semantics
denotational, of concurrency, 54, 70
of predicate logic as programming language, recursion-theoretic complexity of, 54,25
Sequences
run length, enumeration: binary block codes, 55, 222
Sequential and parallel grammars
continuous [corrigendum to
48, 221 (1981)], 52, 364

Sets
busy beaver, characterization and applications, 52,52
promptly simple, computational complexity notions for recursively enumerable sets, 52, 8
recursively enumerable, computational complexity, 52, 8
semirecursive, analogues: and $N P$ complexity, 52, 36
sparse, and circuit-size lower bounds, 55, 40
speedable, computational complexity notions for recursively enumerable sets, 52, 8
test, for context-free languages and algebraic systems of equations over free monoid, 52, 172
Semirecursive sets
analogues, and NP complexity, 52,36
Shannon entropy
characterization, using extreme symmetry and block symmetry, 53, 9
Simulation
by k tape Turing machines, 53, 1
multicounter machines, 55, 20
Simulation time
uniform bounds on, universal automata with, 52, 19
Sparse sets
non-reducibility to, circuit-size lower bounds and, 55, 40
Speedable sets
computational complexity notions for recursively enumerable sets, $\mathbf{5 2 , 8}$

Stacks
and queues, in data types, 52, 139
Star
height one, regular languages of, 53, 199
States
universal, only: two-dimensional alternating Turing machines with, 55, 193
Storage
information, and balanced search trees, 55, 125
Strategies
learning, 53, 32
String languages
use for description of picture languages, 54, 155
Succinctness
relative, of representations of languages: recursion-theoretic complexity of, 52 . 2

Surfaces
in three-dimensional digital images, recognition, 53, 108
Symmetry
block, in Shannon entropy characterization, 53, 9
extreme, in Shannon entropy characterization, 53, 9
Synchronization
concept in denotational semantics of concurrency, 54, 70
Systems
algebraic, equations over free monoid: and test sets for context-free languages, 52, 172
transition, global and local invariants in, 53, 91
for context-free languages and algebraic systems of equations over free monoid, 52, 172
Theorem
entropy, for parameter estimation: extension, 53, 81
sampling, for functions with multidimensional domain: dyadic calculus and, 52, 333, 352
Three-dimensional images
digital, surfaces in: recognition, $\mathbf{5 3}, 108$
Time
and chance, reasoning with, 53, 165
complexity, deterministic and nondeterministic, 55, 117
nonlinear, in simulation by k tapes, 53, 1
simulation, uniform bounds on: universal automata with, 52, 19
tight $\Omega(\log \log n)$-bound, for parallel RAM's computation of nondegenerated Boolean functions, 55, 102
Totality
learning strategy, 53, 32
Transition
systems, global and local invariants in, 53, 91
Trees
search (2-3 and B), fringe analysis, 55, 125
Turing machine
alternating, two-dimensional: with only universal states, 55, 193
and Gödel's thinking, 54, 3
k tape, simulation by, 53, 1

Uniform bounds
on simulation time, universal automata with, 52, 19
Tape
and pushdown store for two-way machines, comparison, 54, 217
Taxonomy
criteria of language learning, 52, 123
Template
dependencies, inference problem for, 55, 69
Test sets

Unique satisfiability problem
oracle construction, 55, 80
Universal automata
with uniform bounds on simulation time, 52, 19
Universal states
only, two-dimensional alternating Turing machines with, 55, 193

Validity in dynamic logic, complexity, 54, 48	Write-once memory reuse, 55,
Variation	
total, negative results on computational	
\quad complexity of, 53, 21	ZPP, see Complexity classes

[^0]: ${ }^{1}$ Boldface number indicates appropriate volume; lightface number indicates pagination.

