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Abstract 

Forged Ti6Al4V alloy in two different microstructures was used for investigations on fatigue behaviour with special focus on 

crack initiation and short crack propagation characteristics. Both microstructures are in the bi-modal condition containing 

different amounts and sizes of primary alpha grains. Interrupted fatigue experiments were carried out using a servohydraulic test

facility. Different stress levels were imposed at a constant R ratio of -1 and a frequency of 20Hz with a sinusoidal command 

signal. SEM together with the EBSD technique was applied for the crack observation as well as for the determination of local 

crystallographic orientation data with the objective of linking initiation sites and crack paths to microstructural features. It was 

found that most of the cracks initiate on boundaries between two lamellae in favourably oriented colonies. These cracks 

propagate on prismatic glide planes with high Schmid factors until they reach another boundary. In some cases crack splitting 

was observed leading to crack propagation in different directions on different slip planes resulting in a reduction of crack growth

rate. The crack paths can be attributed either to prismatic slip planes or the basal slip plane, whereas basal slip was found inside

the lamellae or in primary alpha grains. Crack deflection at boundaries is also a common feature, and is probably related to high

tilt and twist angles between the grains involved. 

Keywords: crack initiation; crack propagation; titanium alloys; fatigue; EBSD 

1. Introduction 

Titanium and its alloys possess many beneficial characteristics including excellent mechanical properties, 

unrivalled corrosion resistance and outstanding biocompatibility [1]. This is why their usage is found in many 

different fields varying from industrial and automotive to medical and consumer applications. Nevertheless, the 

most important applications are still found within the aerospace industry, where airframes and aero engine 

components are made of titanium alloys [2]. These employments are mainly driven by the superior structural 

efficiency of these alloys caused by their high strength together with low density. The new Boeing 787 Dreamliner 

* Corresponding author. Tel.: +49-271-740-3422; fax: +49-271-740-2545. 

E-mail address: helge.knobbe@uni-siegen.de. 

c© 2010 Published by Elsevier Ltd.

Procedia Engineering 2 (2010) 931–940

www.elsevier.com/locate/procedia

1877-7058 c© 2010 Published by Elsevier Ltd.
doi:10.1016/j.proeng.2010.03.101

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82234844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.proeng.2010.03.101
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 H. Knobbe et al./ Procedia Engineering 00 (2010) 000–000 

will contain 15% (by weight) of titanium due to the better corrosion compatibility of titanium with carbon 

composites (in relation to aluminum or steel), which are nowadays commonly used in modern airplane construction. 

But also a selection of high strength titanium forgings in the internal structure will be found in the plane [3].  

A proper fatigue assessment is of course a crucial requirement for all structural components in flight service, 

since fatigue loading conditions always occur in these assemblies. Many approaches only consider the propagation 

of long cracks (damage tolerant approach) and thus make use of phenomenological equations such as Paris Law in 

classical linear elastic fracture mechanics [4]. As an alternative, total life approaches are used with S-N curves as 

basis for a fatigue life prediction according to Basquin/Coffin/Manson [5–7]. These methods do generally not 

distinguish between crack initiation, short crack propagation and long crack propagation, which might be important 

in some cases. Another option, which is linked to physical properties of the material, is a microstructural-based short 

fatigue crack propagation model for lifetime prediction [8]. Since the loads arising in components associated with 

the internal structure are usually in the area of high cycle fatigue, up to 99% of the total lifetime can be spent with 

crack initiation and the propagation of short fatigue cracks [9]. Thus, modeling short crack propagation in virtual 

microstructures promises a flexible and reliable approach for lifetime calculations. This paper concentrates on the 

experimental investigations which are necessary in order to establish and verify the model described in [10]. Mainly 

two kinds of experiments were conducted; (i) constant load fatigue experiments for collecting SN-data and (ii) 

interrupted constant load fatigue experiments in order to gain knowledge on crack initiation and short crack 

propagation linked with local microstructural features.  

2. Material and Experimental 

2.1. Material

The Ti6Al4V alloy under investigation was delivered by Böhler Schmiedetechnik, where round bar stocks were 

forged into “v-shaped” pieces from which all specimens were machined. Two different heat treatments were applied 

after the forging process, (i) mill-annealing (MA) and (ii) solution heat treatment (SHT).  

The most important chemical elements of the composition are given in Tab. 1. The analysis was done using spark 

emission spectroscopy. The figures represent mean values from three measurements and are within normal scatter. 

Some Fe content was found probably resulting from impurities of the alloying elements or from the process routine. 

Table 1. Chemical composition in wt.% 

Element Al V Fe Ti

wt. % 6.5 3.52 0.133 bal. 

Micrographs using a scanning electron microscope with backscattered electron detector giving a channeling grain 

contrast of the resulting microstructures are shown in Fig. 1. A typical bi-modal microstructure was obtained in both 

conditions, thus no distinctive differences are present. The microstructures consist of primary alpha grains (αp-

grains) and colonies of secondary alpha lamellae (αs-lamellae). A little content of remaining β-phase (app. 5–8%) 

can be found between the lamellae or at triple points.  

The primary alpha grains of the SHT microstructure are fully recrystallized due to the applied dwell time at a 

high temperature near the forging temperature, while the MA condition was cooled directly after forging, so some 

grains are only partially recrystallized. This can be deduced from orientation measurement data exhibiting large 

misorientation variations in single primary alpha grains along with sub grain boundaries (see section 3 for a detailed 

description).  

The final heat treatment step was the same for both microstructures consisting of a plain stress relieving 

annealing above the Ti3Al solvus temperature. The phase fractions are slightly different (αp: 71% MA, 61% SHT), 

and the mean grain sizes are in the same magnitude (αp: 10µm MA, 9µm SHT; αs: 7µm MA, 9µm SHT). It should 

be mentioned that no subgrains were accounted for in the MA condition and that the αs size refers to the colonies, 
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         (a)           (b) 

Fig. 1. Microstructure of (a) MA condition and (b) SHT condition. 

meaning lamellae of the same orientation. Of course the mean lamella thickness is much smaller in case of the MA 

condition.  

2.2. Experimental 

All specimens except of the micro-sections were electro-chemically polished in a solution of perchloric acid and 

methanol prior to testing to meet the requirements for electron backscattered diffraction (EBSD) experiments. The 

surface should be as smooth as possible without any residual stresses from machining. This requirement can be 

perfectly met by grinding and vibration polishing (which was done in case of flat specimens for micro-sections), but 

is impossible for cylindrical specimens, where electrolytic polishing is the only possibility available. It should be 

pointed out that a slight surface roughness results from different metal removal rates of the different phases. The 

topography, measured by atomic force microscopy (AFM), was about 400nm from peak to valley.  

Fatigue experiments were carried out in symmetrical push-pull with a servohydraulic MTS 810 test system under 

load control at a frequency of 20 Hz. All experiments were stopped by specimen failure or at 6×106 cycles. The 

samples which survived this number of cycles are referred to as run-out specimens. Cylindrical specimens with a 

milled shallow notch in the gauge length were used for the crack initiation and short crack growth investigations in 

order to limit the area to be observed. Some tests were interrupted after certain numbers of cycles to enable studying 

several cracks in the scanning electron microscope (SEM) together with EBSD. A Philips XL30 microscope 

equipped with automated orientation imaging microscopy (OIMTM) was employed for all analytical research work.  

3. Results and Discussion 

3.1. EBSD measurements 

Prior to the description of the results, it seems adequate to compare both microstructures by EBSD measurements 

to illustrate the differences and peculiarities. Fig. 2 shows EBSD data from MA condition (Fig. 2a) and SHT 

condition (Fig. 2b) in terms of inverse pole figures overlaid with pattern quality. Every color represents an 

orientation according to the legend in Fig. 2c, whereas the overlaid grayscale is a measure for the quality of each 

diffraction pattern; the darker the grayscale the poorer the quality. The pattern quality depends on specimen 

preparation and condition as well as on microstructural features such as phase and grain boundaries. It usually gets 

worse near boundaries because patterns begin to overlap and this reduces the quality. An advantage of this fact is 

that this quantity can be used to distinguish between single lamellae in one colony, where the orientation is the 

same. A comparison of Fig. 2a with Fig. 2b demonstrates the difference in lamella size.  
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(a) (b) (c)

Fig. 2. Inverse pole figure with pattern quality overlay of (a) MA condition; (b) SHT condition; (c) legend of color code. 

Furthermore, the presence of elastic and plastic strains (or in other words high dislocation densities) also has a 

great influence on the pattern quality leading to ambiguous and blurred patterns [11]. This can be seen in some αp

grains of the MA condition, where the color is overlaid with a shady grayscale. This feature is not observed in the 

SHT condition. Another difference showing the same phenomenon can be observed when considering the color 

gradients in some αp grains. These variations in orientation represent the residual strains and crystal rotations; again 

this is not present in the SHT condition.  
A deeper analysis of the misorientation variation is given by Fig. 3 where an evaluation was done for a single 

grain. Fig. 3a shows the pattern quality clearly revealing some areas with very poor quality presumably linked with 

sub-grain boundaries and high dislocation densities. 

This conclusion is confirmed by Fig. 3b where the inverse pole figure of the grain is plotted showing a color 

gradient over a broad range of orientations. Very recently these lattice curvatures have been used to determine the 

geometrically necessary dislocations (GND) and even distinguish between different types of GND, see [11].  

(a) (b) 

(c) (d) 

Fig. 3. Detailed EBSD measurements on one grain: (a) pattern quality and (b) inverse pole figure showing sub-grain boundaries; (c) local 

misorientation plot along the colored line in (b); (d) local misorientation.   
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Table 2. Tensile behavior of the two heat treatment conditions 

Condition Young’s Modulus 

[GPa] 

Yield Strength (0.01%) 

[MPa] 

Yield Strength (0.2%)  

[MPa] 

UTS

[MPa] 

Elongation 

[%] 

MA 116 790 948 987 12

SHT 117 781 878 942 11

The linear misorientation along the colored line shown in Fig. 3b is presented in Fig. 3c. Two different charts are 

shown. The more or less horizontal line (open circles) is the point to point misorientation, whereas the open quads 

represent the point to origin misorientation. It is obvious that a continuous change in orientation is present, no peaks 

are observed in both plots. The point to origin chart indicates a misorientation as high as 30° in maximum. Fig. 3d 

shows the orientation deviation with respect to a reference orientation, which is the calculated mean orientation of 

the grain, giving maximum deviations of 22°. This maximum is found in the turquoise region; see Fig. 3b. 

Obviously, this is an example of a heavily deformed αp grain. It even might contain a rather large sub grain, marked 

by the red/orange area in Fig 3d, together with some smaller sub grains in the lower left area of the grain.  

3.2. Tensile Test 

In order to compare the two microstructures, uniaxial tensile tests were conducted. The mean values of three 

different tests are summarized in Tab. 2. It is obvious that the differences are not very pronounced since the 

microstructural morphology (primary globular and secondary lamellar alpha grains) was not changed. Young’s 

modulus and elongation at fracture are the same, but the elastic limit (at least for 0.2% plastic strain) together with 

the ultimate tensile strength (UTS) is perceptibly increased in case of the MA microstructure (+7% Yield Strength; 

+5% UTS). This increase can be attributed to the smaller lamella size resulting in a higher grain/phase boundary 

density. According to Hall [12] and Petch [13] grain or phase boundaries cause dislocation pile-ups during plastic 

deformation. A higher strength can thus be the result of a finer microstructure according to the Hall-Petch relation. 

Another aspect is probably the remaining elastic and plastic strain from the forging process. A high dislocation 

density as it is apparent in unrecrystallized αp-grains is supposed to strengthen the material.  

3.3.  Fatigue Behavior 

The fatigue behavior was characterized by constant-stress amplitude experiments in order to obtain SN-curves. 

The corresponding data for both microstructures is plotted in Fig. 4 in which the open quads and the open circles 

represent the MA condition and the SHT condition, respectively. The arrows indicate run-out specimens which 

survived 6×106 cycles without failure.  

Two regions can be distinguished. In the stress amplitude region between 700 and 600 MPa almost no difference 

is evident for the two microstructures because the circles and the quads lie in the same scatter band. As the classical 

fatigue limit is approached some differences appear: (i) the fatigue limit of the MA condition is higher than the one 

of the SHT condition (the increase is about 50 MPa (500 MPa for MA; 450 MPa for SHT)) and (ii) the scatter of the 

cycles to failure for the MA condition is much more pronounced, reaching almost over two decades in terms of load 

cycles (5×104 – 5×106 cycles), whereas for the SHT condition a precise distinction can be observed. Either the 

specimens fail in the range of 105 cycles or survive 6×106 cycles. Two important conclusions can be drawn from the 

observed behavior. Apparently, both microstructures behave very similar at higher stress levels, where the resistance 

against crack propagation is the determining factor for fatigue life. Once a crack has overcome the critical length for 

further growth the propagation rates are more or less equal for both microstructures. However, if the resistance 

against crack initiation or short crack propagation is the determining factor for fatigue life, which is typically the 

case for high cycle fatigue loading conditions, the MA microstructure yields higher values. 

Similar results are summarized in [14]. As long as a crack is microstructurally short its behavior is highly 

influenced by local microstructural features such as grain, sub grain or phase boundaries, grain orientation, residual 

stresses and dislocation structures [15,16]. The SHT microstructure has no residual stresses or high dislocation 

densities, also no sub-grain boundaries can be found. But in addition the lamellar grains are relatively coarse raising 
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    Fig. 4. SN-data for the two different microstructures. 

the mean slip length. These factors reduce the crack initiation resistance. The MA condition contains finer lamellae 

and high dislocation densities in some primary alpha grains together with sub-grain boundaries impeding the 

capability of dislocations to move and thus crack initiation or short crack propagation are retarded. The gain in 

fatigue limit can be explained in terms of the Hall-Petch equation which also holds true in case of fatigue strength 

and is in good agreement with the tensile behavior. The remarkable scatter regarding the fatigue limit may be 

explained by the heterogeneity of the MA microstructure. It is obvious that residual stresses can impede or enhance 

crack initiation or short crack propagation, depending on grain orientation and internal stress distribution. 

3.4.  Crack Initiation / Short Crack Propagation    

In order to characterize the initiation and the propagation of short fatigue cracks, the experiments were 

interrupted after defined numbers of load cycles for investigations in the SEM before the fatigue experiment was 

continued. This procedure was followed for both microstructures. Mainly two initiation mechanisms were found: (i) 

crack initiation in αp grains or (ii) crack initiation in between two lamellae in αs colonies. The latter one can be 

observed more often in both cases.  

Fig. 5 shows an example of a crack initiated in a primary alpha grain after 5×103 cycles (Fig. 5a) and 104 cycles 

(Fig. 5b) in the MA microstructure. Fig. 6c contains the inverse pole figure of the area overlaid with the pattern 

(a) (b) (c)

Fig. 5. Fatigue crack in an αp grain in the MA microstructure after (a) 5×103 cycles and (b) 1×104 cycles; (c) shows the inverse pole figure of the 

area.
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ed slip traces at the surface. Both slip planes exhibit 

rel

em to another if necessary when crossing a grain boundary, depending on the respective 

ori

rface in the vicinity of the supposed crack origin can be seen and serve as evidence for cracked α -grains 

[1

Fig. 6. 3D analysis of the slip planes activated in the primary alpha grains. 

quality, again showing the internal structure together with some very small sub-grains especially in the upper part. 

The load axis is horizontal. In the upper part the crack follows the grain boundary (a) and propagates later on with a 

zigzag-like behavior (b) through the small sub-grains. In this segment it is difficult to assign single activated slip 

systems to the crack path. Since the propagation direction is almost rectangular to the load axis it is supposed that 

normal stresses are mainly responsible for the crack propagation characteristics. Nevertheless, the main part of the 

crack path in the middle of the micrographs is oriented approximately at an angle of 45° to the load axis. This leads 

to the assumption that the maximum shear stress is the crack driving force. An analysis of the EBSD data reveals 

that the crack path is almost parallel either to the basal plane (red lines in Fig. 6b, or one of the possible prismatic 

planes (blue lines in Fig. 5b. The lines represent the calculat

atively high Schmid factors of 0.43 and 0.46, respectively. 

Obviously, the grain boundary between the purple and the orange grain (see Fig. 5c) has easily been crossed. 

More detailed information provides a 3-dimensional analysis of the slip planes presented in Fig. 6. The simplified 

crack path is marked by the black line in the inverse pole figure. For the two grains where it was possible to assign 

slip systems the 3D orientation of the slip planes is given in the left part of the figure. The tilt angle and in particular 

the twist angle, which is the governing factor for the effectiveness of a grain boundary as obstacle against 

dislocation movement or crack propagation [17] are quite small. It follows from the above that cracks can easily 

change from one slip syst

entation of the grains.  
Several other authors also reported crack initiation in primary alpha grains [18–21]. Usually, flat facets on the 

fracture su p

8,19].  
 The other initiation site found is between the αs lamellae. This is also confirmed in [20]. An example of a crack 

found in the MA condition is presented in Fig. 7. This crack has grown along the boundary between two lamellae; 

(a) (b) (c)

Fig. 7. Fatigue crack in an αs grain in the MA microstructure after (a) 5×103 cycles and (b) 1×104 cycles; (c) shows the detail of the upper crack 

after 1×104 cycles. 
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the crack 

co

 effective as a barrier to the fatigue damage. This is in good 

ag

e 

ho

Fig. 8. 3D analysis of the slip planes activated in the lamella grains. 

see part (a), which displays the crack after 5×103 cycles. A description of the slip systems analogous to the above is 

integrated in Fig. 7b showing the crack after 104 cycles. A detailed micrograph of the upper crack tip after 104 load 

cycles is given in Fig. 7c. Apparently, the crack initiated and grew on a prismatic slip system with a very high 

Schmid factor of 0.49. While crossing the boundary in the upper part, the crack begins to grow into the lamellae and 

several branches almost rectangular to the primary crack path have developed. A comparison with the calculated slip 

markings reveals that directly after growing into the lamellae a prismatic slip plane with a relatively low Schmid 

factor was used (0.29). Even more surprising is the development of some branches on the basal plane (red line in 

Fig. 7b). This plane exhibits a very low Schmid factor of 0.16. But as the crack further proceeds, it is more and more 

deflected in a direction of a prismatic plane with a much higher Schmid factor (0.48). The crack path shown in Fig. 

7c suggests that probably more than just one slip system is activated. The rather small crack growth rate which can 

be derived when comparing the total crack length of part (a) with part (b) leads to the assumption that 

nsumes a lot of energy in this stage of growth, as it would be needed for the activation of multiple slip.  

Another explanation why the crack propagates rather slowly can be derived from the 3D analysis of the slip 

planes as it is shown in Fig. 8. The twist angle is substantially large and also the slip directions are quite different 

from each other. This boundary seems to be fairly

reement with the slow propagation rate observed. 

The crack initiation and propagation mechanisms are in principle the same in case of the SHT condition. Cracks 

initiate either in primary alpha grains on basal planes or in secondary alpha lamellae colonies, preferably between 

two lamellae on mostly prismatic slip planes. Two typical examples of cracks initiated according to these 

mechanisms shows Fig. 9. As can be seen in Fig. 9a a crack has formed in αp grain under a 45° angle to th

rizontal load axis on the basal planes. But cracks also grow into the lamellae as Fig. 9b shows in the upper part.  

         (a)          (b) 

         Fig. 9. Crack initiation sites in the SHT condition. 
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to these planes. This may explain the crack deflection in Fig. 7c to basal planes 

although the Schmid factor is low.  

4. Conclusions 

alysis of fatigue crack initiation and 

ile strength and fatigue limit. This 

ably due to the inhomogeneity 

acks grow on pyramidal 

• In many cases it is possible to correlate the crack path with slip systems exhibiting high Schmid factors.  

Acknowledgements 

o Böhler Schmiedetechnik GmbH & Co KG for financial 

supporting the project and supplying the material.  

References 

2006;7:881–7. 

esses 2005.

ing ASTM 1919;10:625–34. 

r P, Krupp U, Fritzen CP, Christ HJ. Modelling of short crack propagation – transition from stage I to stage II. 

En
ato Y, Mori K. Fatigue behavior of beta Ti-22V-4Al alloy subjected to surface-microstructural

mo

, Knobbe H, Fritzen CP, Christ HJ, Riedler M. Simulation of Stage I-Short Crack Propagation in Forged Ti6Al4V. Proc Eng 
201

. Electron backscatter diffraction study of dislocation content of a macrozone in hot-

rol

ormation. Proc Phys Soc Lond B 1951;64:747–53. 

, Edwards L. On the blocking effect of grain boundaries on small crystallographic fatigue crack growth. Mater Sci Eng A 
199

As the critical shear stresses for basal and prismatic slip do not differ too much [19], an activation of both 

systems is very likely to happen. Moreover, the addition of alloying elements like aluminum or interstitial oxygen 

leads to a reduction of the stacking fault energy on the basal planes [21]. Thus, dislocations can dissociate and their 

movement is increasingly restricted 

Some important conclusions can be drawn from the results presented in this paper. Two microstructural 

conditions of Ti6Al4V alloy were investigated, mill annealed and solution heat treated. Both are of bi-modal nature, 

but having different lamella sizes. Moreover, the mill annealed condition is only partially recrystallized, thus 

containing a high dislocation density. The mechanical tests and a detailed an

microstructural short crack propagation revealed the following main results: 

• The MA condition has a superior mechanical behavior regarding ultimate tens

is because of the finer microstructure according to the Hall-Petch relationship. 

• The scatter in the region of the fatigue limit is increased for the MA condition prob

of the microstructure resulting from elastic and plastic strains or residual stresses. 

• The dominating crack initiation mechanisms are the same for both microstructures. Cr

and on basal planes either between two lamellae in a colony or in primary alpha grains.  

• Cracks in lamellar regions are more likely to appear than those initiated in primary alpha grains. 

The authors would like to express their gratitude t

[1] Jackson M, Dring K. A review of advances in processing and metallurgy of titanium alloys. Mat Sci Tech
[2] Boyer RR. An overview on the use of titanium in aerospace industry. Mat Sci Eng A 1996;213:103–14. 

[3] Boyer RR, Briggs RD. Presentation - The Boeing 7E7: an update. Proc 16th Conf on advanced aerospace materials and proc
[4] Paris PC, Gomez MP, Anderson WE. A rational analytic theory of fatigue. Trend Eng 1961;13:9–14. 

[5] Basquin OH. The exponential law of endurance tests. Proc Annual Meet
[6] Coffin LF. Fatigue at high temperatures. ASTM STP520 1973;744-782. 

[7] Manson SS. Fatigue: A complex subject-some simple approximations. J Exp Mech 1965;5:193–226. 

[8] Künkler B, Düber O, Köste

g Frac Mech 2008;75:715–25. 

[9] Tokaji K, Takafiji S, Ohya K, K

dification. J Mat Sci 2003;38:1153–59. 

[10] Köster P

0; this issue. 

[11] Britton TB, Birosca S, Preuss M, Wilkinson AJ

led Ti–6Al–4V alloy. Scripta Mater 2010;62:639–42. 

[12] Hall EO. The deformation and aging of mild steel: II. characteristica of the Lüders def

[13] Petch NJ. The cleavage strength of polycrystals. Iron Steel Inst B 1953;174:25–32. 

[14] Chan KS. Changes in fatigue life mechanism due to soft grains and hard particles. Int J Fat 2010;32:526–34. 

[15] Zhang YH

4;188:121–31. 

H. Knobbe et al. / Procedia Engineering 2 (2010) 931–940 939



10 H. Knobbe et al./ Procedia Engineering 00 (2010) 000–000 

:308–17. 

08;56:3951–62. 

[21] Zaefferer S. A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with

deformation texture. Mat Sci Eng A 2003;344:20–30. 

[16] Zhai T, Wilkinson AJ, Martin JW. A crystallographic mechanism for fatigue crack propagation through grain boundaries. Acta Mater 
2000;48:4917–25. 

[17] Zhang ZF, Wang ZG. Fatigue-cracking characteristics of a copper bicrystal when slip bands transfer through the grain boundary. Mater 
Sci Eng A 2003;343

[18] Golden PJ, John R, Porter III WJ. Variability in room temperature fatigue life of alpha + beta processed Ti-6Al-4V. Int J Fatigue 
2009;31:1764–70. 

[19] Bridier F, Villechaise P, Mendez J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic 

texture on different scales. Acta Mater 20

[20] Oberwinkler B, Riedler M, Eichlseder, W. Importance of local microstructure for damage tolerant light weight design of Ti-6Al-4V 

forgings. Int J Fatigue 2010;32:808–14. 

940 H. Knobbe et al. / Procedia Engineering 2 (2010) 931–940


