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Abstract

We establish a link between two different constructions of the action of the twisted loop group on the
space of Frobenius structures. The first construction (due to Givental) describes the action of the twisted
loop group on the partition functions of formal (axiomatic) Gromov–Witten theories. The explicit formulas
for the corresponding tangent action were computed by Y.-P. Lee. The second construction (due to van de
Leur) describes the action of the same group on the space of Frobenius structures via the multi-component
KP hierarchies. Our main theorem states that the genus zero restriction of the Y.-P. Lee formulas coincides
with the tangent van de Leur action.
© 2009 Elsevier Inc. All rights reserved.
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0. Introduction

The formal (or axiomatic) Gromov–Witten theory was developed by Givental in [16] as a
very convenient formalism to encode higher genera of Gromov–Witten potential in terms of
genus 0 data associated to the underlying Frobenius manifold. In particular examples of Gromov–
Witten theories of Fano varieties, Givental’s formulas reflect the structure of computations made
via localization technique [17]. It was proved recently by Teleman [32] that in the semi-simple
case the partition function of an arbitrary homogeneous (conformal) cohomological field theory
coincides with some formal Gromov–Witten potential in the sense of Givental.

The core of Givental’s theory is the action of the twisted loop group of GL(n) on the space of
tame partition functions. Equivalently, a half of the action of Givental’s group can be described
as an action on cohomological field theories; there are formulas for this action given explicitly
in terms of tautological classes on Mg,n [25,32,24,31]. The key computation here was made by
Y.-P. Lee, who provided explicit formulas for the Lie algebra action of the Givental group [26,27]
(in a different way it was done also by Chen, Kontsevich, and Schwarz, see [2]).

In general, the Givental theory has appeared to be one of the principle tools in the study of
a variety of questions arising in relations to mirror symmetry, Frobenius manifolds, usual and
orbifold Gromov–Witten theory, geometry of r-spin structure, and, more generally, quantum sin-
gularity theory, see e.g. [3,5,6,14,31,32] and many other recent preprints. In this paper, however,
we restrict the discussion to the Givental group action (or, rather, Y.-P. Lee’s Lie algebra ac-
tion) on non-homogeneous formal Frobenius manifolds, that is, the semi-simple solutions of the
WDVV equation, not necessary homogeneous, but with flat unit.

A bit earlier than Givental, the second author, van de Leur, has observed that in some special
situation the equations of the multi-component KP hierarchy, written for the wave functions, spe-
cialize to the so-called Darboux–Egoroff equations, which is an equivalent way to write WDVV
equations in canonical coordinates. The case when it works is precisely the case when one con-
siders the twisted loop group of GL(n) orbit of the vacuum vector rather than a generic element
of the semi-infinite Grassmannian. Using Dubrovin’s formulas, one can associate then a non-
homogeneous formal Frobenius manifold to an element of the twisted loop group of GL(n).

So, we have two different actions of the same group on the same spaces. It is a natural ques-
tion to compare them. This question is especially important, since it allows to link better two
completely different points of view on the theory of Frobenius manifolds. Indeed, in applications
to enumerative geometry and string theory, Frobenius manifolds appear more naturally in flat
coordinates. Meanwhile, from the point of view of integrable hierarchies, Frobenius manifolds
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appear more naturally in canonical coordinates. The interplay between these two different points
of view was enormously developed by Dubrovin [9,10], and there is a huge outcome of trans-
lating problems and arguments from one language to another, see e.g. [11,12]. However, direct
translation from one language to another is usually extremely difficult. So, an interpretation in
both approaches of the same group action is going to be very helpful, especially since the action
is transitive on semi-simple Frobenius manifolds.

The main result of the paper is that we identify the Lie algebra actions coming from Givental’s
and van de Leur’s approaches, that is, we derive explicitly Y.-P. Lee’s formulas from equations
of multi-component KP hierarchy. While the semi-simple orbits are known in advance to be the
same in both approaches, the group action appears to be different, but in a completely controlled
way. That is, we construct an explicit isomorphism of the tangent actions of Lie algebras. Let
us also mention here that the Y.-P. Lee formulas for the Lie algebra action for solutions of the
WDVV equation written in canonical coordinates in terms of wave functions of multi-component
KP hierarchy appears to be very simple and elegant.

0.1. The content of the paper

Let us first describe the main theorem that we prove in this paper. All necessary definitions
are given in the main text.

Givental group action can be considered as an action of the elements A(ζ ) ∈ GL(±)∞ ,
At(−ζ )A(ζ ) = Id, on the space formal Frobenius structures in genus 0 with flat unit, that is,
roughly speaking, on the space of formal solutions F(t1, . . . , tn) of the WDVV equation. The
Lie derivatives of the Givental action on F can be written in terms of so-called deformed flat co-
ordinates, or, in other language, in terms of generating functions for correlators with descendants
at one point. We denote them by θ

(d)
μ .

The construction of van de Leur associates to any group element A(t) ∈ GL(±)∞ , At(−t) ×
A(t) = Id, some Frobenius structure F and a collection of θ

(d)
μ , both in canonical coordinates.

The formulas for F , θ
(d)
μ , and flat coordinates are given in terms of a bit modified wave functions

of multi-component KP hierarchy, so-called Ψ -function, Ψ = Ψ (A).
For any A(t) ∈ GL(±)∞ and a(t) ∈ �gl

±
∞, we compute an explicit expression for

∂

∂ε
Ψ

(
A exp(εa)

)∣∣∣∣
ε=0

(0.1)

that can be written down in terms of a and Ψ (A). This allows us also to express a first order
ε-deformation of F in terms of Ψ -functions. When we rewrite these formulas in terms of θ

(d)
μ in

flat coordinates, we obtain exactly the reduction to genus 0 of the formulas of Y.-P. Lee for the
tangent Givental action.

The paper is organized in the following way.
In Section 1 we review main definitions and constructions of semi-infinite wedge space and

multi-component bosonization.
In Section 2 we compute the restriction of the Y.-P. Lee vector fields to the space of generating

functions of correlators in genus 0 with no descendants, that is, the expressions of the tangent
Givental action on F in terms of θ

(d)
μ . We also rewrite these formulas in terms of KP modified

wave functions Ψ .
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In Section 3 we compute explicitly the derivatives of the multi-component KP Ψ -functions
with respect to the twisted loop Lie algebra, i.e., we compute explicitly (0.1).

Finally, in Section 4, we compare the formulas from Sections 2 and 3 and prove our main
theorem.

Though we attempt to make our paper self-contained, some background on both approached
to the group action on Frobenius manifolds might be helpful. In addition to the basic references
given in introduction and throughout the text, we refer the reader to [4,15,30], where some further
aspects of both approaches in genus 0 are discussed in detail.

1. Semi-infinite forms and multi-component bosonization

In this section we recall the construction of multi-component bosonization following [22,23]
(see also [7,20,21]).

1.1. Semi-infinite forms

Let V be an infinite-dimensional vector space with a basis vi , i ∈ Z + 1
2 and V ∗ =⊕

i∈Z+ 1
2
(Cvi)

∗ be its restricted dual. Let F = ∧∞
2 V be the space of semi-infinite forms with a

basis given by semi-infinite monomials of the form

vi1 ∧ vi2 ∧ · · · , i1 > i2 > · · · , (1.1)

and il+1 = il − 1 for l big enough. For m ∈ Z we set |m〉 = v
m− 1

2
∧ v

m− 3
2

∧ · · · . For v ∈ V and

ξ ∈ V ∗ the wedging and contracting operators ψv and ψξ are defined as follows:

ψv(vi1 ∧ vi2 ∧ · · ·) = v ∧ vi1 ∧ vi2 ∧ · · · ,

ψξ (vi1 ∧ vi2 ∧ · · ·) =
∞∑
l=1

(−1)l+1ξ(vil )vi1 ∧ · · · ∧ vil−1 ∧ vil+1 ∧ · · · .

Note that the vector v ∧ vi1 ∧ vi2 ∧ · · · can be rewritten in terms of the basis vectors using bi-
linearity and skew-symmetry of the wedge product. We set

ψ+
i = ψv−i

, ψ−
i = ψv∗

i
, (1.2)

where v∗
i ∈ V ∗ are defined by v∗

i (vj ) = δi,j . The operators ψ+
i ,ψ−

j satisfy the relations

ψλ
i ψ

μ
j + ψ

μ
j ψλ

i = δλ,−μδi,−j (1.3)

for all i, j ∈ Z + 1
2 and λ,μ = +,−. Thus ψ+

i and ψ−
j generate a Clifford algebra, which we

denote by Cl. We note that F is an irreducible Cl module. For instance, F = Cl · |0〉 with the
relations ψ±

j |0〉 = 0 for j > 0. Using the action of Cl we define the energy and charge gradings
on F . Namely set

charge
(|0〉) = 0, energy

(|0〉) = 0,

charge
(
ψ±) = ±1, energy

(
ψ±) = −i. (1.4)
i i
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Let

F =
⊕
m∈Z

F (m), F (m) =
∞⊕

d= m2
2

F
(m)
d

be charge and energy decompositions. For instance, |m〉 ∈ F
(m)

m2
2

. For later use we introduce the

left vacuum 〈0| ∈ F ∗ such that the vacuum expectation value 〈0||0〉 = 1 and 〈0|v = 0 if energy
of v is positive. We note that the operator 〈0|ψ±

j vanishes for j < 0.
We can also define representations of the infinite complex matrix group GL∞ and its Lie

algebra gl∞ on F . Namely, GL∞ is the group of invertible matrices A = (Aij )i,j∈Z+ 1
2

such that
all but a finite number of Aij − δij are 0. Then

A(vi1 ∧ vi2 ∧ · · ·) = Avi1 ∧ Avi2 ∧ · · · . (1.5)

The algebra gl∞ is the Lie algebra of all matrices a = (aij ) with a finite number of non-vanishing
entries. The action on F is given by the formula

a(vi1 ∧ vi2 ∧ · · ·) =
∞∑

s=1

vi1 ∧ · · · ∧ vis−1 ∧ avis ∧ vis+1 ∧ · · · . (1.6)

For any A ∈ GL∞ we can attach the element τ ∈ F which is given by τ = A|0〉. We note that
A|0〉 ∈ F (0) for any A. The following proposition is standard:

Proposition 1.1. A non-zero element τ of F (0) is equal to A|0〉 for some A ∈ GL∞ if and only if
the following equation holds in F ⊗ F :

∑
i∈Z+ 1

2

ψ+
i τ ⊗ ψ−

i τ = 0. (1.7)

In what follows we will need a slight modification of the construction above. Namely, let
GL+∞ and GL−∞ be the groups of invertible lower- and upper-triangular matrices with units along

the main diagonal. Also, let �gl
+
∞ (�gl

−
∞) be the Lie algebra of all strictly lower-(upper-)triangular

matrices. So in particular,

a(vi) =
∑
j<i

ajivj for a ∈ �gl
−
∞, a(vi) =

∑
j>i

ajivj for a ∈ �gl
+
∞. (1.8)

Note that we do not assume that the number of non-trivial entries of matrices from the groups
and algebras above is finite.

There are no problems with the action of the group GL−∞ and the algebra �gl
−
∞. Namely, the

formulas (1.5) and (1.6) still work. In order to define the action of the group GL+ and the algebra
∞
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�gl
+
∞ we need to complete the space F with respect to the energy grading. Namely, we consider

the space

F̄ =
⊕
m∈Z

F̄ (m), F̄ (m) =
∞∏

d= m2
2

F
(m)
d . (1.9)

So an element of F̄ (m) has a component with any possible energy in the charge m subspace F (m).

Lemma 1.2. The formulas (1.5) and (1.6) define the action of the group GL+∞ and the algebra
�gl

+
∞ on F̄ .

1.2. The n-component bosonization

From now on we fix n ∈ N. It will be convenient for us to relabel the vectors vi in the following
way: for 1 � j � n and k ∈ Z + 1

2 we define

v
(j)
k = v

n(k− 1
2 )+j− 1

2

and the corresponding operators ψ
±(j)
k . We note that

ψ
±(j)
k |0〉 = 0 for k > 0.

The relabeling above allows to introduce partial charges

chargej , 1 � j � n

in the following way:

chargej

(
ψ

±(i)
k

) = ±δij , chargej

(|0〉) = 0.

Let

F =
⊕

k1,...,kn∈Z

F (k1,...,kn)

be the decomposition with respect to the partial charges. In particular,

F (m) =
∑

k1+···+kn=m

F (k1,...,kn).

Similarly, the set of vectors |m〉 is extended to the set |k1, . . . , kn〉, ki ∈ Z. In order to define these
vectors we need some additional operators Qi , i = 1, . . . , n, on F . These operators are uniquely
defined by the following conditions:

Qi |0〉 = ψ
+(i)

1 |0〉, Qiψ
±(j)
k = (−1)δij +1ψ

±(j)
k∓δij

Qi.
− 2
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They satisfy the following commutation relations:

QiQj = −QjQi if i �= j.

Note that 〈0|Q−1
i = 〈0|ψ−(i)

1
2

. We set

|k1, . . . , kn〉 = Q
k1
1 . . .Qkn

n |0〉.
For example,

|0, . . . ,0︸ ︷︷ ︸
i−1

,1,0, . . . ,0〉 = v
(i)
1
2

∧ v
(1)

− 1
2
∧ · · · ∧ v

(n)

− 1
2
∧ v

(1)

− 3
2
∧ · · · .

Obviously, |k1, . . . , kn〉 ∈ F (k1,...,kn).
It turned out that each space F (k1,...,kn) can be identified with the space of polynomials in

variables x
(i)
k , 1 � i � n, n ∈ Z. More precisely, each F (k1,...,kn) carries a structure of a Fock

module of the Heisenberg algebra based on n-dimensional space. This identification is called the
boson–fermion correspondence. We describe it in details below.

Let us introduce the fermionic fields

ψ±(j)(z) =
∑

k∈Z+ 1
2

ψ
±(j)
k z−k− 1

2 ,

which are formal generating functions of generators of the Clifford algebra. Next we introduce
bosonic fields (1 � i, j � n):

α(ij)(z) ≡
∑
k∈Z

α
(ij)
k z−k−1 = :ψ+(i)(z)ψ−(j)(z):,

where : : stands for the normal ordered product defined in the usual way (λ,μ = + or −):

:ψλ(i)
k ψ

μ(j)


 : =
{

ψ
λ(i)
k ψ

μ(j)

 if 
 > 0,

−ψ
μ(j)


 ψ
λ(i)
k if 
 < 0.

One can check that the operators α
(ij)
k satisfy the commutation relations of the affine algebra ĝln

of the level 1, i.e.: [
α

(ij)
p ,α(k
)

q

] = δjkα
(i
)
p+q − δi
α

(kj)
p+q + pδi
δjkδp,−q,

and that

α
(ij)
k |m〉 = 0 if k > 0 or k = 0 and i < j.

The operators α
(i)
k ≡ α

(ii)
k satisfy the canonical commutation relation of the oscillator algebra[

α
(i)
k , α

(j)



] = kδij δk,−
,

and one has
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α
(i)

 |k1, . . . , kn〉 = 0 for 
 > 0,

α
(i)
0 |k1, . . . , kn〉 = ki |k1, . . . , kn〉, i = 1, . . . , n,

and 〈0|α(i)

 = 0 for 
 � 0. We also note that[

α
(i)
k ,Qj

] = δij δk0Qj .

One has the following vertex operator expression for ψ±(i)(z). Given any sequence s =
(s1, s2, . . .), define

Γ
(j)
± (s) = exp

( ∞∑
k=1

skα
(j)
±k

)
,

then

Theorem 1.3.

ψ±(i)(z) = Q±1
i z±α

(i)
0 exp

(
∓

∑
k<0

1

k
α

(i)
k z−k

)
exp

(
∓

∑
k>0

1

k
α

(i)
k z−k

)
= Q±1

i z±α
(i)
0 Γ

(i)
−

(±[z])Γ (i)
+

(∓[
z−1]),

where [z] = (z, z2

2 , z3

3 , . . .).

We note that

Γ
(j)
+ (s)|0〉 = |0〉, 〈0|Γ (j)

− (s) = 〈0|. (1.10)

Let γ (s, s′) = e
∑

nsns′
n . For example,

γ
(
t, [z]) = exp

( ∑
n�1

tnz
n

)
. (1.11)

In what follows we will need certain properties of the functions Γ
(j)
± . We collect them in the

following proposition.

Proposition 1.4. We have the equalities:

Γ
(j)
+ (s)Γ

(k)
−

(
s′) = γ

(
s, s′)δjkΓ

(k)
−

(
s′)Γ (j)

+ (s), (1.12)

and

Γ
(j)
± (s)ψ+(k)(z) = γ

(
s,

[
z±1])δjkψ+(k)(z)Γ

(j)
± (s),

Γ
(j)
± (s)ψ−(k)(z) = γ

(
s,−[

z±1])δjkψ−(k)(z)Γ
(j)
± (s). (1.13)
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To obtain the multi-component KP hierarchy we give another description of F . For more in-
formation see [22,23]. Let C[x] be the space of polynomials in variables x = {x(i)

k }, k = 1,2, . . . ,
i = 1,2, . . . , n. Let L be a lattice with a basis δ1, . . . , δn over Z and the symmetric bilinear form
(δi |δj ) = δij , where δij is the Kronecker symbol. Let

εij =
{−1 if i > j,

1 if i � j.

Define a bi-multiplicative function ε: L × L → {±1} by letting

ε(δi, δj ) = εij .

Consider the vector space C[L] with basis eγ , γ ∈ L, and the following twisted group algebra
product:

eαeβ = ε(α,β)eα+β.

Let B = C[x] ⊗C C[L] be the tensor product of algebras. Then the n-component boson–fermion
correspondence is the vector space isomorphism σ : F → B , given by

σ
(
α

(i1)−m1
. . . α

(is )−ms
|k1, . . . , kn〉

) = m1 . . .msx
(i1)
m1

. . . x(is )
ms

⊗ ek1δ1+···+knδn . (1.14)

Note that this is also equal to

〈0|Q−kn
n . . .Q

−k1
1

n∏
j=1

Γ
(j)
+

(
x(j)

)
α

(i1)−m1
. . . α

(is )−ms
|k1, . . . , kn〉 ⊗ ek1δ1+···+knδn .

2. Y.-P. Lee vector fields and the KP wave functions

The goal of this section is to rewrite the formulas for the tangent action of the Givental group
restricted to genus 0 in terms of wave functions of the multi-component KP hierarchy.

2.1. The Givental group and the Y.-P. Lee vector fields

In [16,18,19,17] (see also [13,27,28,31] for further explanations) Givental introduced the
action of the twisted loop group on the space of formal Gromov–Witten theories. One of the
possible ways of thinking about it is to say that we consider an action of some special differential
operators (depending on an element of twisted loop group) on formal power series in variables h̄

and t
μ
d , d � 0,μ = 1, . . . , n, of the type

Z = exp

( ∑
g�0

h̄g−1Fg

)
,

where

Fg =
∑
k�0

∑
d1,...,dk�0

〈
τ

μ1
d1

. . . τ
μk

dk

〉
g

t
μ1
d1

. . . t
μk

dk

k! ,
1�μ1,...,μk�n
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and the action is well defined under some conditions imposed on Fg , g � 0. Usually, Z is called
partition function, Fg is called genus g Gromov–Witten potential, and the numbers 〈τμ1

d1
. . . τ

μk

dk
〉g

are called correlators.
Let G± be positive and negative twisted loop groups of GLn, i.e.,

G+ =
{
R(ζ ) = Id+

∑
i>0

Riζ
i : R(−ζ )tR(ζ ) = Id

}
,

G− =
{
S(ζ ) = Id+

∑
i>0

Siζ
−i : S(−ζ )tS(ζ ) = Id

}
.

The corresponding Lie algebras are defined as follows:

g+ =
{
r(ζ ) =

∑
i>0

riζ
i : r(−ζ )t + r(ζ ) = 0

}
,

g− =
{
s(ζ ) =

∑
i>0

siζ
−i : s(−ζ )t + s(ζ ) = 0

}
.

Givental defined actions of G± on the space of partition functions. His definition goes through
the quantization of certain Hamiltonians. In [26,27] Y.-P. Lee computed the vector fields that
correspond to the Lie algebras g± in Givental’s action.

In order to present the Y.-P. Lee formulas we need some further notations. Let (a)
μ
ν be the

entries of the matrix a. We set (a)μν = (a)νμ = (a)
μ
ν , and we also use the notations (a)

μ
1 =∑

ν(a)
μ
ν , (a)11 = ∑

μ,ν(a)
μ
ν .

Let s = ∑
l�1 slζ

−l be some element from g−. Then the corresponding vector field ŝ is given
by the first order differential operator

ŝ = − 1

2h̄
(s3)1,1 −

∑
μ

(s1)
μ
1

∂

∂t
μ
0

+ 1

h̄

∑
d,μ

(sd+2)1,μ t
μ
d

+
∑
d,l
μ,ν

(sl)
μ
ν tνd+l

∂

∂t
μ
d

+ 1

2h̄

∑
d1,d2
μ2,μ2

(−1)d1(sd1+d2+1)μ1,μ2 t
μ1
d1

t
μ2
d2

. (2.1)

Let r = ∑
l�1 rlζ

l be some element from g+. Then the corresponding vector field r̂ is given
by the second order differential operator:

r̂ = −
∑
l�1
μ

(rl)
μ
1

∂

∂t
μ
l+1

+
∑

d�0,l�1
μ,ν

(rl)
μ
ν tνd

∂

∂t
μ
d+l

+ h̄

2

∑
d1,d2�0
μ1,μ2

(−1)d1+1(rd1+d2+1)
μ1μ2

∂2

∂t
μ1
d1

∂t
μ2
d2

. (2.2)



E. Feigin et al. / Advances in Mathematics 224 (2010) 1031–1056 1041
Remark 2.1. Our conventions are a bit different from the standard ones in Givental’s theory.
That is, throughout the paper we fix the unit 1 of the Frobenius manifold to be the sum of the
flat coordinates t

μ
0 and the metric to be the identity matrix. This reflects the formulas for ŝ and r̂

above. The reason for these replacements will be clear after we discuss the van de Leur approach
to Frobenius structures via the n-component KP wave functions.

2.2. Genus 0 reduction of Y.-P. Lee formulas

In this paper we are only interested in the genus zero part of the formal Gromov–Witten
theories. Following Givental, we call the genus zero part F0 a formal Frobenius structure. (To
be more precise, a formal Frobenius structure is a solution of the following system of PDEs: the
string equation and the topological recursion relations, see [19].) Let F be the series obtained
from F0 by putting t

μ
d = 0 for d > 0. Then F defines the family of algebras (depending on the

point t0) via the structure constants:

cμ3
μ1,μ2

=
∑
ν

∂3F

∂t
μ1
0 ∂t

μ2
0 ∂tν0

ην,μ3,

where η is a non-degenerate symmetric bilinear form. The associativity of these algebras is equiv-
alent to the celebrated WDVV equation (see [8–10,33]). In [19] Givental defined the action of
the twisted loop group on the space of Frobenius structures. The most convenient way to describe
this action is via the genus zero restriction of the Y.-P. Lee formulas given above.

Recall the function

F
(
t1
0 , . . . , tn0

) =
∑
k�0

∑
μ1,...,μk

〈
τ

μ1
0 . . . τ

μk

0

〉
0

t
μ1
0 . . . t

μk

0

k! .

We are now going to extract the restriction of the Y.-P. Lee vector fields to F . More precisely,
let Z = ∑

g�0 h̄g−1Fg be some partition function and g(ε) be a family of elements of G±,
g(0) = Id. Then

g(ε)Z = exp

( ∑
g�0

h̄g−1Fg(ε)

)
.

Assume that the tangent vector to g(ε) at ε = 0 is equal to s (respectively, r). Our goal is to
express ∂F (ε)

∂ε
at ε = 0 in terms of Z. We denote these derivatives by s.F (respectively, r.F ).

We will need one more piece of notations. Namely, let

θ(0)
μ

(
t1
0 , . . . , tn0

) = 1, (2.3)

θ(1)
μ

(
t1
0 , . . . , tn0

) = tμ, (2.4)

and for d � 2 let

θ(d)
μ

(
t1
0 , . . . , tn0

) = ∂F0

∂t
μ
d−2

∣∣∣∣
tν=0,k>0

=
∑ ∑

μ ,...,μ

〈
τ

μ
d−2τ

μ1
0 . . . τ

μk

0

〉
0

t
μ1
0 . . . t

μk

0

k! . (2.5)

k k�0 1 k
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We also use the vector notation

θ(d) = (
θ

(d)
1 , . . . , θ (d)

n

)
. (2.6)

Say, θ(0) = (1,1, . . . ,1).

Proposition 2.2. Let s = ∑
l�1 slζ

−l . Then

s.F = −1

2
θ(0)s3θ

(0)t + θ(0)s2θ
(1)t − θ(0)s1θ

(2)t + 1

2
θ(1)s1θ

(1)t ,

where the upper index t denotes the transposed vector or matrix.

Proof. Since we are interested only in coefficients of monomials with t
μ
0 , formula (2.1) turns

into

ŝ = − 1

2h̄
(s3)1,1 −

∑
μ

(s1)
μ
1

∂

∂t
μ
0

+ 1

h̄

∑
μ

(s2)1,μt
μ
0 + 1

2h̄

∑
μ2,μ2

(s1)μ1,μ2 t
μ1
0 t

μ2
0 .

The derivative of the constant term is equal to − 1
2 (s3)1,1. Since 1 is the sum of coordinates in

our case, we replace that by − 1
2 (1, . . . ,1)s3(1, . . . ,1)t .

Look at the s2-term of this formula. It affects only degree 1 terms in flat coordinates adding
to them (s2)1,i ti = (1, . . . ,1)s2θ

(1)t .
Now look at the s1-part of the above formula. The derivative −∑

μ(s1)
μ
1

∂

∂t
μ
0

just adds

−(1, . . . ,1)s1θ
(2)t to F . The term 1

2h̄

∑
μ2,μ2

(s1)μ1,μ2 t
μ1
0 t

μ2
0 can be written in terms of θ ’s as

1
2θ(1)s1θ

(1)t . The proposition follows. �
Proposition 2.3. Let r = ∑

l�1 rlζ
l . Then r.F is equal to

∞∑
l=1

(
−θ(l+3)rlθ

(0)t + θ(l+2)rlθ
(1)t + 1

2

∑
m+m′=l−1

(−1)m
′+1θ(m+2)rlθ

(m′+2)t
)

.

Proof. Formula (2.2) implies the following expression for the derivative of a particular coeffi-
cient (see [27,13]):

r.
〈
τ

μ1
d1

. . . τ
μn

dn

〉
0 = −

∞∑
l=1

(rl)μ,1
〈
τ

μ
l+1τ

μ1
d1

. . . τ
μn

dn

〉
0 +

∞∑
l=1

n∑
i=1

(rl)ν,μi

〈
τ

μ1
d1

. . . τ ν
di+l . . . τ

μn

dn

〉
0

+ 1

2

∞∑
l=1

∑
m+m′=l−1

(−1)m+1
∑

I�J={1,...,n}
(rl)

μν

〈
τμ
m

∏
i∈I

τ
μi

di

〉
0

〈
τ ν
m′

∏
i∈J

τ
μi

di

〉
0
.

We are interested only in correlators with di = 0 for all i. Then the terms of this for-
mula are collected into the derivative of F as follows. The generating function of the
terms −∑∞

(rl)μ,1〈τμ
τ

μ1 . . . τ
μn〉0 in our language turns into −∑∞

θ(l+3)rl(1 . . .1)t .
l=1 l+1 0 0 l=1
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The generating function of the terms
∑∞

l=1
∑n

i=1(rl)ν,μi
〈τμ1

0 . . . τ ν
l . . . τ

μn

0 〉0 turns into∑∞
l=1

∑
μ,ν θ

(l+2)
ν (rl)ν,μtμ. Finally, the term

1

2

∞∑
l=1

∑
m+m′=l−1

(−1)m+1
∑

I�J={1,...,n}
(rl)

μν

〈
τμ
m

∏
i∈I

τ
μi

0

〉
0

〈
τ ν
m′

∏
i∈J

τ
μi

0

〉
0

turns into 1
2

∑∞
l=1

∑
m+m′=l−1(−1)m

′+1θ(m+2)rlθ
(m′+2)t . Here we use that (rl)

μν = (rl)νμ =
(−1)l−1(rl)μν . �
2.3. n-KP hierarchies and Frobenius manifolds

In this subsection we review main definitions and results from [29].
We first recall the definition of the tau-functions. Let 〈0| ∈ F ∗ be the left vacuum. The n-

component tau-functions τα(x) attached to some operator A are defined as follows

τ(x) =
∑
α∈L

τα(x)eα = σ
(
A|0〉), (2.7)

where σ is defined by (1.14). One can show that

τk1δ1+···+knδn(x) = 〈0|Q−kn
n . . .Q

−k1
1

n∏
i=1

Γ
(i)
+

(
x(i)

)
A|0〉. (2.8)

We note that if A ∈ GL∞ then the tau-functions are polynomials in variables x
(i)
k and

τk1δ1+···+knδn(x) = 0 if k1 + · · · + kn �= 0. However, for A ∈ GL+∞ the tau-functions are infinite
power series (see the end of Section 1.1).

The wave function for A = A(t) is equal to:

Φ±
ik(A,x, z) =

∑

∈Z

Φ±
ik(A,x)
z


 = 〈0|Γ+(x)Q∓1
i ψ±(k)(z)A|0〉

〈0|Γ+(x)A|0〉 ,

where

Γ+(x) =
n∏

i=1

Γ
(i)
+

(
x(i)

)
.

(We note that we are actually using the special type of wave functions from [22] with the param-
eter α = 0.) Note that the denominator 〈0|Γ+(x)A|0〉 is the tau-function τ0 attached to A and the
numerator is obtained from τ±(δi−δk) by applying the bosonic (vertex operator) form of the series
ψ±(k)(z). We put

Ψ ±
ik (A,x, z) =

∞∑
Ψ ±

ik (A,x)
z

 = 〈0|Γ+(x)Q∓1

i Aψ±(k)(z)|0〉
〈0|Γ+(x)A|0〉 ,

=0
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and the corresponding matrix

Ψ ±(A,x, z) = Φ±(A,x, z)A(z).

In what follows we sometimes drop the element A or variables x (or both) and denote the corre-
sponding functions Ψ (A,x, z) := Ψ +(A,x, z) simply by Ψ (x, z) (or simply by Ψ ).

The following property of Ψ (see [29]) is crucial for us.

Proposition 2.4. If A(t)A(−t)t = Id, then

Ψ (A,x, z)Ψ (A,x,−z)t = Id

after substitution of x
(i)
2k = 0 for all k = 1,2, . . . , 1 � i � n.

We keep the assumption A(t)A(−t)t = Id for A throughout the rest of this section.
We now define the KP version of the functions θ

(k)
i (see (2.4), (2.5)). Slightly abusing nota-

tions, we denote these KP θ functions by the same symbols. The identification will be explained
below. Set

θ(x1, z) = (
θ1(x1, z), . . . , θn(x1, z)

) = (1, . . . ,1)Ψ (x,0)tΨ (x, z)|
x

(i)
k =0, k�2

.

(By x1 we denote the set of variables x
(1)
1 , . . . , x

(n)
1 .) Consider the decomposition

θi(x1, z) = 1 + t i (x1)z +
∞∑

d=2

θ
(d)
i (x1)z

d .

Then

θ(d) = (1, . . . ,1)Ψ t
0Ψd |

x
(i)
k =0, k�2

. (2.9)

The functions t i (x) play a role of the flat coordinates and the following theorem constructs the
corresponding Frobenius manifold [1,29]:

Theorem 2.5. The function

F = 1

2

n∑
i=1

(
t iθ

(2)
i − θ

(3)
i

)
satisfies the WDVV equation in variables t i .

In what follows we will need the following properties of the functions θi and F . These prop-
erties are derived in [29] via the analysis of the n-KP hierarchies.
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Proposition 2.6. The following equalities hold:

∂F

∂tm
= θ(2)

m ; (2.10)

∂2θ(s)

∂tk∂t l
=

n∑
m=1

∂3F

∂tk∂t l∂tm

∂θ(s−1)

∂tm
. (2.11)

Remark 2.7. Recall the definition of θ coming from the Gromov–Witten theories. Then it is easy
to see that Eqs. (2.11) are contained in the set of the topological recursion relations for F0 (see
[19]).

We now rewrite the formulas for the vector fields from g± in terms of Ψk . For a matrix A we
denote by [A] the sum of all entries of A:

[A] = (1, . . . ,1)A(1, . . . ,1)t .

Proposition 2.8.

s.F = 1

2

[
Ψ t

0

(−Ψ2s1Ψ
t
0 + Ψ1s1Ψ

t
1 − Ψ0s1Ψ

t
2

− Ψ1s2Ψ
t
0 + Ψ0s2Ψ

t
1 − Ψ0s3Ψ

t
0

)
Ψ0

]
, (2.12)

and for any l � 1,

(
rlζ

l
)
.F = −1

2

[
Ψ t

0

(
l+3∑
i=0

(−1)iΨl+3−i rlΨ
t
i

)
Ψ0

]
. (2.13)

Proof. Follows from Propositions 2.2 and 2.3 and formula (2.9). We also use here that (sl)μν =
(−1)l−1(sl)νμ and the same for matrices rl , l = 1,2, . . . . �
3. Derivative formulas in the KP picture

We start with the definition of the structure of G± modules on F (or rather on its comple-
tion F̄ ).

Recall that we have fixed the basis v
(i)
k , 1 � i � n, k ∈ Z + 1

2 of the space V . Let C
n be an

n-dimensional vector space with a basis ei , i = 1, . . . , n. Consider the isomorphism

V → C
n ⊗ C

[
t, t,−1 ]

, v
(i)
k �→ ei ⊗ t−k− 1

2 .

We define the action of the groups G± and the algebras g± on C
n ⊗ C[t, t,−1 ] via the map

ζ i �→ t−i (see Remark 3.1). For instance, the element

R(ζ ) = Id+
∑

Riζ
i ∈ G+
i>0
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acts as the operator R(t) = Id+∑
i>0 Ri ⊗ t−i on the completed space V with respect to the

grading defined by the powers of t (this is an analogue of the energy grading). This gives the
homomorphisms

G± → GL±∞, g± → �gl
±
∞

and thus produces the structure of G− (g−) module on F = Λ∞/2V and the structure of G+ (g+)
module on the completed space F̄ . For instance, we can define the tau-functions, corresponding
to any element S(ζ ) ∈ G− and R(ζ ) ∈ G+ (in the latter case these tau-functions are the power
series in x).

Remark 3.1. We have fixed the action of ζ i as the multiplication by t−i in order to match two
different styles of notations: one coming from the Frobenius structures side (see [16,13]) and the
other coming from the KP side (see [22,23,29]). In fact, the group G+, containing the power
series in variable ζ , corresponds to the group of operators, which are infinite series in t−1 in the
KP picture and vice versa (see the rest of this section). In particular, the group G+ (which is
called the upper-triangular group in [16,13]) is embedded into the lower-triangular group GL+∞.

Let A = A(t) be an element from the twisted loop group and a be an element from the twisted
loop Lie algebra. Our goal in this section is to compute the derivatives

∂

∂ε
Ψ

(
A exp(εa), x, z

)∣∣∣∣
ε=0

. (3.1)

We will consider two cases: a = s(t) = ∑
l>0 sl t

l and a = rl t
−l . The first case is simple and the

second is much more involved.
Recall that the wave function for A = A(t) is equal to:

Φ±
ik(A,x, z) =

∑

∈Z

Φ±
ik(A,x)
z


 = 〈0|Γ+(x)Q∓1
i ψ±(k)(z)A|0〉

〈0|Γ+(x)A|0〉 , (3.2)

where

Γ+(x) =
n∏

i=1

Γ
(i)
+

(
x(i)

)
.

The Ψ = Ψ + function is given by

Ψ ±
ik (A,x, z) =

∞∑

=0

Ψ ±
ik (A,x)
z


 = 〈0|Γ+(x)Q∓1
i Aψ±(k)(z)|0〉

〈0|Γ+(x)A|0〉 (3.3)

and the corresponding matrix is given by

Ψ ±(
A(t), x, z

) = Φ±(
A(t), x, z

)
A(z). (3.4)

For f (z) = ∑
fiz

i let f (z)+ = ∑
fiz

i and f (z)− = f (z) − f (z)+.
i∈Z i�0
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Proposition 3.2. Let s = s(ζ ) = ∑
i>0 siζ

−i ∈ g−, Sε = exp(εs) ∈ G−. Then

∂

∂ε
Ψ (ASε, x, z)

∣∣∣∣
ε=0

= Ψ (A,x, z)s
(
z−1) (3.5)

or, equivalently,

s.Ψk =
k−1∑
i=0

Ψisk−i .

Proof. Direct computation. �
Theorem 3.3. Let rζ 
 ∈ g+, Rε = exp(εrζ 
) ∈ G+. Then

∂

∂ε
Ψ (ARε, x, z)

∣∣∣∣
ε=0

= Ψ (A,x, z)rz−


−

∑

p=1


−p∑
q=0

(−1)
−p−qΨ (A,x)qrΨ (A,x)t
−p−qΨ (A,x, z)z−p

(3.6)

or, equivalently,

(
rζ 


)
.Ψk = Ψ
+kr −


∑
p=1


−p∑
q=0

(−1)
−p−qΨqrΨ t

−p−qΨp+k.

Remark 3.4. Formulas (3.5) and (3.6) can be written in a uniform way:

∂

∂ε
Ψ (AGε,x, z)

∣∣∣∣
ε=0

= Ψ (A,x, z)g
(
z−1) − (

Ψ (A,x, z)g
(
z−1)Ψ (A,x,−z)t

)
−Ψ (A,x, z),

where g(ζ ) + g(−ζ )t = 0 and Gε = exp(εg(ζ )). This is simple for g(ζ ) = s(ζ ) and will be
proved below for g(ζ ) = rζ 
.

The proof of Theorem 3.3 occupies the rest of this section. We start with simple lemma.

Lemma 3.5. The following equality holds up to O(ε2)

Ψ +(ARε, x, z) − Ψ +(A,x, z)

= εΨ +(A,x, z)rz−
 + ε

( 〈0|Γ+(x)Q−1
i ψ+(k)(z)Art−
|0〉

〈0|Γ+(x)A|0〉
)

1�i,k,�n

· A(z)

− ε
〈0|Γ+(x)Art−
|0〉

〈0|Γ+(x)A|0〉 Ψ +(A,x, z). (3.7)
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Proof. A straightforward calculation using the formulas (3.2)–(3.4). �
In order to compute the right-hand side of (3.7) we introduce the generating series

r(w,y) =
n∑

a,b=1

rab:ψ+(a)(w)ψ−(b)(y):

and replace rt−l in (3.7) with r(w,y). Later on we will take the residue of y−
 limw→y r(w,y)

which is equal to rt−
.
In what follows we will need the following lemma:

Lemma 3.6. (a) A ⊗ A commutes with

S =
n∑

k=1

Resz ψ+(k)(z) ⊗ ψ−(k)(z),

i.e.,
n∑

k=1

Resz ψ+(k)(z)A|0〉 ⊗ ψ−(k)(z)A|0〉

=
n∑

k=1

Resz Aψ+(k)(z)|0〉 ⊗ Aψ−(k)(z)|0〉 = 0 (3.8)

and
S
(|0〉 ⊗ |0〉) = 0.

(b) We have
n∑

k=1

Resz ψ+(k)(z):ψ+(a)(w)ψ−(b)(y):|0〉 ⊗ ψ−(k)(z)|0〉

= −Resz δ(z − y)ψ+(a)(w)|0〉 ⊗ ψ−(b)(z)|0〉
= −

∑
i�0

ψ
+(a)

−i− 1
2
wi |0〉 ⊗

∑
j�0

ψ
−(b)

−j− 1
2
yj |0〉. (3.9)

The central point of the proof is the following proposition:

Proposition 3.7.( 〈0|Q−1
i Γ+(x)ψ+(k)(z)A:ψ+(a)(w)ψ−(b)(y):|0〉

〈0|Γ+(x)A|0〉
)

1�i,k,�n

= 〈0|Γ+(x)A:ψ+(a)(w)ψ−(b)(y):|0〉
〈0|Γ+(x)A|0〉 Φ+(A,x, z)

−
∑

p,q,s�0

Ψ +(A,x)qwqEabΨ
−(A,x)s

yp+s

zp+1
Φ+(A,x, z). (3.10)
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We first deduce Theorem 3.3 from Proposition 3.7.

Proof of Theorem 3.3. Multiplying (3.10) by rab and summing over all a and b, we obtain

( 〈0|Q−1
i Γ+(x)ψ+(k)(z)Ar(w,y)|0〉

〈0|Γ+(x)A|0〉
)

1�i,k�n

= 〈0|Γ+(x)Ar(w,y)|0〉
〈0|Γ+(x)A|0〉 Φ+(A,x, z)

−
∑

p,q,s�0

Ψ +(A,x)qwqrΨ −(A,x)s
yp+s

zp+1
Φ+(A,x, z). (3.11)

Now multiply from the right by A(z)y−
, take w = y and select the coefficient of y−1. Using
(3.2)–(3.4) and (3.7) this gives up to O(ε2):

Ψ +(ARε, x, z) = Ψ +(A,x, z) + εΨ +(A,x, z)rz−


−

∑

p=1


−p∑
q=0

Ψ +(A,x)qrΨ −(A,x)
−p−qΨ +(A,x, z)z−p. (3.12)

Recall that with the restriction x
(i)
2
 = 0, one has

Ψ −(A,x, z) = Ψ +(A,x,−z)t

(see [29]). Thus we obtain

Ψ +(ARε, x, z) = Ψ +(A,x, z) + εΨ +(A,x, z)rz−


− ε


∑
p=1


−p∑
q=0

(−)
−p−qΨ +(A,x)qrΨ +(A,x)t
−p−qΨ +(A,x, z)z−p.

(3.13)

The theorem is proved. �
In the rest of the section we prove Proposition 3.7.

Proof of Proposition 3.7. Our goal is to compute the expression

T (z) = Tij (z)

=
n∑

k=1

( 〈0|Q−1
i Γ+(x)ψ+(k)(z)A:ψ+(a)(w)ψ−(b)(y):|0〉

〈0|Γ+(x)A|0〉

⊗ 〈0|QjΓ+(x′)ψ−(k)(z)A|0〉
′

)
. (3.14)
〈0|Γ+(x )A|0〉
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If we put x = x′ in (3.14) and forget the tensor product, then (3.14) is the multiplication of the
i-th row of the left-hand side of (3.10) with the j -th row of Φ−(A,x, z). So we obtain the left-
hand side of (3.10) by putting the results of the calculations of (3.14) for all 1 � i, j � n in a
matrix, multiplying this by Φ+(A,x, z) and using that Φ+(A,x, z) = Φ−(A,x, z)t −1.

Let T (z) = ∑
k∈Z

Tkz
k and T (z)+ = ∑

k�0 Tkz
k , T (z)− = T (z) − T (z)+. We first compute

T (z)−.
Using (3.8) we obtain that T−1 = Resz T (z) is equal to

n∑
k=1

Resz

( 〈0|Q−1
i Γ+(x)Aψ+(k)(z):ψ+(a)(w)ψ−(b)(y):|0〉

〈0|Γ+(x)A|0〉

⊗ 〈0|QjΓ+(x′)Aψ−(k)(z)|0〉
〈0|Γ+(x′)A|0〉

)
. (3.15)

Using (3.9) we rewrite the last formula as

−Resz δ(z − y)
〈0|Q−1

i Γ+(x)Aψ+(a)(w)|0〉
〈0|Γ+(x)A|0〉 ⊗ 〈0|QjΓ+(x′)Aψ−(b)(z)|0〉

〈0|Γ+(x′)A|0〉

= −
∑
r�0

〈0|Q−1
i Γ+(x)Aψ

+(a)

−r− 1
2
wr |0〉

〈0|Γ+(x)A|0〉 ⊗
∑
s�0

〈0|QjΓ+(x′)Aψ
−(b)

−s− 1
2
ys |0〉

〈0|Γ+(x′)A|0〉

= −
∑
r�0

Ψ +
ia (A,x)rw

r ⊗
∑
s�0

Ψ −
jb

(
A,x′)

s
ys . (3.16)

Now, the derivative of the second factor of the first line of (3.16) with respect to −∑n
i=1

∂

∂x′(i)
1

,

produces an extra term −∑n
i=1 α

(i)
1 between Γ+(x′) and A. We get two of such terms, one for

the numerator and one for the denominator. This element commutes with A and gives 0 when
acting on the vacuum, hence the “denominator”-term is zero. Since

−
n∑

i=1

[
α

(i)
1 ,ψ

−(k)
j

] = ψ
−(k)
j+1 ,

one deduces that

T−2 =
n∑

k=1

Resz z

( 〈0|Q−1
i Γ+(x)ψ+(k)(z)A:ψ+(a)(w)ψ−(b)(y):|0〉

〈0|Γ+(x)A|0〉

⊗ 〈0|QjΓ+(x′)ψ−(k)(z)A|0〉
〈0|Γ+(x′)A|0〉

)
= −y

∑
Ψ +

ia (A,x)rw
r ⊗

∑
Ψ −

jb

(
A,x′)

s
ys . (3.17)
r�0 s�0
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Repeating this procedure, we obtain

T (z)− = −
∞∑

p=0

∑
r�0

Ψ +
ia (A,x)rw

r ⊗
∑
s�0

Ψ −
jb

(
A,x′)

s

yp+s

zp+1
. (3.18)

We now want to calculate the +-part of T (z) (see (3.14)). For this we look at
〈0|Q−1

i Γ+(x)ψ+(k)(z) and commute Γ+(x) with ψ+(k)(z). Using Theorem 1.3 and (1.13) we
obtain

〈0|Q−1
i Γ+(x)ψ+(k)(z) = zδik−1γ

(
x(k), [z])〈0|Q−1

i QkΓ+(x)Γ
(k)
+

(−[
z−1])

= zδik−1γ
(
x(k), [z]) exp

(
−

∞∑
j=1

∂

∂x
(k)
j

z−j

j

)

× 〈0|Q−1
i QkΓ+(x) (3.19)

which means that

( 〈0|Q−1
i Γ+(x)ψ+(k)(z)A:ψ+(a)(w)ψ−(b)(y):|0〉

〈0|Γ+(x)A|0〉
)

1�i,k�n

=
∞∑

p=0

B(x)pz−p
n∑

k=1

γ
(
x(k), [z])Ekk, (3.20)

with

∞∑
p=0

Bik(x)pz−p = (〈0|Γ+(x)A|0〉)−1
zδik−1 exp

(
−

∞∑
j=1

∂

∂x
(k)
j

z−j

j

)

× 〈0|Q−1
i QkΓ+(x)A:ψ+(a)(w)ψ−(b)(y):|0〉. (3.21)

In particular

Bik(x)0 = δik

〈0|Γ+(x)A:ψ+(a)(w)ψ−(b)(y):|0〉
〈0|Γ+(x)A|0〉 .

In a similar way we have that

〈0|QjΓ+(x)ψ−(k)(z)A|0〉
= zδjk−1γ

(−x(k), [z])〈0|QjQ
−1
k Γ+(x)Γ

(k)
+

([
z−1])A|0〉

= zδjk−1γ
(−x(k), [z]) exp

( ∞∑ ∂

∂x
(k)

z−j

j

)
〈0|QjQ

−1
k Γ+(x)A|0〉
j=1 j
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and thus( 〈0|QjΓ+(x′)ψ−(k)(z)A|0〉
〈0|Γ+(x′)A|0〉

)
1�j,k�n

=
∞∑

p=0

C
(
x′)

p
z−p

n∑
k=1

γ
(−x′(k)

, [z])Ekk,

with C(x′)0 = In.
Now forget the tensor product in (3.14). We see that this is as row times a column in a matrix

multiplication. Putting x = x′, one has that for every k

γ
(
x(k), [z])γ (−x′(k)

, [z]) = 1.

Thus the +-part of (3.14) (with the tensor product replaced with the usual product) is equal to∑
k Bik(x)0Cjk(x)0, or in other words

n∑
k=1

( 〈0|Q−1
i Γ+(x)ψ+(k)(z)A:ψ+(a)(w)ψ−(b)(y):|0〉

〈0|Γ+(x)A|0〉

× 〈0|QjΓ+(x)ψ−(k)(z)A|0〉
〈0|Γ+(x)A|0〉

)
+

= 〈0|Γ+(x)A:ψ+(a)(w)ψ−(b)(y):|0〉
〈0|Γ+(x)A|0〉 δij . (3.22)

Proposition 3.7 follows. �
4. The main theorem

In this section we compare the derivatives for the KP wave functions (obtained in the previous
section) with the restriction of the Y.-P. Lee derivatives written in flat coordinates.

We note that the Frobenius structure defined in Theorem 2.5 can be rewritten as

F(x1, . . . , xn) = 1

2

[−Ψ t
0Ψ3 + Ψ t

0Ψ2Ψ
t
1Ψ0

]∣∣∣∣
x

(i)
k =0,k�2

.

Here xi = x
(i)
1 and [M] denotes the sum of elements of a matrix M , i.e., [M] = (1, . . . ,1)×

M(1, . . . ,1)t . In Proposition 4.1 we derive the formula for the vector fields derivatives of F in
the coordinates t i . Namely, suppose we have a family of the group elements A(ε; ζ ). Then our
general procedure defines the family of Ψk(ε), θ(k)(ε) and F(ε). In particular, the flat coordinates
t i (ε) also depend on ε. Considering F(ε) as the family of functions in variables xi , we have the
corresponding derivatives at ε = 0, which we denote by Ḟ . For any ε we have an equality

F(ε;x1, . . . , xn) = F
(
ε; t1(ε), . . . , tn(ε)

)
.

Our goal is to find the derivative of F(ε) with “frozen” variables ti (ε), i.e. we want to forget the
dependence of the variables ti (ε) on ε. We keep only the dependence on ε of the coefficients of
F(ε), written as a series in t i (ε). We denote the derivative in “frozen” coordinates by ∂F .
∂ε
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Proposition 4.1. The derivative in flat coordinates is given by the formula

∂F

∂ε
= 1

2

[
Ψ t

0

(−Ψ̇3Ψ
t
0 + Ψ̇2Ψ

t
1 − Ψ̇1Ψ

t
2 + Ψ̇0Ψ

t
3

)
Ψ0

]
.

Proof. We have

∂F

∂ε
= Ḟ −

n∑
i=1

∂F

∂ti
ṫi

= Ḟ − [
Ψ t

0Ψ2
(
Ψ t

1Ψ0
)·]

= 1

2

[−(
Ψ t

0Ψ3
)·
Ψ t

0Ψ0 + (
Ψ t

0Ψ2
)·
Ψ t

1Ψ0 + Ψ t
0Ψ2

(
Ψ t

1Ψ0
)·]

− [
Ψ t

0Ψ2
(
Ψ t

1Ψ0
)·]

= 1

2

[−(
Ψ t

0Ψ3
)·
Ψ t

0Ψ0 + (
Ψ t

0Ψ2
)·
Ψ t

1Ψ0

− (
Ψ t

0Ψ1
)·
Ψ t

2Ψ0 + (
Ψ t

0Ψ0
)·
Ψ t

3Ψ0
]

= 1

2

[−Ψ t
0 Ψ̇3Ψ

t
0Ψ0 + Ψ t

0 Ψ̇2Ψ
t
1Ψ0 − Ψ t

0 Ψ̇1Ψ
t
2Ψ0 + Ψ t

0 Ψ̇0Ψ
t
3Ψ0

]
.

Here the first equation is exactly the formula for the derivative corrected with respect to the first
order change of coordinates with respect to ε, and for the rest we used Ψ (−z)tΨ (z) = Id and the
fact that [At ] = [A]. �

We now prove that formulas from Propositions 2.8 and 4.1 do coincide (we use the expressions
for the derivatives Ψ̇i from Proposition 3.2 and Theorem 3.3).

Proposition 4.2. Let s = s(ζ ) ∈ g−. Then we have

−(s.Ψ3)Ψ
t
0 + (s.Ψ2)Ψ

t
1 − (s.Ψ1)Ψ

t
2 + (s.Ψ0)Ψ

t
3

= −Ψ0s1Ψ
t
2 + Ψ1s1Ψ

t
1 − Ψ2s1Ψ

t
0 + Ψ0s2Ψ

t
1 + Ψ1s1Ψ

t
0 − Ψ0s3Ψ

t
0 . (4.1)

Proof. Follows from Proposition 3.2. �
Proposition 4.3. Let rζ l ∈ g+. Then we have

−(
rζ l .Ψ3

)
Ψ t

0 + (
rζ l .Ψ2

)
Ψ t

1 − (
rζ l .Ψ1

)
Ψ t

2 + (
rζ l .Ψ0

)
Ψ t

3

= −
l+3∑
i=0

(−1)iΨl+3−i rΨ
t
l+3−i . (4.2)

Proof. From Theorem 3.3 we obtain
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rζ l .Ψ0 = Ψlr −
l∑

q=1

l−q∑
p=0

(−1)l−p−qΨprΨ t
l−p−qΨq,

rζ l .Ψ1 = Ψl+1r −
l∑

q=1

l−q∑
p=0

(−1)l−p−qΨprΨ t
l−p−qΨq+1,

rζ l .Ψ2 = Ψl+2r −
l∑

q=1

l−q∑
p=0

(−1)l−p−qΨprΨ t
l−p−qΨq+2,

rζ l .Ψ3 = Ψl+3r −
l∑

q=1

l−q∑
p=0

(−1)l−p−qΨprΨ t
l−p−qΨq+3.

Substituting these expressions we rewrite the left-hand side of (4.1) as

−Ψl+3rΨ
t
0 + Ψl+2rΨ

t
1 − Ψl+1rΨ

t
2 + ΨlrΨ

t
3

+
l∑

q=1

l−q∑
p=0

(−1)l−q+pΨprΨ t
l−p−q

(
Ψq+3Ψ

t
0 − Ψq+2Ψ

t
1 + Ψq+1Ψ

t
2 − ΨqΨ t

3

)
. (4.3)

The sum inside brackets is equal to

q∑
s=1

(−1)sΨq−sΨ
t
s+3. (4.4)

Therefore (4.3) is equal to

−Ψl+3rΨ
t
0 + Ψl+2rΨ

t
1 − Ψl+1rΨ

t
2 + ΨlrΨ

t
3

+
l−1∑
p=0

l∑
s=1

(−1)l−p+sΨpr

( ∑
s�q�l−p

(−1)qΨ t
l−p−qΨq−s

)
Ψ t

s+3.

Since Ψ t(−z)Ψ (z) = Id, the sum in brackets vanishes unless s = l −p. In the latter case the sum
is equal to (−1)l−p . The proposition follows. �

Summarizing, we obtain the following theorem:

Theorem 4.4. Let a be an element from the twisted loop Lie algebra. For any A from the twisted
loop group the effect of the derivative

∂

∂ε
Ψ

(
A exp(εa), x, z

)∣∣∣∣
ε=0

on the corresponding Frobenius structure is given by the genus zero no-descendants restriction
of the Y. -P. Lee formulas.
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