DISCRETE
MATHEMATICS

Note
 On perfect neighborhood sets in graphs

Gerd H. Fricke ${ }^{\text {a }}$, Teresa W. Haynes ${ }^{\text {b,1 }}$, Sandra Hedetniemi ${ }^{\text {c }}$, Stephen T. Hedetniemi ${ }^{\mathrm{c}}$, Michael A. Henning ${ }^{\mathrm{d}, *, 2}$
${ }^{\text {a }}$ Wright State University, Ohio, USA
${ }^{\mathrm{b}}$ East Tennessee State University, Tennessee, USA
${ }^{\text {c Clemson University, South Carolina, USA }}$
${ }^{\text {d }}$ University of Natal, Pietermaritzburg, South Africa

Received 14 August 1997; revised 30 May 1998; accepted 8 June 1998

Abstract

Let $G=(V, E)$ be a graph and let $S \subseteq V$. The set S is a dominating set of G is every vertex of $V-S$ is adjacent to a vertex of S. A vertex v of G is called S-perfect if $|N[v] \cap S|=1$ where $N[v]$ denotes the closed neighborhood of v. The set S is defined to be a perfect neighborhood sel of G if every vertex of G is S-perfect or adjacent with an S-perfect vertex. We prove that for all graphs $G, \Theta(G)=\Gamma(G)$ where $\Gamma(G)$ is the maximum cardinality of a minimal dominating set of G and where $\Theta(G)$ is the maximum cardinality among all perfect neighborhood sets of G. (C) 1999 Elsevier Science B.V. All rights reserved

1. Introduction

Let $G=(V, E)$ be a graph with vertex set V and edge set E, and let v be a vertex in V. The open neighbourhood of v is $N(v)=\{u \in V \mid u v \in E\}$ and the closed neighbourhood of v is $N[v]=\{v\} \cup N(v)$. A set $S \subseteq V$ is a dominating set if every vertex not in S is adjacent to a vertex in S. Equivalently, S is a dominating set of G if for every vertex v in $V,|N[v] \cap S| \geqslant 1$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G, while the upper domination number of G, denoted by $\Gamma(G)$, is the maximum cardinality of a minimal dominating

[^0]set in G. The concept of domination in graphs, with its many variations, is now well studied in graph theory. The book by Chartrand and Lesniak [1] includes a chapter on domination. For a more thorough study of domination in graphs, see Hayncs et al. $[5,6]$.

In this paper we introduce the concept of perfect neighborhood sets in graphs. Let S be a subset of vertices of G. A vertex v of G is called S-perfect if $|N[v] \cap S|=1$. The set S is defined to be a perfect neighborhood set of G if every vertex of G is S-perfect or adjacent to an S-perfect vertex. Equivalently, S is a perfect neighborhood set of G if for every $u \in V$, there exists a $v \in N[u]$ such that $|N[v] \cap S|=1$. The lower (upper) perfect neighborhood number $\theta(G)$ (respectively, $\Theta(G)$) of G is defined to be the minimum (respectively, maximum) cardinality among all perfect neighborhood sets of G. We will refer to a perfect neighborhood set of cardinality $\theta(G)$ (respectively, $\Theta(G))$ as a θ-set (respectively, Θ-set) of G.

2. The parameter $\boldsymbol{\theta}(\boldsymbol{G})$

In this section, we relate θ with other graph parameters. A set S of vertices of $G=$ (V, E) is a 2 -dominating set of G if every vertex of $V-S$ is within distance 2 from some vertex of S. The minimum cardinality among all 2 -dominating sets of G is called the 2 -domination number and is denoted by $\gamma_{2}(G)$. Since every perfect neighborhood set of G is also a 2 -dominating set of $G, \gamma_{2}(G) \leqslant \theta(G)$ for every graph G. Strict inequality may hold. For example, consider the bipartite graph G_{n} constructed as follows. Take a complete bipartite graph $K_{2, n}$ with partite sets $U=\{u, v\}$ and W. Attach $n+2$ vertex disjoint paths of length 2 to each of u and v, and attach a path of length 1 to each vertex of W. Then the resulting bipartite graph G_{n} satisfies $\theta\left(G_{n}\right)=n+2$ and $\gamma_{2}\left(G_{n}\right)=2$. Hence for every positive integer n, there exists a bipartite graph G_{n} with $\theta\left(G_{n}\right)-\gamma_{2}\left(G_{n}\right)=n$.

A packing of a graph is a set of vertices whose elements are pairwise at distance at least 3 apart in G. The lower packing number of G, denoted $\rho_{L}(G)$, is the minimum cardinality of a maximal packing of G. Since every maximal packing S of G is a perfect neighborhood set of $G, \theta(G) \leqslant \rho_{L}(G)$ for every graph G. Strict inequality may hold. For example, let T_{n} be the tree obtained from the disjoint union $2 K_{1, n+1}$ of two stars cach of order $n+2$ by subdividing every edge cxactly once and then joining the two vertices of degree $n+1$ with an edge. Then T_{n} satisfies $\theta\left(T_{n}\right)=2$ and $\rho_{L}\left(T_{n}\right)=n+2$. Hence for every positive integer n, there exists a tree T_{n} with $\rho_{L}\left(T_{n}\right)-$ $\theta\left(T_{n}\right)=n$.

Closely related to the concept of perfect neighborhood sets are irredundant sets. For a graph $G=(V, E)$, a subset S of vertices of G is defined to be irredundant if every vertex of S is S-perfect or adjacent with an S-perfect vertex. (Recall that S is a perfect neighborhood set of G if every vertex of V is S-perfect or adjacent with an S-perfect vertex.) The irredundance number of G, denoted by $\operatorname{ir}(G)$, is the minimum cardinality
taken over all maximal irredundant sets of vertices of G. We close this section with the following conjecture. ${ }^{3}$

Conjecture 1. For all graphs $G \theta(G) \leqslant i r(G)$.

3. Main result

In this section, we prove:
Theorem 1. For all graphs $G, \Theta(G)=\Gamma(G)$.
For each vertex v in a minimal dominating set D of a graph G, we let $P N(v, D)$, or simply $P N(v)$ if the set D is clear from the context, denote the set of all vertices that are adjacent with v but with no other vertex of D. We begin with the following lemma.

Lemma 1. For any minimal dominating set D of a graph $G=(V, E)$, there exists a perfect neighborhood set of G of cardinality $|D|$.

Proof. Let D be a minimal dominating set of G, and let D_{1} consists of all isolated vertices in the subgraph $\langle D\rangle$ induced by D. Let $D_{2}=D-D_{1}$. For each $v \in D_{2}$, $P N(v, D) \neq \emptyset$. For each $v \in D_{2}$, let $g(v) \in P N(v, D)$ and let $T=\left\{g(v) \mid v \in D_{2}\right\}$. Then $T \subseteq V-D$. Let $S=D_{1} \cup T$. Then $|N[v] \cap S|=1$ for every vertex of D, so all vertices of D are S-perfect. However, since D is a dominating set, every vertex in $V-D$ is therefore adjacent with an S-perfect vertex. Hence S is a perfect neighborhood set of cardinality $|D|$.

An immediate corollary of Lemma 1 now follows.

Corollary 1. For every graph $G, \theta(G) \leqslant \gamma(G)$ and $\Gamma(G) \leqslant \Theta(G)$.
Lemma 2. For every graph $G=(V, E), \Theta(G) \leqslant \Gamma(G)$.
Proof. Let S be a Θ-set of G. We show that G contains a minimal dominating set of cardinality at least $|S|$. Let $S_{1}=\{v \in S \mid v$ has an S-perfect neighbor in $V-S\}$, and let $S_{2}=S-S_{1}$. We show firstly that each vertex v of S_{2} is isolated in $\langle S\rangle$. If this is not the case, then there is a $v \in S_{2}$ that is adjacent with some other vertex of S.

[^1]Thus $|N[v] \cap S| \geqslant 2$, so v is not S-perfect. But since S is a perfect neighborhood set of G, v must then have an S-perfect neighbor in $V-S$ and therefore v belongs to S_{1}, a contradiction. Hence each vertex of S_{2} is isolated in $\langle S\rangle$. Thus each vertex of S_{2} is S-perfect.

Let $T-N(S) \cap(V-S)$, and let $W=V-(S \cup T)$. Since $N[w] \cap S-\emptyset$ for each $w \in W$, we know that no vertex of W is S-perfect. Now let $T_{1}=\{t \in T \mid t$ is an S-perfect neighbor of some vertex in $S\}$. Thus each vertex of T_{1} is S-perfect and is adjacent with a unique vertex of S_{1} and with no vertex of S_{2}. Let $T_{2}=\{t \in T \mid t$ is adjacent with some vertex of $\left.T_{1} \cup S_{2}\right\}$, and let $T_{3}=T-\left(T_{1} \cup T_{2}\right)$.

Each vertex of $T-T_{1}$ is adjacent with at least two vertices of S, so no vertex of $T-T_{1}$ is S-perfect. In particular, no vertex of T_{3} is S-perfect. Thus each vertex of T_{3} must be adjacent with an S-perfect vertex. Since no vertex of T_{3} is adjacent with any vertex of $S_{2} \cup T_{1}$, and since no vertex of $T_{2} \cup W$ is S-perfect, each vertex of T_{3} must have an S-perfect neighbor in S. Among all subsets of S-perfect vertices of S that dominate all the vertices of T_{3}, let S_{1}^{\prime} be one of minimum cardinality. Thus, each vertex of S_{1}^{\prime} uniquely dominates at least one vertex of T_{3}; that is, for each $v \in S_{1}^{\prime}$, there exists a vertex $t \in T_{3}$ such that t is adjacent with v but with no other vertex of S_{1}^{\prime}. Since each vertex of S_{1}^{\prime} is S-perfect, we know that each vertex of S_{1}^{\prime} is isolated in $\langle S\rangle$. Furthermore since no vertex of T_{3} is adjacent with any vertex of S_{2}, we know that $S_{1}^{\prime} \subseteq S_{1}$. Let $S_{1}^{\prime \prime}=S_{1}-S_{1}^{\prime}$.

We show next that $D=S_{1}^{\prime} \cup S_{2} \cup T_{1}$ is a dominating set of G. By definition, each vertex of $S_{1}^{\prime \prime}$ is adjacent with some vertex of T_{1} and each vertex of T_{2} is adjacent with some vertex of $S_{2} \cup T_{1}$, We also know that the set S_{1}^{\prime} dominates T_{3}. Since no vertex of W is S-perfect, each vertex of W must have an S-perfect neighbor from the set T. However, the only S-perfect vertices of T belong to the set T_{1}. Hence D is a dominating set of G. Thus there must exist a subset D^{*} of D that is a minimal dominating set of G.

It remains for us to show that $\left|D^{*}\right| \geqslant|S|$. Since each vertex of S_{2} is isolated in $\langle D\rangle$, $S_{2} \subseteq D^{*}$. For each $v \in S_{1}^{\prime}$, we know there exists a vertex $t \in T_{3}$ such that t is adjacent with v but with no other vertex of D. Thus each vertex of S_{1}^{\prime} uniquely dominates some vertex of T_{3}, so $S_{1}^{\prime} \subseteq D^{*}$. Finally, $\left|D^{*} \cap T_{1}\right| \geqslant\left|S_{1}^{\prime \prime}\right|$ since each vertex of T_{1} is adjacent with at most one vertex of $S_{1}^{\prime \prime}$ while no vertex of $S_{1}^{\prime} \cup S_{2}$ is adjacent with any vertex of $S_{1}^{\prime \prime}$. Hence $\left|D^{*}\right| \geqslant\left|S_{1}^{\prime}\right|+\left|S_{1}^{\prime \prime}\right|+\left|S_{2}\right|=|S|$. Thus D^{*} is a minimal dominating set of G of cardinality at least $|S|$. Consequently, $\Theta(G)=|S| \leqslant\left|D^{*}\right| \leqslant \Gamma(G)$.

Theorem 1 now follows immediately from Corollary 1 and Lemma 2.

References

[1] G. Chartrand, L. Lesniak, Graphs and Digraphs: 3rd ed., Chapman \& Hall, London, 1996.
[2] E.J. Cockayne, S.M. Hedetniemi, S.T. Hedetniemi, C.M. Mynhardt, Irredundant and perfect neighbourhood sets in trees, Discrete Math. 188 (1998) 253-260.
[3] E.J. Cockayne, C.M. Mynhardt, On a conjecture concerning irredundant and perfect neighbourhood sets in graphs, J. Combin. Math. Combin. Comput., to appear.

14] O. Favaron, J. Puesch, Irredundant and perfect neighborhood sets in graphs and claw-free graphs, Preprint.
[5] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
[6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.

[^0]: * Corresponding author. E-mail: henning@math.unp.ac.za.
 ${ }^{1}$ Research supported in part by the National Science Foundation under Grant CCR-9408167
 ${ }^{2}$ Research supported in part by the University of Natal and the South African Foundation for Research Development.

[^1]: ${ }^{3}$ This conjecture has attracted considerable interest since it was announced. In [2], the conjecture is proven true for all trees. In [3], the conjecture is shown to be true if G is claw-free or if G has a maximal irredundant set S of minimum cardinality for which the subgraph induced by S has at most six non-isolated vertices. Recently, Favaron [4] announced at the 16 th British Combinatorial Conference held in London in July 1997 that they have a counterexample to this conjecture. Their construction contains over two million vertices.

