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a b s t r a c t

Amultiset hook length formula for integer partitions is established by using combinatorial
manipulation. As special cases, we rederive three hook length formulas, two of them
obtained by Nekrasov–Okounkov, the third one by Iqbal, Nazir, Raza and Saleem, who have
made use of the cyclic symmetry of the topological vertex. Amultiset hook-content formula
is also proved.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Recently, an elementary proof of the Nekrasov–Okounkov hook length formula [18] was given by the second author
in [8], using the Macdonald identities for At (see [15]). A crucial step of that proof is the construction of a bijection between
t-cores and integer vectors satisfying some additional properties. Several further papers related to the Nekrasov–Okounkov
formula have been published. See, e.g., [24,3,5,4,10,23,20,11].

In the present paper, we again take up the study of the Nekrasov–Okounkov formula and obtain several results in the
following directions. (1) The bijection between t-cores and integer vectors is constructed for any positive integer t , while
in [8], t had to be an odd positive integer. (2) That bijection is shown to satisfy a multiset hook length formula (Theorem 1)
with a functional parameter τ by using a geometric model, called ‘‘exploded tableau’’. The result in [8] corresponds to the
special case τ(x) = x. (3) A multiset hook length formula provides another special case when taking τ = sin, namely
Theorem 2. (4) Three hook length formulas are derived (Corollaries 7 and 8, Theorem 5), the first two previously
obtained by Nekrasov–Okounkov [18], the third one by Iqbal et al. [11]. (5) Theorem 2 provides a unified formula for the
Nekrasov–Okounkov formula and the classical Jacobi triple product identity [2, p. 21], [12, p. 20]. This formula solves Problem
6.4 in [7]. (6) A multiset hook-content hook length formula is also given in Section 6.

The basic notions needed here can be found in [16, p. 1], [22, p. 287], [13, p. 1], [12, p. 59], and [2, p. 1]. A partition λ
of size n and of length ℓ is a sequence of positive integers λ = (λ1, . . . , λℓ) such that λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0 and
n = λ1 + λ2 + · · · + λℓ. We write n = |λ|, ℓ(λ) = ℓ and λi = 0 for i ≥ ℓ + 1. The set of all partitions of size n is denoted
by P (n). The set of all partitions is denoted by P , so that P =


n≥0 P (n). The hook length multiset of λ, denoted by H(λ),

is the multiset of all hook lengths of λ. Let t be a positive integer. We write Ht(λ) = {h | h ∈ H(λ), h ≡ 0(mod t)}. A
partition λ is a t-core if Ht(λ) = ∅ (see [12, p.69, p.612], [22, p. 468]). For example, λ = (6, 3, 3, 2) is a partition of size 14
and of length 4. We have H(λ) = {2, 1, 4, 3, 1, 5, 4, 2, 9, 8, 6, 3, 2, 1} and H2(λ) = {2, 4, 4, 2, 8, 6, 2} (see also [8]).
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Table 1
The example λ = (8, 4, 3, 2, 2, 1) with t = 5. Note that this also gives W1(λ), V1(λ), etc.
sinceW (λ) = W1(λ), etc.

λ (8, 4, 3, 2, 2, 1)
W (λ) {10, 5, 3, 1, 0,−2,−4,−5,−6,−7,−8,−9,−10,−11, . . .}
V (λ) {10, 3, 1,−6,−8}
WĎ(λ) {5, 0,−2,−4,−5,−7,−9,−10,−11, . . .}
M(λ) 10
m(λ) −4
C(λ) {9, 8, 7, 6, 4, 2,−1,−3}

λ∗ (6, 5, 3, 2, 1, 1, 1, 1)
W2(λ) {8, 6, 3, 1,−1,−2,−3,−4,−6,−7,−8,−9,−10,−11,−12, . . .}
V2(λ) {8, 6,−1,−3,−10}
WĎ

2 (λ) {3, 1,−2,−4,−6,−7,−8,−9,−11,−12, . . .}
M2(λ) 8
m2(λ) −6
C2(λ) {7, 5, 4, 2, 0,−5}

Let t be a positive integer and t0 = 0 (resp. t0 = 1/2) if t is odd (resp. even). Consider the set of (half-)integers Z′
=

t0 + Z. Each vector of (half-)integers V⃗ = (v0, v1, . . . , vt−1) ∈ Z′t is called a Vt-coding if the following conditions hold:
(i) {vi − i mod t : i = 0, . . . , t −1} is equal to t0 +{0, 1, . . . , t −1}, (ii) v0 +v1 +· · ·+vt−1 = 0, (iii) v0 > v1 > · · · > vt−1.

Theorem 1. Let t be a positive integer and τ : Z → F be any weight function from Z to a field F . Then, there is a bijection
φt : λ → V⃗ = (v0, v1, . . . , vt−1) from t-cores onto Vt-codings such that

|λ| =
1
2t
(v20 + v21 + · · · + v2t−1)−

t2 − 1
24

(1)

and ∏
h∈H(λ)

τ(h − t)τ (h + t)
τ (h)2

=

t−1∏
i=1

τ(−i)βi(λ)

τ(i)βi(λ)+t−i

∏
0≤i<j≤t−1

τ(vi − vj), (2)

where βi(λ) = #{� ∈ λ : h(�) = t − i}.

The proof of Theorem 1 is given in Section 3.With the weight function τ = sin, an odd function, we get the specialization
stated in the next theorem. Its proof is given in Section 5.

Theorem 2. For any positive integer r and any complex numbers z, t, we have−
λ

q|λ|
∏

h∈Hr (λ)


1 −

sin2(tz)
sin2(hz)


= exp

∞−
k=1


qk

k(1 − qk)
−

rqrk

k(1 − qrk)
sin2(tkz)
sin2(rkz)


. (3)

Some specializations of Eq. (3) are given in Section 4.

2. Exploded tableau

With each partition λ = (λ1, λ2, . . . , λℓ) and each positive integer t we associate several sets of (half-)integers. All these
concepts will be illustrated for the case λ = (8, 4, 3, 2, 2, 1) and t = 5 (see Table 1). Note that this case is special, as λ itself
is a t-core, but this property will be assumed most of the time.

The W -set of λ is a translation of the shifted parts, defined to be the set of all integers of the form λi − i + (t + 1)/2
for i ∈ N \ 0 (the partition λ is viewed as an infinite non-increasing sequence trailing with zeros). We denote this set by
W (λ). It is immediate that W (λ) ⊂ Z′. It is also clear that there exists a smallest (half-)integral M = M(λ) and a largest
(half-)integralm = m(λ) such that {m,m − 1, . . .} ⊆ W (λ) ⊆ {M,M − 1, . . .}.

We say that an element x in a set X is t-maximal if it is the largest in its congruence class modulo t . If t is even, we have
W (λ) ⊂

Z
2 . By ‘‘congruence classes mod t ’’, we then mean the congruence classes mod t of 1/2, 3/2, . . . , t − 1/2. The set

of t-maximal elements is denoted by t-max(X). In the cases further considered, congruence classes will always contain an
element, so no maximum will ever be taken over an empty set. It is then clear that |t-max(X)| = t .

We define the V -set V (λ) of λ by V (λ) := t-max(W (λ)). It is easily seen from the definition ofm(λ) that no congruence
class modulo t can be empty. We also set W Ď(λ) = W (λ) \ V (λ). If V (λ) is sorted by decreasing order, we get a Vt-coding
(as proved in Eq. (8)), that will be denoted by V⃗ (λ) = φt(λ). Thus, the bijection φt required in Theorem 1 is constructed.

We also define the complementary set C(λ) := {M,M − 1, . . .} \ W (λ), so that the disjoint unionW Ď(λ)∪ V (λ)∪ C(λ)
is equal to {M,M − 1, . . .}. Note thatm(λ) = min C(λ)− 1.

The invariants previously defined, such as V (λ),W (λ), . . . will also be given the subscript ‘‘1’’, as in V1(λ),W1(λ), . . ..
The invariants attached to the conjugate partition λ∗, such as V (λ∗),W (λ∗), . . .will then be written V2(λ),W2(λ), . . ..
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Fig. 1. The exploded tableau of the partition λ = (8, 4, 3, 2, 2, 1), with t = 5. The partition (shaded boxes) appears in an orientation similar to the French
orientation for Ferrers diagrams. Therefore, axes are reversed and switched. The W -sets of λ and λ∗ serve as coordinates and the V -sets are underlined.
For instance, consider the third box of the second row of the classical Ferrers diagram of λ, i.e. the second-to-last box on that row. This box now ends up at
coordinates


4 − 2 +

5+1
2 , 3 − 3 +

5+1
2


= (5, 3), carrying the entry 5 + 3 = 8. Three diagonal lines separate∆,Γ + and Γ − .

The exploded diagram of a partition λ, which we now define, is a basic tool in the construction. The reader is referred to
Fig. 1 for an example when t is odd, and Fig. 3 when t is even. We start with a two-dimensional lattice Z′

× Z′
⊂ R2, and

add a 1 × 1 box in each position

λi − i + t+1

2 , λ
∗

j − j + t+1
2


of the lattice for every i, j ∈ N>0. This means that there is one

box in each element of W1(λ) × W2(λ). In contrast to the classical Ferrers diagram, the exploded diagram is thus infinite.
The entry of each box in the exploded diagram is defined to be the sum of the two coordinates of the box. When the entry is
explicitly written on each box, we shall speak of an exploded tableau.

Boxes of constant entry line up on anti-diagonals. We use this fact to group boxes into different sets. Let ∆ (resp. Γ +,
resp. Γ −) be the set of all boxes with entries in the range (t,∞) (resp. (0, t), resp. (−t, 0)). The set ∆ corresponds to the
boxes of λ in the classical Ferrers diagram (which are shaded in Fig. 1). In addition, if (x, y) ∈ ∆ corresponds to � ∈ λ, its
entry x + y in the exploded tableau is equal to h� + t . The entries lower than t correspond to outside hooks, and there are
thus no box with entry exactly t .

Given a set X , we write−X for the set of opposites of elements of X . In the special case of a t-core, many of the invariants
we just defined are nicely related.

Lemma 3. If λ is a t-core, then

W (λ) =


a∈V (λ)

(a − tN) (4)

V1(λ) = W1(λ) ∩ −W2(λ) (5)
V2(λ) = −V1(λ) (6)

W Ď
1 (λ) = −C2(λ) ∪ {−M2(λ)− 1,−M2(λ)− 2, . . .} (7)−

v∈V (λ)

v = 0. (8)
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Fig. 2. The product given in Eq. (14) marked in a graphical way. First, B is the set of all boxes (shaded or not) located in∆with entries in the range [6, 9].
The set T(−t,−t)(B) is materialized by all the squares appearing in Γ − . The set T(−t,0)(B) ∪ T(0,−t)(B) consists of all the circles appearing in Γ + . The middle
diagonal indicates the diagonal used to fold the boxes of Γ − , while the dashed squares show the locations where those boxes end up. One example is
indicated with the arrow.

Proof. We first prove Eq. (4). The set W (λ) consists by definition of the wi = λi − i + (t + i)/2. If j ≥ i > 0, then all hook
lengths in the interval [wi −wj+1 −1, wi −wj +1] appear in row i of λ. Hence ifwi −wj < t andwi −wj+1 > t , then t must
appear as a hook length in row i and λwould not be a t-core. So for any i, there must always exist a j > iwithwi −wj = t .

It is a classical lemma in combinatorics that for any partition λ, the two sets {λi − i + 1/2 : i ≥ 1} and −{λ∗

i − i + 1/2 :

i ≥ 1} are disjoint and that their union is Z + 1/2. The sets W1(λ) and −W2(λ) are merely translates of these two classical
sets. In light of Eq. (4) the sets W1 and −W2 intersect in just one point for each congruence class mod t . It is easy to show
that the set of all those points is actually V1(λ) or −V2(λ) (Eqs. (5) and (6)).

Eq. (7) is a quick consequence of the previous three. A proof of identity (8) by using the Durfee square of the partition λ
can be found in [6]. �

3. Proof of Theorem 1

Throughout the proof we will use the example of λ = (8, 4, 3, 2, 2, 1) and t = 5, as illustrated in Fig. 2 (for t odd) and
Fig. 3 (for t even). When t is even, both coordinates are half-integers. The entries are still integral and the argument carries
through identically. Let T(a,b) : Z′

→ Z′ denote the translation defined by T(a,b)(x, y) = (x + a, y + b). We now need the
following easy results:

1W1×WĎ
2

+ 1WĎ
1 ×W2

= 1W1×W2\V1×V2 + 1WĎ
1 ×WĎ

2
(9)

T(0,−t)(∆) = (∆ ∪ Γ +) ∩ (W1 × W Ď
2 ), (10)

T(−t,0)(∆) = (∆ ∪ Γ +) ∩ (W Ď
1 × W2), (11)

T(−t,−t)(∆) = (∆ ∪ Γ +
∪ Γ −) ∩ (W Ď

1 × W Ď
2 ). (12)

The first one, where 1 is the indicator function, is completely trivial. For the second, assume � = (x, y) ∈ λ, so that
x+y = h�+t and x ∈ W1, y ∈ W2. Then, its (0,−t) translate, equal to (x, y−t), has entry x+y−t which is nonnegative. Also,
y−t is inW Ď

2 , since y−t is not t-maximal. Finally, y−t ∈ W Ď
2 is equivalent to y ∈ W2. The other two identities follow similarly.
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Fig. 3. Analog of Fig. 2, but for the partition λ = (8, 5, 4, 1, 1, 1), with t = 6.

Proof of Theorem 1. For any set B of boxes in the exploded tableau let

‖B‖ :=

∏
(x,y)∈B

τ(x + y).

The left-hand side of Eq. (2) can be written

LHS =
‖∆‖ · ‖T(−t,−t)(∆)‖

‖T(−t,0)(∆)‖ · ‖T(0,−t)(∆)‖
. (13)

Using relations (9)–(12) we can rewrite expression (13) as

LHS =
‖∆ ∩ (V1 × V2)‖ · ‖Γ −

∩ (W Ď
1 × W Ď

2 )‖

‖Γ + \ (V1 × V2)‖
. (14)

This information is summarized graphically in Fig. 2 for our running example (the numerator is the product of the entries
in squares containing a value, while the denominator is the product of the entries in circles). At this point the reader is
encouraged to consider Fig. 2 to anticipate the next step: we aim to ‘‘fold’’ the boxes in the region Γ + and interleave them
with boxes in the region Γ −.

Consider the map F : Z′
× Z′

→ Z′
× Z′, sending (x, y) to (−y,−x). By Eq. (7), this map is a bijection between

Γ −
∩ (W Ď

1 × W Ď
2 ) and Γ

+
∩ (C1 × C2). It also merely changes the sign of x + y. Hence,

‖Γ −
∩ (W Ď

1 × W Ď
2 )‖ =

t−1∏
i=1


τ(−i)
τ (i)

βi(λ)
‖Γ +

∩ (C1 × C2)‖. (15)

We now claim that

‖Γ +
∩ (W1 × (M2 − N))‖

‖Γ + ∩ (Z′ × C2)‖
=

t−1∏
i=1

τ(i)t−i. (16)
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The proof of this claim works by observing that in the denominator, the product over all boxes in a given column is always
of the form

∏t−1
i=1 τ(i). For the numerator, the product of all boxes in a given row is also of the form

∏t−1
i=1 τ(i), except for the

highest t − 1 rows, which end up producing the right-hand side. We are left to count the multiplicities of the full product∏t−1
i=1 τ(i) in numerator and denominator, and get |W1 ∩ [−M2,∞)| − t = |V1 ∪ −C2| − t = |C2| by Eq. (7). This proves

Eq. (16). Hence

‖Γ +
∩ (W1 × W2)‖

‖Γ + ∩ (C1 × C2)‖
=

‖Γ +
∩ (W1 × (W2 ∪ C2))‖

‖Γ + ∩ ((W1 ∪ C1)× C2)‖
=

t−1∏
i=1

τ(i)t−i. (17)

By Eqs. (14), (15), (17) we derive

LHS =

t−1∏
i=1


τ(−i)
τ (i)

βi(λ) ‖∆ ∩ V1 × V2‖ · ‖Γ +
∩ V1 × V2‖

t−1∏
i=1
τ(i)t−i

=

t−1∏
i=1

τ(−i)βi(λ)

τ(i)βi(λ)+t−i

∏
(x,y)∈V1×V2

x+y≥1

τ(x + y)

=

t−1∏
i=1

τ(−i)βi(λ)

τ(i)βi(λ)+t−i

∏
0≤i<j≤t−1

τ(vi − vj).

The last equality follows from Eq. (6). This last term equals the right-hand side of Eq. (2).
We still have to prove Eq. (1). For this, we conveniently rely on Eq. (2) with the special weight function τ(k) = 1 + zk2.

By considering the coefficient of z on both sides, we get

2|λ|t2 =

−
h∈H(λ)


(h − t)2 + (h + t)2 − 2h2 Eq. (2)

=


−

t−1−
k=1

k2(t − k)


+

−
0≤i<j≤t−1

(vi − vj)
2

=


−

1
12

t2(t2 − 1)


+

t
t−1−
i=0

v2i +


t−1−
i=0

vi

2
 , (18)

which implies the result, thanks to Eq. (8). �

When theweight function τ is either even or odd, the right-hand side of Eq. (2) can be simplified. In the next corollary we
assume that u = (u0, u1, . . . , ut−1) is the vector obtained by sorting the Vt-coding V⃗ according to the congruence classes,
i.e., ui ≡ i + t0(mod t) for 0 ≤ i ≤ t − 1.

Corollary 4. We have∏
h∈H(λ)

τ(h − t)τ (h + t)
τ (h)2

=
C

t−1∏
k=1
τ(k)t−k

∏
0≤i<j≤t−1

τ(ui − uj), (19)

with

C =


−1 if t ≡ 3 mod 4 while τ is odd,
1 otherwise.

Proof. We need to split the boxes in Γ − according to the congruence classes for the coordinates of the boxes.We know that
W (λ) ⊂ t0 + Z. It can be shown that for all i, j ∈ {0, 1, 2, . . . , t − 1},(x, y) ∈ Γ −

: x ≡ i + t0 mod t, y ≡ j + t0 mod t
 = max


0,

ui − uj

t


= max(0, ki − kj − δi<j)

if u = (ui) = (i + t0 + t · ki)t−1
i=0 . Therefore,

Γ −
= |{� ∈ λ : h� < t}| =

−
i,j

ui>uj

((ki − kj)− δi<j) ≡

−
i,j

ui>uj

((ki + kj)+ δi<j) mod 2

≡ (t − 1)


t−1−
i=0

ki


+

t(t − 1)
2

+ sgn
∏
i<j

(ui − uj) mod 2. (20)



2696 P.-O. Dehaye, G.-N. Han / Discrete Mathematics 311 (2011) 2690–2702

Table 2
The example λ = (8, 5, 4, 1, 1, 1)with t = 6.

λ (8, 5, 4, 1, 1, 1)
W (λ)

 21
2 ,

13
2 ,

9
2 ,

1
2 ,−

1
2 ,−

3
2 ,−

7
2 ,−

9
2 ,−

11
2 ,−

13
2 ,−

15
2 ,−

17
2 ,−

19
2 ,−

21
2 , . . .


V (λ)

 21
2 ,

13
2 ,−

1
2 ,−

7
2 ,−

9
2 ,−

17
2


WĎ(λ)

 9
2 ,

1
2 ,−

3
2 ,−

11
2 ,−

13
2 ,−

15
2 ,−

19
2 ,−

21
2 , . . .


M(λ) 21

2

m(λ) −
7
2

C(λ)
 19

2 ,
17
2 ,

15
2 ,

11
2 ,

7
2 ,

5
2 ,

3
2 ,−

5
2


λ∗ (6, 3, 3, 3, 2, 1, 1, 1)
W2(λ)

 17
2 ,

9
2 ,

7
2 ,

5
2 ,

1
2 ,−

3
2 ,−

5
2 ,−

7
2 ,−

11
2 ,−

13
2 ,−

15
2 ,−

17
2 ,−

19
2 ,−

21
2 ,−

23
2 , . . .


V2(λ)

 17
2 ,

9
2 ,

7
2 ,

1
2 ,−

13
2 ,−

21
2


WĎ

2 (λ)
 5

2 ,−
3
2 ,−

5
2 ,−

7
2 ,−

11
2 ,−

15
2 ,−

17
2 ,−

19
2 ,−

23
2 , . . .


M2(λ)

17
2

m2(λ) −
11
2

C2(λ)
 15

2 ,
13
2 ,

11
2 ,

3
2 ,−

1
2 ,−

9
2



We know (by Eq. (8)) that 0 =
∑t−1

i=0 ui =
∑t−1

i=0 (t0 + i + kit), which gives −
∑

ki =
t−1
2 + t0. Together with Eq. (20), this

easily gives C = (−1)(t0−1/2)(t−1), which is merely a restatement of Eq. (19) (see Table 2). �

4. Specializations

We derive some specializations of themultiset hook length formula (Theorem 1). The simplest non-trivial example is the
casewhere theweight function τ(x) = x. Theorem1 is then equivalent to Theorem1.1 in [8], which provides a combinatorial
proof of a hook length formula due to Nekrasov andOkounkov [18, formula (6.12)] (see also Eq. (22)) by using theMacdonald
identities for At [15]. When we take τ = sin, which is an odd function, thanks to some properties of the function sin (see
Lemma 12), we derive Theorem 2 in Section 5.

If r equals 1, we obtain the following hook length formula.

Theorem 5 (r = 1). For any complex numbers z and t, we have

−
λ

q|λ|
∏

h∈H(λ)


1 −

sin2(tz)
sin2(hz)


= exp

∞−
k=1

qk

k(1 − qk)


1 −

sin2(tkz)
sin2(kz)


. (21)

It can be shown that formula (21) is equivalent to the combination of the two identities (2.4) and (2.7) in the paper
written by Iqbal et al. [11]. Those authors have made use of the cyclic symmetry of the topological vertex [1,19]. When
t = 0 in Theorem 5, we obtain the classical generating function for partitions.

Corollary 6 (r = 1, t = 0). We have−
λ

q|λ|
= exp


∞−
k=1

qk

k(1 − qk)


=

∞∏
m=1

1
1 − qm

.

Since
sin(az)
sin(bz)

=
a − a3z2/6 + · · ·

b − b3z2/6 + · · ·
,

Eq. (21) becomes−
λ

q|λ|
∏

h∈H(λ)


1 −

t2

h2


= exp

−
k

qk

k(1 − qk)
(1 − t2)


when z = 0. We also obtain the following hook formula due to Nekrasov and Okounkov [18, Equation (6.12)] (see also [8]).

Corollary 7 (r = 1, z = 0). For any complex number β we have

−
λ

q|λ|
∏

h∈H(λ)


1 −

β

h2


=

∏
m

(1 − qm)β−1. (22)
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Let e2itz = s and q = qs in Theorem 5. Eq. (21) becomes−
λ

q|λ|
∏

h∈H(λ)


s +

s2 − 2s + 1
4 sin2(hz)


= exp

−
k

qk

k(1 − skqk)


sk +

s2k − 2sk + 1
4 sin2(kz)


. (23)

Letting s = 0 yields the following corollary.

Corollary 8 (r = 1, e2itz = 0).We have

−
λ

q|λ|
∏

h∈H(λ)

1
4 sin2(hz)

= exp

−
k

qk

4k sin2(kz)


. (24)

Note that Eq. (24) has the following equivalent form:−
λ

q|λ|
∏

h∈H(λ)

1
2 − 2 cos(hz)

= exp

−
k

qk

2k(1 − cos(kz))


,

or, since sinh(x) = −i sin(ix),−
λ

q|λ|
∏

h∈H(λ)


−

1
4 sinh2(hz)


= exp

−
k

qk

k


−

1
4 sinh2(kz)


. (25)

Eq. (25) and Equation (7.25) in [18] are the same. Minor typos are to be corrected in the latter paper.
Let s = −1 in Eq. (23). We immediately have−

λ

q|λ|
∏

h∈H(λ)


−1 +

1
sin2(hz)


= exp

−
k

qk

k(1 − (−1)kqk)


(−1)k +

2 − 2(−1)k

4 sin2(kz)


. (26)

Corollary 9 (r = 1, e2itz = −1). We have−
λ

q|λ|
∏

h∈H(λ)

cot2(zh) = exp

−
k≥1


q2k−1 cot2((2k − 1)z)
(2k − 1)(1 + q2k−1)

+
q2k

2k(1 − q2k)


.

When r = 1 and t = 2, Eq. (3) becomes the Jacobi triple product identity.

Corollary 10 (r = 1, t = 2). We have∏
n≥0

(1 + axn+1)(1 + xn/a)(1 − xn+1) =

+∞−
n=−∞

anxn(n+1)/2. (27)

5. Proof of Theorem 2

We use a Macdonald identity for the proof of our theorem. Let t be a positive integer. Milne [17] and Leı̆benzon [14]
provide the following version of Macdonald’s identity [15] for the type At : let Mt = {a = (a1, a2, . . . , at) ∈ Zt

| a1 + a2 +

· · · at = 1 + 2 + · · · + t}. For a ∈ Z denote the residue of a modulo t by resta ∈ Z/tZ. For each sequence (b1, b2, . . . , bt)
of residues modulo t define the number ϵ(b1, b2, . . . , bt) to be equal to 0 or ±1 according to the following rules: if bi is
different from bj whenever i and j are distinct, i.e. (b1, b2, . . . , bt) is a permutation of the sequence (rest1, rest2, . . . , rest t),
then ϵ(b1, b2, . . . , bt) is the sign of the permutation; otherwise, let ϵ(b1, b2, . . . , bt) = 0. For each a = (a1, a2, . . . , at) ∈ Zt

let ϵ(a) = ϵ(resta1, resta2, . . . , restat) and

Ω(a) =
1
2t


a21 + a22 + · · · + a2t − 12

− 22
− · · · − t2


.

The Macdonald identity is then rewritten in the following form.

Theorem 11. For every t ≥ 2 the identity

∏
m≥1


(1 − qm)t−1

∏
1≤j<i≤t


1 −

xi
xj
qm−1


1 −

xj
xi
qm


=

−
a∈Mt

ϵ(a)qΩ(a)x1−a1
1 · · · xt−at

t (28)

holds in the ring of formal power series in q with coefficients from the ring of Laurent polynomials in x1, x2, . . . , xt .
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Let t = 2t ′ + 1 be an odd integer. The right-hand side of Eq. (28) reads

A(q) =

−
a∈Mt

ai≡i−1 mod t

−
σ∈Sn

ϵ(σ )qΩ(a)x1−σ(a1)1 · · · xt−σ(at )t

= x11x
2
2 · · · xtt

−
a∈Mt

ai≡i−1 mod t

qΩ(a) det

x
−aj
i


.

Let u = (u0, u1, . . . , ut−1) be a sequence defined by

ui = ai+t ′+2 − t ′ − 1,

where at+j = aj. Then ui ≡ ai+t ′+2 − t ′ − 1 ≡ i + t ′ + 2 − 1 − t ′ − 1(mod t) and
∑t−1

i=0 ui =
∑t

i=1 −t(t ′ + 1) =

t(t − 1)/2 − t(t ′ + 1) = 0, so that the sorted vector V⃗ of u by decreasing order is a Vt-coding. Let λ = φ−1
t (V⃗ )where φt is

defined in Section 2. Then

Ω(a) =
1
2t

t−
i=1

(a2i − i2)

=
1
2t

t−
i=1

((ui−1 + t ′ + 1)2 − i2)

=
1
2t

t−1−
i=0

ui −
t2 − 1
24

Eq. (1)
= |λ|. (29)

Hence (remember that t is odd)

A(q) = x11x
2
2 · · · xtt

−
u

q|λ| det

x
−(uj−1+t ′+1)
i


= x11x

2
2 · · · xtt(x1x2 · · · xt)−t ′−1

−
u

q|λ| det

x
−uj−1
i


.

Let

B(q) =

∏
m≥1

(1 − qm)t−1

 ∏
1≤j<i≤t

∏
m≥1


1 −

xi
xj
qm


1 −
xj
xi
qm

.

Then

B(q) = A(q)/A(0) =

∑
u

q|λ| det

x
−uj−1
i


det


x
−wj−1
i

 , (30)

wherew = (w0, w1, . . . , wt−1) = (0, 1, 2, . . . , t ′,−t ′, . . . ,−2,−1). Let xi = e−2Iz(i−1), with I2 = −1. We have

det

x
−uj−1
i


= det


e2Iz(i−1)uj−1


=

∏
0≤i<j≤t−1

(e2Izui − e2Izuj)

= (2I)n(n−1)/2
∏

0≤i<j≤t−1

sin(uiz − ujz) (31)

and

det

x
−uj−1
i


= (2I)n(n−1)/2

∏
0≤i<j≤t−1

sin(uiz − ujz)

= (2I)n(n−1)/2(−1)t
′
t−1∏
k=1

sint−k(kz). (32)
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By the last three equations, we have∏
m≥1


(1 − qm)t−1

∏
1≤j<i≤t


1 −

e−2Iz(i−1)

e−2Iz(j−1)
qm


1 −
e−2Iz(j−1)

e−2Iz(i−1)
qm


=

∏
m≥1


(1 − qm)t−1

∏
1≤i≤t−1

(1 − e−2Iz(t−i)qm)i(1 − e−2Iz(−t+i)qm)i


=
(−1)t

′

t−1∏
k=1

sint−k(kz)

−
u

q|λ|
∏

0≤i<j≤t−1

sin(uiz − ujz).

We nowmake use of the following easy properties of the sin function.

Lemma 12. Let x, y, u1, u2, . . . , un be complex numbers such that u1 + u2 + · · · + un = 0. Then

sin(x − y) sin(x + y) = sin2(x)− sin2(y); (33)∏
1≤i<j≤n

sin(ui − uj) =

∏
1≤i<j≤n

e2uiI − e2ujI

2I
. (34)

Taking τ(k) = sin(kz) in Eq. (19) and using Lemma 12 we obtain the following result.

Lemma 13. For any complex number p and any odd positive integer t, we have

−
λ∈T (t)

q|λ|
∏

h∈H(λ)


1 −

sin2(tz)
sin2(hz)


=

∏
m≥1


(1 − qm)t−1

∏
1≤i≤t−1

(1 − e−2Iz(t−i)qm)i(1 − e2Iz(t−i)qm)i

, (35)

where T (t) is the set of all t-core partitions.

We can work with the logarithm of the right-hand side of Eq. (35) to get−
k

−1
k

−
m≥1


(t − 1)qmk

+

t−1−
i=1

ie−2Iz(t−i)kqmk
+ ie2Iz(t−i)kqmk

=

−
k

−qk

k(1 − qk)


(t − 1)+

t−1−
i=1

(ie−2Iz(t−i)k
+ ie2Iz(t−i)k)



=

−
k

qk

k(1 − qk)


1 −

e−2Iztk
+ e2Iztk − 2

e−2Izk + e2Izk − 2


.

Lemma 13 becomes the following lemma.

Lemma 14. For any complex numbers z and any odd positive integer t, we have

−
λ∈T (t)

q|λ|
∏

h∈H(λ)


1 −

sin2(tz)
sin2(hz)


= exp


∞−
k=1

qk

k(1 − qk)


1 −

sin2(tkz)
sin2(kz)


. (36)

Proof of Theorem 5. It is enough to prove that Eq. (23) is true for any complex numbers z and s. Let n be a positive integer.
The coefficient Cn(s) (resp. Dn(s)) of qn on the left-hand side (resp. right-hand side) of Eq. (23) is a polynomial in s of degree
2n. For the proof of Cn(s) = Dn(s), it suffices to find 2n+ 1 explicit numerical values s0, s1, . . . , s2n such that Cn(si) = Dn(si)
for 0 ≤ i ≤ 2n by using the Lagrange interpolation formula. The basic fact is that∏

h∈H(λ)


s +

s2 − 2s + 1
4 sin2(hz)


= 0

for every partition λ which is not a t-core (remember that s = e2tz). By comparing Theorem 2 and Lemma 14 we see that
Eq. (23) is truewhen s = e2tz for every odd integer t , i.e. Cn(e2tz) = Dn(e2tz). This guarantees Cn(s) = Dn(s) for every complex
number s. �
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Recall the following result obtained in [9].

Theorem 15 (Multiplication Theorem). If the series fα(q) and the function ρ(h) satisfy the relation−
λ∈P

q|λ|
∏

h∈H(λ)

ρ(αh) = fα(q), (37)

then, for any positive integer r, the following identity holds:−
λ∈P

q|λ|x#Hr (λ)
∏

h∈Hr (λ)

ρ(h) =

fr(xqr)

r ∏
k≥1

(1 − qrk)r

(1 − qk)
. (38)

This last result can be used as a transition from Theorem 5 to Theorem 2.
Proof of Theorem 2. Let ρ(h) = 1 − sin2(tz)/ sin2(hz) in Theorem 15. We get

fα(q) =

−
λ∈P

q|λ|
∏

h∈H(λ)

ρ(αh)

=

−
λ∈P

q|λ|
∏

h∈H(λ)


1 −

sin2(tz)
sin2(αhz)



Theorem 5
= exp


∞−
k=1

qk

k(1 − qk)


1 −

sin2(tkz)
sin2(αkz)


.

Hence,−
λ

q|λ|
∏

h∈Hr (λ)


1 −

sin2(tz)
sin2(hz)


= exp


r

∞−
k=1

qrk

k(1 − qrk)


1 −

sin2(tkz)
sin2(rkz)

∏
k≥1

(1 − qrk)r

(1 − qk)

= exp
∞−
k=1


qk

k(1 − qk)
−

rqrk

k(1 − qrk)
sin2(tkz)
sin2(rkz)


. �

6. Multiset hook-content formula

In this section, we establish a multiset hook-content formula. Let sλ be the Schur function corresponding to the partition
λ (see [16, p. 40], [22, p. 308], [13, p. 8]). Recall the following classical hook-content formula [22, p. 374], [21].

Theorem 16. For any partition λ and positive integer n we have

sλ(1, p, p2, . . . , pn−1) = pb(λ)
∏
�∈λ

1 − pn+c�

1 − ph�
, (39)

where b(λ) =
∑

i(i − 1)λi and c� = j − i if � ∈ λ occurs on the ith row and jth column of the diagram of λ.
We now state a theorem that provides an alternative approach to the left-hand side of Eq. (2).

Theorem 17. Let t be a positive integer. There is a bijection ψt : λ → µ which maps t-cores onto the set of all partitions µ of
length at most t − 1 such that {µi − i mod t : i = 1, . . . , t} = {0, 1, . . . , t − 1}. Moreover, given any τ from Z to a field F , we
have

|λ| = −|µ|
|µ| + t + t2

2t2
+

t−
i=1

µ2
i + 2(t + 1 − i)µi

2t
(40)

and

∏
�∈λ

τ(h� − t)τ (h� + t)
τ (h�)2

=

t−1∏
i=1


τ(−i)
τ (i)

βi(λ)∏
�∈µ

τ(t + c�)

τ (h�)
. (41)

In fact, Theorem 2 can also be proved by using the multiset hook-content formula (Theorem 17) and the hook-content
formula (Theorem16). Conversely, the hook-content formula (39) canbederivedbyusing themultiset hook-content formula
(41) and Theorem 2. This derivation justifies the name of this section.
Proof of Theorem 17. We give an explicit description of µ = ψt(λ). Let a = M2(λ) = −min V (λ) and V⃗ = φt(λ) be the
Vt-coding of λ. We also setµ = µ⃗ := (V⃗i − t + i+ a : i ∈ {1, . . . , t}) to be the (ordered) parts of a partition, trailing with at
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least one zero. The temporary arrow notation for vectors is meant to emphasize that it is now sorted by decreasing order.
The partition µmay be rewritten as µ⃗ = V⃗ + a1⃗ − b⃗where b⃗ = (t − 1, . . . , 0) and 1⃗ = (1, . . . , 1). We also know that

1
2t

V⃗ · V⃗ = |λ| +


t2 − 1
24


(by Eq. (1)), and that V⃗ · 1⃗ = 0 (by Eq. (8)). The statement to be proved is then

|λ| = −(µ⃗ · 1⃗)
µ⃗ · 1⃗ + t + t2

2t2
+
µ⃗ · µ⃗

2t
+

1
t


1⃗ + b⃗


· µ⃗.

But this follows readily from b⃗ · b⃗ = t(t − 1)(2t − 1)/6 and b⃗ · 1⃗ = t(t − 1)/2.
We now move on to Eq. (41). Define τ !(i) =

∏i
j=1 τ(j). On the other hand, we have

∏
�∈µ

τ(c� + t) =

t∏
i=1
τ !(µi + t − i)

t−1∏
i=1
τ(i)t−i

. (42)

The partition µ can be viewed in the exploded tableau by the set {(x, y) ∈ V1 × ([M2,−M1] \ −V1) | x + y > 0}. Hence∏
�∈µ

τ(h�) =

∏
(x,y)∈V1×([M2,−M1]\−V1)

x+y>0

τ(x + y)

=

∏
x∈V1

∏
y∈([M2,−M1]\−V1)

x+y>0

τ(x + y) =

∏
x∈V1

τ !(M2 + x)∏
0≤i,j≤t−1

τ(vi − vj)
. (43)

Eqs. (42) and (43), together with Theorem 1 suffice to establish (41). �
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