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A b s t r a c t - - T h i s  paper is concerned with the existence of positive solutions to the class of nonlocal 
boundary value problems of the type 

- M ( /  [Vu[2dxlAu=f(x,u), inf2, u = 0 ,  on0f t ,  

where ft is a smooth bounded domain of N: N, M is a positive function, and f has subcritical growth. 
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1. I N T R O D U C T I O N  

In this paper, we consider the existence of positive solutions to the class of boundary value 
problems of the type 
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where f~ C ]R N is a bounded smooth domain, f : ~ x R --+ R and M : R ~ R are continuous 
funetions. 

This problem is related to the stationary analogue of the Kirchhoff equation, 

where M(s)  = as + b, a, b > 0. It was proposed by Kirchhoff [1] as an extension of the classical 
D'Alembert 's  wave equation for free vibrations of elastic strings. The Kirchhoff's model takes 
into account the length changes of the string produced by transverse vibrations. The early 
classical studies dedicated to Kirchhoff equations were given by Bernstein [2] and Pohozaev [3]. 
However, equation (2) received much attention only after the paper by Lions [4], where an abstract 
framework to the problem was proposed. Some interesting results can be found, for example, 
in [5-7]. 

On the other hand, nonlocal boundary value problems like problem (1) model several physical 
and biological systems where u describes a process which depend on the average of itself, as for 
example, the population density. We refer the reader to [8-12] for some related works. 

We are concerned in finding conditions on M and f for which problem (1) possesses a positive 
solution by mean of variational methods. To our best knowledge, the only variational approach 
to the problem (1) was given in Ma and Rivera [13], where minimization arguments were used. 
Here, we study some cases involving strongly indefinite functionals. In a first a t tempt  to study 
problem (1) variationally, by analogy to superlinear problems of the type - A n  = f (x ,u) ,  we 
are conduced to assume M nonincreasing. However, from the original motivation of our problem 
(equation (2)), the function M should contain the class of the linear functions with positive slopes. 
Then, to overcome this problem, we use truncation arguments and uniform a priori estimates of 
gidas and Spruck type, see [14]. In this context, our main result state that  if M does not grow 
too fast in a suitable interval near zero, then, problem (1) has a positive solution, see Theorem 5. 

This work is organized as follows. In Section 2, we show the existence of positive solutions for 
the equation, - M ( f  a ]VuL 2 dx)Au = u v. In Section 3, we establish a variational setting to the 
problem (1) and present our main result. 

2. H O M O G E N E O U S  P E R T U R B A T I O N S  

We begin by considering the problem, 

-M( l iu l l  2) A u = f ( x ) ,  in f , ,  u = 0 ,  o n 0 a ,  (3) 

where IluIi = ( fa  tVul 2 dx) !/2 is the usual norm of Hol(f~) and M satisfies 

M (t) > too, Vt _> 0, (4) 

for some m o >  0. Then, motivated by some arguments in [10,11], dedicated to equations of the 
type, 

d o n  

a ( j  u d x )  A u =  f ( x ) ,  i n f ' ,  u : 0 ,  on0~, 

we might study (3) by comparing it to the problem, 

- A w = f ( x ) ,  in f , ,  w = 0 ,  on0f~. (5) 

In fact, let w > 0 be a solution of (5) and put u = ywllwlt -1. Then, u > 0 and 

- M  (IMI 2) zxn = - M  (3'2)  t_ lp = M (3"5) 
11 ,41  " 

This shows that  such u is a positive solution of (3) if and only if 3' solves M('y2)3' = IIw[t. We 
can summarize these remarks in the following theorem. 
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Assume  that  M satisfies (4) and f >_ 0 is a nonzero H61der continuous function THEOREM I. 

in ~.  Then, problem (3) has as m a n y  positive solutions as the equation, 

M (t) t 1/2 = [[wl[ (with respect to t), (6) 

where w > 0 is the unique solution of (5). 

Now, we apply the above arguments to study the existence of positive solutions of the problem, 

-M([[uN 2) A u = u  p , i n f ,  u = 0 ,  on0ff ,  (7) 

where 1 < p < (N + 2) / (N - 2) if N _ 3 and 1 < p < oo is N = 1, 2. This is done by comparing 
problem (7) with the semilinear problem, 

- A w = w  p, inf}, w = 0 ,  o n 0 f ,  (8) 

which is well known to possess positive solutions. 

THEOREM 2. Assume  that M satisfies (4). Then, problem (7) has at least as many  positive 
solutions as the equation, 

M ( t )  
t(p-1)/2 - -  I I • I I I - P  (with respect to t), (9) 

where w is a positive solution of  (8). In addition, i f  

lim f(t----J-) - 0 ,  (10) 
t-~+cc t(p-1)/2 

then, problem (7) has at least one positive solution. 

PROOF. Let t be a solution of (9). Then, writing -y -- t:/211w]l - : ,  we see that 7w satisfies 

M ([I~/W[I 2) = M (t) = ,,/p--1. 

Therefore, u = 3'w > 0 is a solution of (7) since 

- M  ([[ul[ 2) Au = - M  ([lVw[] 2) y a w  = 7Vw v = u p. 

To see the last statement, we note that since M _> m0 > 0, one has 

lim M( t )  _ + o o .  
t-*O+ t(p-1)/2 

Then, in view of (10), by continuity, equation (9) has a solution, for any positive solution w 
of (8). ! 

REMARKS. 

(i) The above argument is based on the p-homogeneity properties of f ( x ,  u) = u p and can 
be easily extended to x-dependent nonlinearity like f ( x ,  u) = c(x)u  p. If homogeneity is 
dropped, variational methods can still be applied, as discussed in the next section. 

(ii) We notice that problem (7) with 0 < p < 1 was considered in [8]. There, the existence 
results were obtained by using the method of sub- and super-solutions and by assuming 
other hypotheses for M. | 
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3.  V A R I A T I O N A L  M E T H O D S  

In this section, we assume that  f : fl x R ~ R satisfies the subcritical growth condition, 

If(x,s)l<_C(l+lslp),  V:cegt, V s • k ,  (11) 

where C > 0, 1 < p < (N+2) / (N-2)  i f N  > 3 and 1 < p < cxD i f N  = 1, 2. A function u • H01(fl) 
is called weak solution of (1) if 

M (lbull2) ~ VuVC dx - ]~ f (x, u) ¢ dx = O, for all ¢ • H0 ~ (fl). 

Of course, if f is locally Lipschitz in 
addition, we see that  weak solutions 

defined by 

where 

I ( ~ )  : 

~) x R, then, weak solutions are also classicai solutions. In 
of (1) are critical points of the functional I : H~(fl) ~ R 

/0' f0 t ~f (t) = M (s) ds and F (x, t) : f (x, s) ds. 

Since M is continuous and f has subcritical growth, the above functional is of class C 1 in H01(fl), 
and as a mat ter  of fact, by combining the growth of M and f ,  we can easily obtain existence results 
by minimization arguments. We emphasize that  our concern is with superlinear perturbations. 

In order to use critical point theory we first derive an result about  the Palais-Smale compactness 
condition. One says tha t  a sequence (u~) is a Palais-Smale sequence for the functional I if 

I (u, 0 is bounded and Ili' (~)11. -~ 0. (12) 

If every Palais-Smale sequence of I has a strongly convergent subsequence, then, one says that  I 
satisfies the Palais-Smale condition ((PS) for short). We have the following lemma. 

LEMMA 1. Assume that conditions (4) and (11) hold. Then, any bounded Palais-Smale sequence 
of I has a strongly convergent subsequence. 

PROOF. Let (u~) be a bounded (PS) sequence of I .  Passing to a subsequenee if necessary, there 
exists u E H01(fi), such that  u~ ~ u weakly. From the subcritical growth of f and the Sobolev 
embedding, we see that  

~ f (x, u,~) (u~ - u) dx ~ O, 

and since 

we conclude tha t  

I' (u~) (u~ - u) --* O, 

# 
M ~llu,~ll 2) ]~ VunV ( u n -  U)dx ~ O. (13) 

Hence, noting that  M can be dropped in (13), we infer tha t  u~ --~ u strongly in H~ (f~). | 

Now, let us show a basic existence result as a motivation to our main result Theorem 5. 

THEOREM 3. Assume that f C C((~ x N) is a locally Lipschitz function satisfying (11). Assume 
in addition that 

f (x, t) = o (t) (as t -~ 0) (14) 

and, for some # > 2 and R > 0, 

0 < ~ F  (x, t) < f (x, t) t, V It t > R. (15) 
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Then, if M is a function satisfying (4) and 

1VI(t) >_ M( t ) t ,  Vt > 0, (16) 

problem (1) has a positive solution. 

PROOF. From the strong max imum principle, positive solutions of (1) are nonzero critical points 
of I : H01 (f~) -+ R defined by 

I (u) =I^_~M (l,ull 2) - LF  (x,u +) dx, (17) 

Then, according to the mountain pass theorem [15], I has a nonzero where u + = max{u,  0}. 
critical point if: 

(i) I (0)  = 0, 
(ii) there exist p,r > 0, such tha t  I(u) >_ p if Ilu]l = r, 

(iii) there exists e, such tha t  ltell > r and I(e) < O, 

and (PS) holds for I .  I t  turns out tha t  using (16), we can see tha t  I satisfies all the assumptions 
of the mounta in  pass theorem as it was M = 1. In fact, let us check the (PS) condition. Suppose 
tha t  (u~) satisfies (12). Then, letting C to denote several positive constants  and using (15) and 
(16), we get (n was dropped) 

c + c ,ult _> i (u) - ! r  u 
# 

Since the first two terms in the above line are positive, w e  conclude tha t  IlUnll is bounded. 
Therefore, I satisfies (PS) from Lemma 1. II 

REMARK. As we have pointed out before, accordingly, to the original meaning of the M,  in the 
Kirchhoff equation (2), it should be an increasing function. Then,  

// K¢ < M ds = M w > 0, 

and therefore, condition (16) cannot be satisfied. II 

In what  follows, we consider the existence of positive solutions of (1) where M may  be increas- 
ing. To this end, first, we suppose tha t  M is bounded. More precisely, we assume tha t  there 
exist ml  > m0 and to > 0, such tha t  

M (t) = ml,  Vt _> to. (18) 

(~1 x •) is a locally Lipschitz function satisfying (11), (14), THEOREM 4. Assume that f 
and (15). Assume, in addition, that M is a function satisfying (4) and (18) with 

r ~ o  77% 1 > O. (19) 2 # 

Then, problem (1) has a positive solution. 

PROOF. We argue as in Theorem 3 to show the functional jr defined in (17) has a nonzero critical 
point. From (4) and (18), we see tha t  

(t) > mot, Vt > 0, and iT/(t) < ?7~lt ~- r#z2, Vt ~ to, (20) 
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where m2 = I f~° M(s) ds - mlt01. Using standard arguments, we infer that [ satisfies 

z (~) _> o I1~II 2 - o I1<1 p+I , w E He 1 (a) ,  

where C denotes several positive constants. If ¢ _> 0 is a nonzero function, we get from (15) 
and (20) 

I (t¢) _< t ~  II¢ll 2 - t " c  I1¢/1~ + c (t > 0 large). 

Thus, clearly, I satisfies the mountain pass geometry and therefore, from the mountain pass 

theorem, it has a positive critical value provided that (PS) holds. Let (un) be a (PS) sequence 

of I and assume by contradiction that Ilunll -~ +c¢. Then, proceeding as in Theorem 3, we have 
from (18) and (15), 

Then, from assumption (19), we conclude that 

H~N 2 <_ c +  c l t~b l ,  

which contradicts llu~]l --* oc. Therefore, (u~) is bounded and (PS) follows from Lemma 1. | 

Our goal is to extend Theorem 4 to a larger class of M, including the increasing linear functions. 
This is done with truncation arguments and a priori estimates of Gidas and Spruck [14] type. 
Accordingly, if 

lim f (x, t) _ h (x) uniformly in ft, (21) 
t - ~ o  tP 

for some continuous function h > 0, then, any classical positive solution of 

- A u = f ( x , u ) ,  in ft, u = 0 ,  onO~,  

satisfies u(x) < C.,  where C. depends only on p, h, and ~2. In order to establish our hypotheses, 
we prove a lemma which shows the relation of the H 1 norm of the solutions of problem (1) 

with M(II~II2). 

LEMMA 2. Let f E C(f~ x IR) be, such that 

If (x, ~)i <_ Co lul~ + C, l~l p, V z < a ,  VsEIR, (22) 

where Co _> 0, Cx > 0, 0 < q <_p, 1 < p  < ( N + 2 ) / ( N - 2 )  i f N  > 3 or 1 < p  < ~c i f N  = 1,2. 
Then, if  f satisfy (21) and M satisfies (4), there exists 0 > 0, not depending on M, such that 

[lull s < max { M  tlluH2) (2-p+q)/(p-') , M (I[uH2) 2/(P-1) } O, (23) 

for any positive classical solution u of (1). 

PROOF. Let u be a positive solution of (1). Then, 

U 

is a positive solution of 

- - A w = g ( x , w ) ,  i n f ' ,  w = 0 ,  on Of/, 
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where 

Now, since 

g (x, s) = 
M (llull2) p/(p-I/ 

f (x,M (H'/JI,2) 1/(p-l) 8) 
lim g(x ' s )  = lim _ ,  = h ( x )  

\ - - /  

independent of M > 0, from Gidas-Spruck estimates there exists C. > 0, not depending on M, 
such that 

li~ll~ -< c, .  

Therefore, 

I1'~11o~ -< M (llull 2) ~/(P-1)c, 
and consequently, 

Ilull 2 = M (ll~rl2) -1 £ f (x, u)~dx 

_< M (ll~fl~) -1 (co II ~ ~+~ ÷ c ,  H~fl~') jal 

_< max { M  01ul, 2) (2-p+q)/(p-1) M (]lull2)2/(P-1)}(CoCq.+l+ C1C p+I) lf~l 

Then, we take 0 = (C0 Cq+l + C1Cp+I)IK2I. I 

Our main result is the following. 

T H E O R E M  5. Assume that f E C(~ x R) is a locally Lipschitz function satisfying (14), (15), 
and (21). Assume in addition that M is a continuous function satisfying (4) and there exists k > 0, 
such that 

M (k) < #m0 (24) 
2 

and 
max {M (k)(2-P+q)/(P-1), M (k)2/(p-1)} <_ ~, (25) 

where p, q, and 0 are given in Lemma 2. Then, problem (1) has a positive solution. 

PaooF.  First, we note that assumptions (14) and (21) imply that (22) holds, and therefore, 0 is 
well defined. Let us define the truncated function, 

M( t ) ,  i f t < h ,  (26) 
M k ( t ) =  2~¢(k), i f t > k .  

Then, assumption (24) implies that Mk satisfies (19) with m 1 = M(k). In addition, noting 
that (21) implies in (11), we can apply Theorem 4 to obtain uk > 0, solution of the truncated 
problem, 

-Mk(lluH 2) A u = f ( x , u ) ,  inf , ,  u = 0 ,  on0fL 

From Lemma 2, we know that 

max{M 0 
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This implies tha t  if Iiukll 2 > k, then, we get 

k < max { M  (k) (2-p+q)/(;-1) , M (k)2/(P-1)}O, 

which contradicts (25). Therefore, []uk][ 2 % k, which shows tha t  uk is, in fact, a positive solution 
of the (nontruncated)  problem (1). | 

EXAMPLE. Let us suppose tha t  f is a given function satisfying (15) and (21), with q = p in (22). 
Once computed  # and 0, we fix rn 0 > 0 and ~ > 0, such tha t  

n(p-1)/2 # rn "~0<~ <~ 0, 

and define M as the line M(s)  = ms +mo with 

1 

I t  follows tha t  M satisfies the conditions (24) and (25) with k = ~. | 

We finish this paper  with a multiplicity result by combining local minimizat ion and mountain  
pass type arguments.  The model problem is 

- M  (ll LI : + f in a,  = 0, on oa ,  (27) 

where 0 < q < 1, £ > 0, and f is superlinear. We note tha t  f l ,  defined by 

f l  (x, u) = Au q + f (x, u ) ,  

satisfies condition (22) if, for example,  (14) and (21) hold. 

THEOREM 6. Assume tha t  hypotheses of T~eorem 5 hold. Then, given 0 < q < 1 there ex- 
ists A, > O, such that  problem (27) has at least two positive solutions, for any ~ E (0, ~,). 

PROOF. First, we t runcate  M as in (26). Then,  positive solutions of the t runcated  problem are 

critical points of the functional I : H 1(•) --~ ~,  defined by 

Working as in Theorem 4~ we infer tha t  

ff (u) >_ C I1<1: - ~C  ll<l q+l - c IJ~ lF  + l ,  v u  ~ ~,~ ( n ) ,  

where C denotes several positive constants. Then, since q + 1 < 2 < p + 1, there are p, r, A. > 0, 

such tha t  
I ( u )  R p ,  for all I l u l l = r  and ) , E ( 0 ,  A.) .  (29) 

Noting tha t  I is bounded in X = /~ , (0 ) ,  it follows from Ekeland variational principle [16] applied 
to the metr ic  space (X, I1 II), tha t  there exists a minimizing sequence (un) C X,  such tha t  

I (u~) ~ -fo~ = inf I (u) and [ '  (u~,) --* O. (30) 
uc:X 

I t  follows tha t  (u~) is a bounded (PS) sequence of I in X and from L e m m a  1, there exists u E X,  
such u~ -+ u strongly. Moreover, since 0 < q < 1, we have tha t  Ioo < 0, and therefore, u E B,(0) .  
This shows tha t  u is a local min imum of I in H0~ (12). Hence, f has critical a point u I with negative 
energy. Now, continuing the analysis as in Theorem 4, we infer tha t  I has a critical point u~ 
with positive energy from the mounta in  pass theorem. Then, we see tha t  the t runcated  version 
of problem (27) has at least two positive solutions. Using L e m m a  2, we deduce tha t  Ilu~ll 2 < k 
and Ilu~ll 2 _< k, so tha t  u~ and u~ are solutions of the original problem (27). | 
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