Centralizers of involutory automorphisms of groups of odd order

Pavel Shumyatsky

Department of Mathematics, University of Brasilia, Brasilia, DF 70910-900, Brazil

Received 23 October 2006
Available online 12 March 2007
Communicated by E.I. Khukhro

Abstract

The following theorem is proved. Let G be a finite group of odd order admitting an involutory automorphism ϕ such that $G = [G, \phi]$. Suppose that $C_G(\phi)$ has a nilpotent subgroup of index n. Then the index $[G' : F(G')]$ is bounded by a function depending only on n.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Finite groups; Automorphisms; Centralizers

1. Introduction

Let G be a finite group admitting an automorphism ϕ of order two (such automorphisms are called involutory). It is well known that the structure of $C_G(\phi)$ has strong impact on that of G. One of the best illustrations for this is the well-known elementary result that if $C_G(\phi) = 1$, then G is abelian. A result of Hartley and Meixner says that if $C_G(\phi)$ is of order m, then G possesses a subgroup which is nilpotent of class at most two and has index bounded by a function depending on m only [4]. Now assume that G is a finite group of odd order. By the Feit–Thompson theorem [2] G is soluble. Kovács and Wall showed that if $C_G(\phi)$ is abelian, then G', the derived group of G, is nilpotent [6]. The situation where $C_G(\phi)$ is nilpotent was considered by Ward, who proved in [13] that in this case G coincides with the third term of the upper Fitting series of G. As usual, we denote the Fitting subgroup of G by $F(G)$ and define $F_{i+1}(G)$ inductively by
\(F_0(G) = 1 \) and \(F_{i+1}(G)/F_i(G) = F(G/F_i(G)) \) for \(i = 1, 2, \ldots \). Asar sharpened this by showing that if \(C_G(\phi) \) is nilpotent, then so are both \([G, \phi]'\) and \(G/[G, \phi] \) \([1]\). Recall that \([G, \phi]\) is by definition the subgroup of \(G \) generated by the elements of the form \(x^{-1}x^\phi \), where \(x \in G \). This subgroup is always normal in \(G \). It follows that if \(G = [G, \phi] \) and \(C_G(\phi) \) is nilpotent, then \(C_G(\phi) \leq F(G) \). In \([8]\) we gave another proof of Asar’s result. Some further results on involutory automorphisms of groups of odd order can be found in \([9–11]\). In \([8]\) we also gave an example (due to Hartley) showing that even if \(G = [G, \phi] \), \(F(CG(\phi)) \) need not be contained in \(F(G) \).

Let us recall here the famous result by J.G. Thompson that if \(\psi \) is an automorphism of prime order of a finite group \(G \) such that \((|G|, |\psi|) = 1\), then \(F(CG(\phi)) \leq F_4(G) \) and \(F(CG(\phi)) \leq F_3(G) \) in case \(|G|\) is odd \([12]\).

Despite the fact that in general \(F(CG(\phi)) \not\leq F(G) \), it seems some progress along those lines is possible. In particular, there are some indirect evidences that there exists a constant \(C \) such that if \(G = [G, \phi] \), then

\[
|C_G(\phi) \cap F(G)|^C \geq |F(CG(\phi))|.
\]

The goal of the present paper is to establish the following theorem.

Theorem 1.1. Let \(G \) be a finite group of odd order admitting an involutory automorphism \(\phi \) such that \(G = [G, \phi] \). Suppose that \(C_G(\phi) \) has a nilpotent subgroup of index \(n \). Then the index \([G': F(G')]\) is bounded by a function depending only on \(n \).

It is straightforward from Theorem 1.1 that the index of \(C_G(\phi) \cap F(G) \) in \(F(CG(\phi)) \) is bounded by a function of \(n \).

2. Preliminaries

Throughout the article we use the term “\([a, b, c \ldots]\)-bounded” to mean “bounded from above by some function depending only on the parameters \(a, b, c \ldots \)” If \(H \) is a group with an automorphism \(\phi \), we write

\(H_\phi \) for \(C_H(\phi) \) and \(H_{-\phi} \) for the set \(\{x \in H; x^\phi = x^{-1}\} \).

The first lemma is a collection of well-known facts about involutory automorphisms. In the sequel we will frequently use it without any reference.

Lemma 2.1. Let \(G \) be a finite group of odd order admitting an involutory automorphism \(\phi \). Then we have

1. \(G = G_\phi G_{-\phi} = G_{-\phi} G_\phi \), and the subgroup generated by \(G_{-\phi} \) is exactly \([G, \phi]\).
2. If \(N \) is any \(\phi \)-invariant normal subgroup of \(G \) we have \((G/N)_\phi = G_\phi N/N \), and \((G/N)_{-\phi} = \{gN; g \in G_{-\phi}\} \).
3. The normal closure of \(G_\phi \) contains \(G' \). If \(G_\phi \) is nilpotent of class \(c \), then \([G, \phi]\) contains \(\gamma_{c+1}(G) \).
4. \(G_\phi \) normalizes the set \(G_{-\phi} \).
In fact some of the statements of Lemma 2.1 are well known without assuming that the automorphism has order two. In particular we have the following lemma (see for example [3, 6.2.2, 6.2.4]).

Lemma 2.2. Let A be a group of automorphisms of a finite group G with $(|A|, |G|) = 1$.

1. If N is any A-invariant normal subgroup of G, then $C_{G/N}(A) = C_G(A)N/N$.

The next lemma is due to Hartley [5, Lemma 2.6].

Lemma 2.3. Let A be a group of automorphisms of a finite group G with $(|A|, |G|) = 1$. Let $\{N_i; i \in I\}$ be a family of normal A-invariant subgroups of G and $N = \prod_i N_i$. Then $C_N(A) = \prod_i C_{N_i}(A)$.

In what follows G will always denote a finite group of odd order admitting an involutory automorphism ϕ. The following elementary lemma is very well known so the proof is omitted.

Lemma 2.4. Suppose that $G = [G, \phi]$. Let N be a ϕ-invariant normal subgroup such that either $N \leq G - \phi$ or $N \leq G\phi$. Then $N \leq Z(G)$.

Every element $x \in G$ can be written uniquely as a product $x = x_\phi x_{-\phi}$, where $x_\phi \in G\phi$ and $x_{-\phi} \in G - \phi$. Given a subset $X \subseteq G$, we write X_ϕ and $X_{-\phi}$ for the sets $\{x_\phi; \text{ where } x \in X\}$ and $\{x_{-\phi}; \text{ where } x \in X\}$, respectively.

Lemma 2.5. Let X, Y be two commuting subsets of G and assume that Y is ϕ-invariant. Then both X_ϕ and $X_{-\phi}$ commute with Y.

Proof. Since Y is ϕ-invariant, we conclude that $\langle X, X_\phi \rangle \leq C_G(Y)$. Clearly, $\langle X, X_\phi \rangle = \langle X_\phi, X_{-\phi} \rangle$ so the lemma follows. \qed

Lemma 2.6. Let $x \in G - \phi$ and $a \in G\phi$ and suppose that $[x, a] \in G\phi$. Then $[x, a] = 1$.

Proof. We have $xax^{-1} = (xax^{-1})_\phi$, whence $xax^{-1} = x^{-1}ax$. Since G has odd order, it follows that x commutes with a. \qed

Lemma 2.7. Let m be a positive integer such that $|G\phi| \leq m$. Then

1. G has a normal ϕ-invariant subgroup H such that $H' \leq G\phi$ and the index $[G : H]$ is m-bounded.
2. If $G = [G, \phi]$, then the order of G' is m-bounded.

Proof. Part 1 is Lemma 3.4 in [5]. Let us prove Part 2. We will use induction on m. Let H be as in Part 1. If $H' \neq 1$, by induction the result holds for G/H' and since $|G'| = |G'/H'||H'|$, there is nothing to prove. Suppose that H is abelian and let $M = H \cap G\phi$, $N = (M^G)$. Since both the order of M and the index of $C_G(M)$ in G are m-bounded, we conclude that so is the order of N.

Again considering G/N, in the case that $N \neq 1$ the result follows by induction. Therefore we can assume that $H \cap G_\phi = 1$. It follows that $H \leq G_\phi$ and so, by Lemma 2.4, $H \leq Z(G)$. Thus, the index $[G : Z(G)]$ is m-bounded and the lemma follows from the Schur theorem [7, p. 102].

Given an element $x \in G$ and a subset $L \subseteq G$, we denote by $\rho^\phi_x(L)$ the minimal ϕ-invariant subgroup of G containing $x^{-1}Lx$. Given several elements $x_1, \ldots, x_k \in G$, we define inductively

$$\rho^\phi_{x_1,\ldots,x_k}(L) = \rho^\phi_{x_k}(\rho^\phi_{x_1,\ldots,x_{k-1}}(L)).$$

Subgroups of this type will play an important rôle in the subsequent proofs.

Lemma 2.8. Let L be a ϕ-invariant normal abelian subgroup of G and $x \in G_\phi$. Then $\rho^\phi_x(L - \phi)$ contains $L - \phi$.

Proof. Let us denote $x^{-1}L_\phi x$ by K. It is clear that $\rho^\phi_x(L - \phi) = \langle K - \phi, K_\phi \rangle$. Therefore it is sufficient to prove that $K_\phi = L - \phi$. If $|K_\phi| < |L - \phi|$, then there exist two distinct elements $l_1, l_2 \in L - \phi$ such that $(x^{-1}l_1x)_\phi = (x^{-1}l_2x)_\phi$. But then $x^{-1}l_1l_2^{-1}x \in L_\phi$. So $(x^{-1}l_1l_2^{-1}x)_\phi = x^{-1}l_1l_2^{-1}x$ and we obtain $x(l_1l_2^{-1}x) = x^{-1}l_1l_2^{-1}x$. Thus, $l_1l_2^{-1}$ is conjugate to its inverse. Since G has odd order, we conclude that $l_1 = l_2$. We have shown that the inequality $|K_\phi| < |L_\phi|$ is impossible and so $K_\phi = L - \phi$. □

Lemma 2.9. Let $x \in G_\phi$ and $H \leq G_\phi$. Then $(H^x)_\phi$ has at least as many elements as H.

Proof. Suppose that $|(H^x)_\phi| < |H|$. Then there exist two distinct elements $h_1, h_2 \in H$ such that $(x^{-1}h_1x)_\phi = (x^{-1}h_2x)_\phi$. Write $x^{-1}h_1x = h_0g_1$ and $x^{-1}h_2x = h_0g_2$, where $h_0 = (x^{-1}h_1x)_\phi = (x^{-1}h_2x)_\phi$ and $g_1, g_2 \in G_\phi$. Then $x^{-1}h_2^{-1}h_1x = g_2^{-1}g_1$. We see that $xg_2^{-1}g_1x^{-1} \in G_\phi$ so $(xg_2^{-1}g_1x^{-1})_\phi = xg_2^{-1}g_1x^{-1}$. We obtain $xg_2^{-1}g_1x^{-1} = x^{-1}g_2g_1^{-1}x$ whence it follows that $g_2^{-1}g_1$ is conjugate in G to its inverse. Since G has odd order, $g_1 = g_2$ and $h_1 = h_2$, a contradiction. □

Lemma 2.10. Let L be a ϕ-invariant normal abelian subgroup of G and $x \in G_\phi$. Suppose that $C_L(x) = 1$. Then $\rho^\phi_x(L - \phi) = L$.

Proof. As in Lemma 2.8 let us denote $x^{-1}L_\phi x$ by K. Since $\rho^\phi_x(L - \phi) = \langle K - \phi, K_\phi \rangle$, it is sufficient to prove that $K_\phi = L - \phi$ and $K_\phi = L_\phi$. The equality $K_\phi = L - \phi$ follows from Lemma 2.8 so it remains to show that $K_\phi = L_\phi$.

Suppose that $|K_\phi| < |L_\phi|$. Then either there exist two distinct elements $l_1, l_2 \in L_\phi$ such that $(x^{-1}l_1x)_\phi = (x^{-1}l_2x)_\phi$ or $|L_\phi| < |L_\phi|$. In the former case $x^{-1}l_1l_2^{-1}x \in L_\phi$. So $(x^{-1}l_1l_2^{-1}x)_\phi = (x^{-1}l_1l_2^{-1}x)_\phi$ and we obtain $x(l_1l_2^{-1}x) = x^{-1}l_1l_2^{-1}x$. It follows that x^2 commutes with $l_1l_2^{-1}$. Since G has odd order, so does x. By the hypothesis $C_L(x) = 1$, a contradiction. If $|L_\phi| < |L_\phi|$, then $L_\phi \cap x^{-1}L_\phi x \neq 1$. Choose a non-trivial element $a \in L_\phi \cap x^{-1}L_\phi x$. We have $xax^{-1} \in L_\phi$ and so, by Lemma 2.6, it follows that x commutes with a, a contradiction. □

Lemma 2.11. Let L be a ϕ-invariant subgroup of G and $x \in G_\phi$. Suppose that the order of $\rho^\phi_x(L)$ is the same as that of L. Then x normalizes L.
Proof. We have \(\rho_x^\phi(L) = (x^{-1}Lx, (x^{-1}Lx)^\phi) \). Since this has the same order as \(L \), it follows that \(x^{-1}Lx = (x^{-1}Lx)^\phi \). Taking into account that \(x^\phi = x^{-1} \), we conclude that \(x^2 \) normalizes \(L \). Recall that \(x \) has odd order. It becomes clear that \(x \) normalizes \(L \). \(\square \)

3. The proof of the theorem

We start this section with a technical result that will be crucial in the proof of the theorem.

Lemma 3.1. Suppose that \(G = [G, \phi] \) and \(|C_G(\phi)| \leq m \). Let \(G(\phi) \) act faithfully and irreducibly on an abelian \(p \)-group \(V \), where \(p \) is an odd prime. Then there exist an \(m \)-bounded constant \(k \) and elements \(x_1, \ldots, x_k \in G_{-\phi} \) such that \(V = \rho_{x_1, \ldots, x_k}^\phi(V_{-\phi}) \).

Proof. Because \(G(\phi) \) acts irreducibly on \(V \), it is clear that any element of \(Z(G) \) is fixed-point-free, that is, \(C_V(g) = 1 \) for every \(g \in Z(G) \). Therefore if \(Z(G)_{-\phi} \neq 1 \), the result is immediate from Lemma 2.10. Assume that \(Z(G)_{-\phi} = 1 \). By Lemma 2.7 \(G \) contains a normal \(\phi \)-invariant subgroup \(H \), of \(m \)-bounded index, such that \(H' \leq C_G(\phi) \). Then, by Lemma 2.4, \(H' \leq Z(G) \).

Suppose that there exist non-commuting elements \(x, y \in H_{-\phi} \) and set \(h = [x, y] \). Obviously, \(H \) is a \(p' \)-group. This is because \(H \) acts faithfully on \(V \). Set \(U = [V, x] \) and \(W = [V, y] \). We notice that \(x \) normalizes any subgroup of \(V \) containing \(U \) and, likewise, \(y \) normalizes any subgroup of \(V \) containing \(W \). Furthermore, we observe that \(x \) and \(y \) are fixed-point-free on \(U \) and \(W \), respectively. By Lemma 2.10, we conclude that \(U = \rho_x^\phi(U_{-\phi}) \) and \(W = \rho_y^\phi(W_{-\phi}) \). Since \(x^\phi \) acts trivially on \(V/U^x \), it follows that \(x^\phi \) acts trivially on \(V/\rho_x^\phi(U) \). Also, we know that \(y \) acts trivially on \(V/\rho_y^\phi(V_{-\phi}) \). We remark that in view of Lemma 2.8 \(\rho_x^\phi(V_{-\phi}) \) contains both \(V_{-\phi} \) and \(U \). Hence \(\rho_x^\phi, y(V_{-\phi}) \) contains both \(\rho_y^\phi(V_{-\phi}) \) and \(U^x \). Therefore elements \(x^\phi \) and \(y \) act trivially on \(V/\rho_x^\phi, y(V_{-\phi}) \). It follows that \(h \) also acts trivially on \(V/\rho_x^\phi, y(V_{-\phi}) \). On the other hand, since \(h \) is central, \(h \) is fixed-point-free on \(V \) and, by Lemma 2.2, \(h \) is also fixed-point-free on \(V/\rho_x^\phi, y(V_{-\phi}) \). Thus, \(h \) is both fixed-point-free and trivial on \(V/\rho_x^\phi, y(V_{-\phi}) \). It follows that \(V = \rho_x^\phi, y(V_{-\phi}) \).

We will now assume that any two elements in \(H_{-\phi} \) commute. Then \(H_{-\phi} \) is a \(\phi \)-invariant abelian subgroup of \(m \)-bounded index. Let \(A \) be the intersection of all the conjugates of \(H_{-\phi} \).

Then \(A \) is normal and is contained in \(G_{-\phi} \). By Lemma 2.4 \(A \leq Z(G) \). Since \(Z(G)_{-\phi} = 1 \), it follows that \(A = 1 \) and \(G \) has \(m \)-bounded order, say \(k \). In that case \(V \) has order at most \(p^k \). Set \(V_0 = V_{-\phi} \). If \(V_0 = V \), the lemma is immediate. If \(V_0 \neq V \), by Lemma 2.11, there exists \(x_1 \in G_{-\phi} \) such that the order of \(\rho_x^\phi(V_0) \) is greater than that of \(V_0 \). Set \(V_1 = \rho_x^\phi(V_0) \). Again if \(V_1 \neq V \), by Lemma 2.11, there exists \(x_2 \in G_{-\phi} \) such that the dimension of \(V_2 = \rho_x^\phi(V_1) \) is greater than that of \(V_1 \). Continuing the argument we find a sequence of length at most \(k \) of not necessarily distinct elements \(x_1, \ldots, x_k \in G_{-\phi} \) such that \(V_k = \rho_x^\phi, y(V_{-\phi}) = V \). \(\square \)

In the proof of the theorem we will also require the following result obtained in [8].

Proposition 3.2. Suppose that \(G = [G, \phi] \). Let \(N \) be a normal \(\phi \)-invariant subgroup and suppose that \(N_{-\phi} \) has a normal Sylow \(p \)-subgroup \(P \). Then \(P \leq F(G) \). In particular, if \(N_{-\phi} \) is nilpotent, then \(N_{-\phi} \leq F(G) \).

We are now ready to embark on the proof of our main theorem. We will restate it in the following equivalent form.
Theorem 3.3. Let G be a finite group of odd order admitting an involutory automorphism ϕ such that $G = [G, \phi]$. Denote the index $[G_\phi : F(G_\phi)]$ by n. Then the index $[G' : F(G')]$ is bounded by a function depending only on n.

Proof. Let $C = G_\phi \cap F_2(G)$ and $D = F(G_\phi) \cap F_2(G)$. We will use induction on n. Suppose that N is a nilpotent ϕ-invariant normal subgroup of G such that $C_G(N)$ contains elements of $C - D$ and suppose that the theorem applies to G/N. Consider the natural action of G/ϕ on N. Some elements of $C - D$ lie in the kernel of the action and so in such a situation the induction works. Thus, the induction hypothesis will be that if N is a nilpotent ϕ-invariant normal subgroup of G such that $G'N/N$ has a nilpotent subgroup of n-bounded index and $C_G(N)$ contains elements of $C - D$, then G' has a subgroup G_0 of n-bounded index such that the product NG_0 is nilpotent. In view of Lemma 2.7 this is equivalent to saying that G_ϕ has a subgroup H of n-bounded index such that the product NH is nilpotent.

We know from the Thompson result [12] that the Fitting height $h(G)$ of G is bounded in terms of n alone so we will also use induction on $h(G)$. Let $F = F(G)$. By induction we assume that the theorem applies to G/F. Therefore the image of G' in G/F has a nilpotent subgroup of n-bounded index. It follows that the index $[G_\phi : C]$ is bounded by a function depending only on n while the index $[C : D]$ is, of course, bounded by n. By [3, 6.1.6] we can assume that F is abelian.

Define subgroups T, S, R such that

(i) T is the maximal ϕ-invariant normal subgroup of G with the property that $T_\phi \subseteq D$;
(ii) $T \subseteq S$ and $S/T = Z(G/T)$;
(iii) RS/S is a minimal ϕ-invariant normal subgroup of G/S.

The subgroup T is determined uniquely. By Lemma 2.3 this is exactly the product of all ϕ-invariant normal subgroups N of G such that $N_\phi \subseteq D$. It is clear that $F \subseteq T$. Moreover, by Proposition 3.2, $T_\phi \subseteq F$. Therefore $T/F \subseteq Z(G/F)$.

Let $\gamma_\infty(FD)$ denote the intersection of all terms of the lower central series of the subgroup FD. Since $(FD)_\phi$ is nilpotent, it follows that $\gamma_\infty(FD) \subseteq (FD)_\phi$. As F is abelian, we have $(FD)_\phi = F_\phi$. In particular we deduce that $\gamma_\infty(FD) \subseteq F_\phi$. The inclusion $T/F \subseteq Z(G/F)$ implies that T normalizes $\gamma_\infty(FD)$ and so, by Lemma 2.4, T commutes with $\gamma_\infty(FD)$ because $T_\phi \subseteq F$. Let $M = C_F(T)$ and E/M be the Fitting subgroup of G/M. Since FD/M is nilpotent, it follows that $D \subseteq E$ and so ϕ has only boundedly many fixed points in G/E. Therefore, by Lemma 2.7, the derived group of G/E has bounded order. We conclude that G' contains a subgroup G_1 of bounded index such that G_1/M is nilpotent.

Consider the action of G on M. If $C_G(M)$ contains elements of $C - D$, then by induction on n the derived group G' contains a subgroup G_2 of bounded index such that the product MG_2 is nilpotent. It is clear that $G_1 \cap G_2$ is nilpotent and the theorem follows.

If $C_G(M)$ does not contain elements of $C - D$, then $C_G(M) = T$. Therefore, the quotient $\bar{G} = G/T$ faithfully acts on M. In what follows for any subset X of G we denote by \bar{X} the image of X in \bar{G}. The definition of T ensures that every ϕ-invariant normal subgroup of \bar{G} contains images of some elements of $C - D$. Therefore the non-trivial elements of \bar{S} are contained in $\bar{C} - \bar{D}$. We wish to show that $[\bar{R}, \bar{D}] = 1$. Clearly, $R \leq F_2(G)$. Hence $\bar{R} \leq Z_2(F(\bar{G}))$, the second term of the upper central series of $F(\bar{G})$. If $\bar{S} \neq Z(F(\bar{G}))$, then \bar{R}, being a minimal normal subgroup of \bar{G}/\bar{S}, must be contained in $Z(F(\bar{G}))$, whence $[\bar{R}, \bar{D}] = 1$. Suppose $\bar{S} = Z(F(\bar{G}))$. We observe that $(R/S)_\phi \neq 1$ because otherwise \bar{R} would be contained in $Z(\bar{G})$.

(Lemma 2.4) and we would have $R = S$ whence the result is immediate. On the one hand, we have $[\bar{R}_{-\phi}, \bar{D}] \leq Z(F(\bar{G})) = \bar{S}$. On the other hand, by Lemma 2.6, the inclusion $[\bar{R}_{-\phi}, \bar{D}] \leq \bar{G}_{\phi}$ implies $[\bar{R}_{-\phi}, \bar{D}] = 1$. Furthermore, $[\bar{R}_{\phi}, \bar{D}]$ is contained in \bar{D} because \bar{D} is normal in \bar{G}_{ϕ} and, on the other hand, $[\bar{R}_{\phi}, \bar{D}] \leq Z(F(\bar{G})) = \bar{S}$. Since $\bar{S} \cap \bar{D} = 1$, we conclude that $[\bar{R}_{\phi}, \bar{D}] = 1$. Combining this with the earlier established $[\bar{R}_{-\phi}, \bar{D}] = 1$, it follows that $[\bar{R}, \bar{D}] = 1$. So if Q is the quotient RS/S, the automorphism ϕ has only boundedly many fixed points in the group $G/C_G(Q)$ acting on Q. Now we are in a position to use Lemma 3.1. It tells us that there exist boundedly many elements $x_1, \ldots, x_k \in G_{-\phi}$ such that

$$\bar{R} \leq \rho_{x_1, \ldots, x_k}^\phi (\bar{R}_{-\phi}) \bar{S}.$$

Put $\bar{U} = \rho_{x_1, \ldots, x_k}^\phi (\bar{R}_{-\phi})$. Suppose first that $\bar{R} = \bar{U}$.

Let P be a Sylow p-subgroup of D. The group $\bar{R}_{-\phi}$ normalizes $M\bar{P}$ because $[\bar{R}_{-\phi}, \bar{D}] = 1$ and, consequently, it normalizes $K = \gamma_\infty(M\bar{P})$. Clearly, K is a p'-group and so, by Lemma 2.2, $K = [O_{p'}(M), P]$. Since $D \leq F(G_{\phi})$, it follows that $[K_{\phi}, P] = 1$ and so $K = K_{-\phi}$. By Lemma 2.4 we conclude that $\bar{R}_{-\phi}$ centralizes K. Hence $(\bar{R}_{-\phi})^{x_1}$ centralizes K_{x_1} while since \bar{P} normalizes $M(\bar{R}_{-\phi})^{x_1}$ and because $[K_{x_1}, P] \leq M_{-\phi}$, it follows that $[K_{x_1}, P]$ centralizes both $\bar{R}_{-\phi}$ and $(\bar{R}_{-\phi})^{x_1}$. Taking into account that $[K_{x_1}, P]$ is ϕ-invariant (because $[K_{x_1}, P] \leq M_{-\phi}$), by Lemma 2.5 we deduce that $[K_{x_1}, P]$ centralizes

$$\bar{R}_1 = [(\bar{R}_{-\phi})^{x_1}, (\bar{R}_{-\phi})^{x_1} \phi \rho_{x_1}^\phi (\bar{R}_{-\phi})].$$

Further, $[K_{x_1}, P]^{x_2}$ centralizes $\bar{R}_1^{x_2}$. As above, because $[[K_{x_1}, P]^{x_2}, P]$ is ϕ-invariant, by Lemma 2.5 we deduce that $[[K_{x_1}, P]^{x_2}, P]$ centralizes

$$\bar{R}_2 = [\bar{R}_1^{x_2}, \bar{R}_1^{x_2} \phi] = \rho_{x_1, x_2}^\phi (\bar{R}_{-\phi}).$$

Eventually we obtain that

$$[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P]$$

centralizes $\bar{R} = \rho_{x_1, \ldots, x_k}^\phi (\bar{R}_{-\phi})$. Suppose that

$$[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P] = 1.$$

Then $[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P], P^{x_1-1}] = 1$. Let $P_1 = (P^{x_1-1})_\phi \cap P$. Since $[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P] \leq M_{-\phi}$, it follows that the centralizer of $[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]$ is ϕ-invariant and by Lemma 2.5 we deduce that $[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P], P_1] = 1$. Clearly, also $[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k-1}, P_1, P_1] = 1$. (We just replaced the last P by its subgroup P_1.) Since K is a p'-group, it follows from Lemma 2.2 that

$$[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k-1}, P_1] = 1.$$

Now we obtain

$$[[[K_{x_1}, P]^{x_2}, P]^{x_3}, \ldots]^{x_{k-2}}, P], P_1^{x_{k-1}}] = 1.$$
Put \(P_2 = \langle (x_{k-1} P_1 x_{k-1}^{-1}) \phi \rangle \cap P_1 \). We deduce that

\[
[\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots]^{x_{k-2}}, P_2] = 1.
\]

We can define inductively \(P_{i+1} = \langle (x_{k-i} P_i x_{k-i}^{-1}) \phi \rangle \cap P_i \) and show that

\[
[\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_{k-i}}, P_i] = 1
\]

for \(i = 1, \ldots, k \). In the end we obtain \([K, P_k] = 1\). From this we derive that \([O_{p'}(F), P_k] = 1\) and consequently \(P_k \triangleleft F(G)\). Suppose \(P \) has index \(j \) in the Sylow \(p \)-subgroup of \(C \). By Lemma 2.9 the index of \((P^{x_k}) \phi \) is at most \(j \), too. Therefore the index of \(P_1 \) is at most \(j^2 \). Further, the index of \(P_2 \) is at most \(j^k \). Continuing this argument we conclude that the index of \(P_k \) is at most \(j^{2^k} \).

Thus, the Sylow \(p \)-subgroup of \(FC/F \) has order at most \(j^{2^k} \). Moreover, by Proposition 3.2, any prime divisor of \(|FC/F| \) is a divisor of \(n \). Hence the order of \(FC/F \) is \(n \)-bounded. Taking into account that the index \([G_\phi : C] \) is likewise \(n \)-bounded, it follows that \([G_\phi F/F] \) is \(n \)-bounded and the theorem is now immediate from Lemma 2.7. We have just proved the theorem under the additional assumption that \([\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P] = 1\). In general we have

\[
[\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P \subseteq M_1 = C_F(\bar{R}).
\]

Thus, there exists a subgroup \(D_1 \) of \(n \)-bounded index in \(D \) such that \(FD_1/M_1 \) is nilpotent. Consider the action of \(G(\phi) \) on \(M_1 \). Since \(R \) contains elements of \(C - D \), it follows that some elements of \(C - D \) lie in the kernel of the action. So by induction on \(n \) there is a subgroup \(D_2 \) of bounded index in \(D \) such that \([M_1, D_1] \) is nilpotent. Put \(D_0 = D_1 \cap D_2 \). Obviously \(FD_0 \) is a subnormal nilpotent subgroup so \(D_0 \triangleleft F \). Thus, in the case that \(\bar{R} = \bar{U} \) the theorem follows.

We will now assume that \(\bar{R} \neq \bar{U} \). Then \(\bar{U} \) is not normal in \(\bar{G} \). By Lemma 2.11 there exists \(y \in G_\phi \) such that \(\rho_{\bar{R}}^\phi(\bar{U}) \) has order greater than \(|\bar{U}| \). Since \(\bar{R} = \bar{U}_\phi \), it follows that \([\bar{G}_\phi \cap \rho_{\bar{U}}^\phi(\bar{U})] > |\bar{U}_\phi| \). Taking into account that \(\bar{R}_\phi \leq \bar{U}_\phi \bar{S} \) we conclude that either \(\bar{U}_\phi \) or \(\rho_{\bar{U}}^\phi(\bar{U}) \) contains a non-trivial element \(\tilde{s} \in \bar{S} \). Keeping notation introduced in the previous paragraph, we obtain that \(\tilde{s} \) commutes with

\[
[\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P \].
\]

Now put \(M_2 = C_F(\tilde{s}) \). Since \(\tilde{s} \in Z(\bar{G}) \), the subgroup \(M_2 \) is normal in \(G \). We will exploit the fact that \(M_2 \) contains

\[
[\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P \].
\]

If \([\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P \] = 1, the theorem can be proved precisely as we did in the previous paragraph when we had

\[
[\ldots[[K^{x_1}, P]^{x_2}, P]^{x_3}, \ldots, P]^{x_k}, P \] = 1.
\]

Thus, there exists a subgroup \(G_3 \) of bounded index in \(G' \) such that \(G_3 M_2/M_2 \) is nilpotent. Further, since \(\tilde{s} \) acts on \(M_2 \) trivially, the induction on \(n \) allows us to assume that \(G' \) contains a subgroup \(G_4 \) of bounded index such that the product \(M_2 G_4 \) is nilpotent. The subgroup \(G_3 \cap G_4 \) is nilpotent and has \(n \)-bounded index in \(G' \). The proof is now complete. \(\square \)
References