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Abstract

Given a graph H with a labelled subgraph G, a retraction of H to G is a homomorphism r : H → G such that r(x) = x for all
vertices x in G. We call G a retract of H. While deciding the existence of a retraction to a fixed graph G is NP-complete in general,
necessary and sufficient conditions have been provided for certain classes of graphs in terms of holes, see for example Hell and
Rival.

For any integer k�2 we describe a collection of graphs that generate the variety ARk of graphs G with the property that G
is a retract of H whenever G is a subgraph of H and no hole in G of size at most k is filled by a vertex of H. We also prove that
ARk ⊂ NUFk+1, where NUFk+1 is the variety of graphs that admit a near unanimity function of arity k + 1.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We begin by introducing the terminology of products, retracts, and varieties, before describing the results of the
paper. A graph is called reflexive if there is a loop at every vertex. For brevity, we use the term graph to mean finite,
simple, reflexive graph.

Let G and H be graphs. A homomorphism of H to G, is a function h : V (H) → V (G) such that h(x)h(y) ∈ E(G)

whenever xy ∈ E(H). The existence of such an edge-preserving mapping of the vertices of H to the vertices of G is
denoted by H → G, or h : H → G when the name of the function is important.

If G is a subgraph of H, then a retraction of H to G is a homomorphism r : H → G such that r(x) = x for all
x ∈ V (G). If there exists a retraction of H to G, then G is called a retract of H.

Let G1, G2, . . . , Gn be graphs. The strong product of G1, G2, . . . , Gn is the graph
∏n

i=1 Gi with vertices V (G1) ×
V (G2) × · · · × V (Gn), and an edge joining (x1, x2, . . . , xn) and (y1, y2, . . . , yn) if and only if xiyi ∈ E(Gi) for
i = 1, 2, . . . , n. We denote by Gk the strong product of k copies of G. Observe that since we are studying reflexive
graphs, the product K2 × K2 is a (reflexive) copy of K4.

A set X of graphs is a variety if every retract of a graph in X is also in X, and the strong product of any finite number
of graphs in X is also in X. Given a set S of graphs, the variety generated by S is the smallest variety that contains S.
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Let G be a fixed graph. The retraction problem for G, denoted RETG, is the problem of deciding if a given graph
H, with G as a labelled subgraph, admits a retraction to G. It follows from results in [5] that RETG is polynomial
time solvable for each chordal graph G, and from results in [3] that RETG is NP-complete for each graph G that
admits a retraction to a cycle of length at least four. A dichotomy theorem that, assuming P �= NP, characterizes the
graphs G for which the problem is polynomial time solvable and states that the problem is NP-complete for all other
graphs G, is unknown. Feder and Vardi [7] have established an equivalence between constraint satisfaction problems
and retraction problems for (reflexive) graphs. Their conjecture that, assuming P �= NP, each constraint satisfaction
problem is either NP-complete or polynomial time solvable is thus equivalent to the assertion that such a dichotomy
theorem for RETG exists. We remark that dichotomy theorems for variants of the homomorphism problem do exist for
several large classes, see [4,6,9].

Given the NP-completeness results above, it is not surprising that no theorem giving necessary and sufficient
conditions for a graph G to be a retract of a graph H of which it is a labelled subgraph is known. However, RETG is
tractable for certain classes of graphs. Many authors have identified such classes by describing an obvious necessary
condition, say C, and then studying those graphs G for which the condition is also sufficient. The collection of all such
G is the set of absolute retracts with respect to C. See [12] for an excellent survey.

One necessary condition for G to be a retract of H is that G is an isometric subgraph of H, meaning that for all vertices
x and y of G the distance between x and y in G equals the distance between x and y in H (i.e. dG(x, y) = dH (x, y)).
Absolute retracts with respect to isometry have been characterized in a number of different ways [10,11,13,14] (and
others, see [12]). One such characterization, due to Nowakowski and Rival [13], states that a graph G is a retract of
any graph for which it is an isometric subgraph if and only if G is in the variety generated by the finite paths.

A generalization of the condition “G is an isometric subgraph of H’’ involving k-subsets of vertices of G, k�2, was
first studied in [11]. Let G be a graph. For an integer k�2, a k-hole in G is a pair (L, f ), where L is a k-subset of V (G)

and f : L → Z+, such that the following two conditions are satisfied:

(i) no vertex x ∈ V (G) satisfies d(x, �)�f (�) for all � ∈ L, and
(ii) for any proper subset L′ ⊂ L, there is a vertex y such that d(y, �)�f (�) for all � ∈ L′.

Suppose G is a subgraph of H. A k-hole (L, f ) in G is filled in H if some vertex x ∈ V (H) satisfies dH (x, �)�f (�)

for all � ∈ L. The vertex x is said to fill the hole.
As an example, consider a six cycle with vertices 0, 1, 2, 3, 4, 5 (in the natural order). The set L = {0, 2, 4} and

the function f (0) = f (2) = f (4) = 1 is a hole since no vertex in the cycle is simultaneously at distance at most one
from each of 0, 2, and 4, and there is a vertex at distance at most one from any pair of vertices in L. Let H be the
graph obtained by adding a single vertex v to the cycle, and joining v to each vertex in L. Observe that the cycle is an
isometric subgraph of H; however, v fills the hole (L, f ) and consequently H does not admit a retraction to the cycle.

We define ARk to be the set of all finite graphs G with the property that for any graph H, G is a retract of H whenever
G is a subgraph of H, and for 2� i�k, no vertex of H fills an i-hole in G. Observe that AR2 ⊆ AR3 ⊆ · · ·. We
define AR, the set of absolute retracts, to be

⋃∞
k=2 ARk . We remark that the inclusion ARk ⊆ ARk+1 is in fact

strict, i.e. ARk �= ARk+1, for k = 2, 3, . . . (see [12]). It transpires that, for each k�2, the set ARk is a variety (the
proof of this fact is below), as is AR. A characterization of AR, attributed to an unpublished manuscript of Winkler,
appears in [12].

Note that statement “no vertex in H fills a 2-hole in G’’ is equivalent to the statement that G is an isometric subgraph
of H. Also, note that a graph which belongs to ARk cannot have an �-hole for � > k as any filled hole is an obstruction
to the existence of a retraction.

Hell and Rival [10] described a set Y of graphs such that AR3 is the variety of generated by Y. For the variety ARk ,
it might be possible to construct a set of generators by generalizing the so-called Y-graphs from [10] that generate
AR3. However, this appears to quickly become unwieldy.

In Section 2 we present our main result: for each k�2 we describe a collection Sk of graphs such that ARk is
the variety generated by

⋃k
n=2Sn. The collection S2 ∪ S3 that generates AR3 admits a simpler description than the

Y-graphs. (Our original motivation for this work was to find a simpler description of the Y-graphs.) A number of the
ideas used in this paper can be seen to follow naturally from ideas in [10].

Feder and Vardi [7] proved that if there exists k such that the graph G admits a near unanimity function of arity k
(defined in Section 3), then the problem RETG is polynomial time solvable. In Section 3, we show thatARk ⊆ NUFk+1,
where NUFt is the variety of graphs that admit a near unanimity function of arity t.
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2. The variety ARk

The following theorem is proved in [10] for k = 2 and k = 3, but the argument works for all integers k�2.

Theorem 2.1 (Hell and Rival [10]). For any integer k�2, ARk is a variety.

Corollary 2.2 (Hell and Rival [10]). The set AR of absolute retracts is a variety.

The following concepts are from [10], but we include them here for completeness. Suppose h : G → H is a
homomorphism. A k-hole (L, f ) in G is separated in H if no vertex x ∈ V (H) satisfies dH (x, h(�))�f (�) for all
� ∈ L. Such a homomorphism h is called a separating map to H for (L, f ). If G is a subgraph of H, the inclusion map
is a homomorphism of G to H. Moreover, it is a separating map to H for (L, f ) if and only if (L, f ) is not filled in H.

Let x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) be elements of Rk . We say that x dominates y if xi �yi for
i = 1, 2, . . . , k.

Let G be a graph and let L be a k-subset of V (G). The distance labelling of G with respect to L is the assignment to
each vertex x of G, the k-tuple (d(x, �1), d(x, �2), . . . , d(x, �k)). Let S(G, L) be the set of all such k-tuples that arise
in the distance labelling of G with respect to L, and let M(G, L) be the largest integer that occurs in any component of
a k-tuple in S(G, L), i.e. M(G, L) = maxx,�i

d(x, �i).
A distance matrix of size k is a k × k symmetric matrix D with non-negative integer entries, such that dii = 0 for

i = 1, 2, . . . , k and dac �dab + dbc for all a, b, c ∈ {1, 2, . . . , k}.
Let D be a distance matrix of size k, and L = {�1, �2, . . . , �k} be a k-set. The graph K = K(D, L) is the subdivision

of the complete graph with vertex set L obtained by replacing each edge �i�j by a path of length dij , 1� i < j �k. By
construction, dij = dK(�i, �j ).

Let D be a distance matrix and L a k-set. Consider the distance labelling of K =K(D, L) with respect to L. Suppose
i < j and the path �i = v0, v1, v2, . . . , vdij

= �j replaced the edge �i�j in the construction of K. It is not hard to see that
the k-tuple assigned to vp is (m1, m2, . . . , mi−1, p, mi+1, mi+2, . . . , mj−1, dij −p, mj+1, mj+2, . . . , mk), where for
r = 1, 2, . . . , k, we have mr = min{p + dir , dij − p + djr}.

Lemma 2.3. Suppose G is a graph and (L, f ) is a k-hole in G, where L = {�1, �2, . . . , �k}. Further suppose D is the
distance matrix whose entries are defined by dij = dG(�i, �j ). Then the k-tuple (f (�1), f (�2), . . . , f (�k)) does not
dominate any element of S(K, L), where K = K(D, L).

Proof. For each pair of subscripts i and j with 1� i < j �k, let Pij be a shortest �i −�j path in G. Let F be the subgraph
of G induced by

⋃
1� i<j �k Pij .Consider the distance labelling of F with respect to L. The label assigned to the vertex

at distance p from �i along Pij is clearly dominated by

(m1, m2, . . . , mi−1, p, mi+1, mi+2, . . . , mj−1, dij − p, mj+1, mj+2, . . . , mk),

where mr = min{p + dir , dij −p + djr}. The latter is an element of S(K, L). By letting i, j and p vary, it follows that
every element of S(K, L) dominates a label that occurs in the distance labelling of F, i.e. each element of S(F, L)

is dominated by an element of S(K, L).
Now consider the distance labelling of G with respect to L. The label assigned to a vertex of F in this labelling of G

is dominated by the label it receives in the distance labelling of F with respect to L. That is, each element of S(F, L)

dominates an element of S(G, L). Therefore, each element of S(K, L) dominates an element of S(G, L). Since
(L, f ) is a k-hole in G, the k-tuple (f (�1), f (�2), . . . , f (�k)) does not dominate any element of S(G, L). The result
now follows. �

Let D be a distance matrix of size k. Let L = {�1, �2, . . . , �k} be a k-set and f : L → N be such that (f (�1),

f (�2), . . . , f (�k)) does not dominate any element of S(K, L), where K = K(D, L). A k-tuple (x1, x2, . . . , xk) of
non-negative integers is called admissible with respect to D if xi + xj �dij , 1� i, j �k. (We think of an admissible
k-tuple as a label that could be received by a vertex in the distance labelling of some graph containing L, where the
distances between vertices in L are given by the entries in D.) A k-separator is a graph R = R(D, L, f ) defined as
follows. The vertices of R are the admissible k-tuples dominated by (M(K, L), M(K, L), . . . , M(K, L)) and not
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(2, 2, 2)

(1, 2, 2)

(0, 2, 2)

(0, 1, 2)

(1, 1, 2)

(1, 0, 2)

(2, 0, 2)

(2, 1, 2)

(2, 2, 1)

(1, 2, 1)

(2, 2, 0)

(2, 1, 1)

Fig. 1. An example of a 3-separator.

dominated by (f (�1), f (�2), . . . , f (�k)). Two vertices (x1, x2, . . . , xk), (y1, y2, . . . , yk) ∈ V (R) are adjacent if and
only if |xi − yi |�1, 1� i�k.

Let D and L be as above. Observe that ith row of D is precisely the label received by �i in the distance labelling of
K = K(D, L) with respect to L. In particular, the label is admissible. However, by construction of R(D, L, f ), such a
label is a vertex of R(D, L, f ). In other words, the rows of D correspond to a subset of vertices in R(D, L, f ). We let
LD denote this subset of vertices. Thus there is a natural correspondence between the elements of L and the elements
of LD , which we denote � : L → LD .

An example of a 3-separator is given in Fig. 1. The distance matrix is

D =
[0 1 2

1 0 2
2 2 0

]

and the function f is defined by f (�1) = f (�2) = f (�3) = 1. The vertices �(�1), �(�2), and �(�3) are shown in white,
and the graph K(D, L) is drawn in bold.

Lemma 2.4. Suppose x = (x1, x2, . . . , xk) is a vertex in R = R(D, L, f ) Then dR(x, �(�i))�xi for all �i ∈ L.

Proof. The ith coordinate of x is xi , whereas, the ith coordinate of �(�i) is 0. The result follows from the definition
of adjacency in R. �

The following assertion, with k = 3 and 3-separator replaced by Y-graph, appears in the proof of Theorem 2 in [10].

Lemma 2.5. Suppose (L, f ) is a k-hole in G. Then there exists a k-separator R for which there is a separating map
from G to R for (L, f ).

Proof. Let L={�1, �2, . . . , �k}, and let D be the k × k distance matrix in which dij =dG(�i, �j ). Let R =R(D, L, f ),
and K = K(D, L).

Consider the distance labelling of G with respect to L. Every label that arises is admissible, and none is domi-
nated by (f (�1), f (�2), . . . , f (�k)). Define a function h : V (G) → V (R) as follows. For each vertex x ∈ V (G)

with label (x1, x2, . . . , xk), map x to (M(K, L), M(K, L), . . . , M(K, L)) if (x1, x2, . . . , xk) dominates (M(K, L),

M(K, L), . . . , M(K, L)), and otherwise map x to vertex (x1, x2, . . . , xk) of R. It follows from the definitions of the
distance labelling of G and adjacency in R that h is a homomorphism.

We remark that h|L is in fact the correspondence � : L → LD described above. Hence, for i = 1, 2, . . . , k, the
k-tuple h(�i) ∈ LD . Moreover, by Lemma 2.4 above there cannot be a vertex y ∈ V (R) such that dR(y, h(�i))�f (�i).
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(Suppose to the contrary such a y does exist. Then yi �dR(y, h(�i))�f (�i), and y is not an admissible k-tuple, contrary
to the assumption y ∈ V (R).) It follows that h is a separating map to R for (L, f ). �

We have just proved that given a particular hole in G, there is a homomorphism from G to R which separates the hole.
The following result from [10] allows us construct a homomorphism (to a constructed target) which simultaneously
separates all of the holes in G.

Lemma 2.6 (Hell and Rival [10]). Let G be a fixed graph. Let N be a set of integers each of which is at least two, with
2 ∈ N . If for each n ∈ N and each n-hole (L, f ) of G there is a graph H(L, f ) and a separating map to H(L, f )

for (L, f ), then G is (isomorphic to) a subgraph of P = ∏{H(L, f ) : (L, f ) is an n-hole and n ∈ N} such that all
n-holes, n ∈ N of G are separated in P.

Lemma 2.7. Let k�2 be an integer. Every k-separator R(D, L, f ) belongs to ARk .

Proof. Suppose R = R(D, L, f ) is a subgraph of H, and no k-hole in R is filled in H. Consider the distance
labelling of H with respect to LD . Every label that arises is admissible with respect to D, and none is dominated
by (f (�1), f (�2), . . . , f (�k)). Define a function h : V (H) → V (R) as follows. For each vertex x ∈ V (H) with
label (x1, x2, . . . , xk), map x to (M(R, LD), M(R, LD), . . . , M(R, LD)) if (x1, x2, . . . , xk) dominates the k-tuple
(M(R, LD), M(R, LD), . . . , M(R, LD)), and otherwise map x to the vertex (x1, x2, . . . , xk) of R. It follows from the
definitions of distance labelling of H and adjacency in R that h is a homomorphism. The definition of R further implies
that h maps each vertex of R to itself.Therefore, h is a retraction. �

Theorem 2.8. A graph belongs to ARk if and only if it is in the variety of n-separators, 2�n�k.

Proof. By Lemma 2.7, every n-separator belongs to ARn. Since AR2 ⊆ AR3 ⊆ · · · ⊆ ARk , every n separator
with 2�n�k also belongs to ARk . Hence ARk contains the variety of n-separators, 2�n�k.

On the other hand, Lemmas 2.5 and 2.6 together imply that the variety of n-separators, 2�n�k, contains ARk .
To see this, suppose G ∈ ARk . By Lemma 2.5, there exists an n-separator R and a separating map G → R for
each n-hole, 2�n�k. By Lemma 2.6, G is a subgraph of P, the product of all the separators. Moreover, since
no n-hole, 2�n�k, of G is filled in P and G ∈ ARk , we have G is a retract of P. Thus G is in the variety of
n-separators. �

3. Near unanimity functions

Let G be a graph. A near unanimity function of arity k is a homomorphism g : Gk → G which is nearly unanimous:
g(x1, x2, . . . , xk) = x whenever at least k − 1 of x1, x2, . . . , xk equal x.

We denote by NUFk the set of graphs that admit a near unanimity function of arity k. The set NUFk is a variety,
see [2]. Connections between near unanimity functions and holes are studied in [2,7,12]. In particular, no graph with a
k-hole can belong to NUFk . (Also, see Theorem 3.2 below.)

Let x1, x2, . . . , xt be integers. We denote by �2(x1, x2, . . . , xt ) the integer xi2 , where xi1 �xi2 � · · · �xit .
For clarity we note in the following lemma that X is simply a set of k-tuples, and g is a function.

Lemma 3.1. Let X ⊆ Nk . Suppose g : Xk+1 → X is defined by

g((x11, x12, . . . , x1k), (x21, x22, . . . , x2k), . . . , (x(k+1)1, x(k+1)2, . . . , x(k+1)k))

= (�2(x11, x21, . . . , x(k+1)1), �2(x12, x22, . . . , x(k+1)2), . . . , �2(x1k, x2k, . . . , x(k+1)k)).

Then, for any collection of k + 1 elements, v1, v2, . . . , vk+1 ∈ X, there exists vi, 1� i�k + 1, such that g(v1,

v2, . . . , vk+1) dominates vi .

Proof. The proof is by induction on k. The statement is clear when k = 2. Suppose it is true when k = t , for some
t �2. Consider the situation for t + 1. Without loss of generality, �2(x11, x21, . . . , x(t+1)1) = x21 and x11 �x21. Let X̃
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Fig. 2. The graph on the black vertices is in NUF5, but not in ARk for any k.

be the projection of X onto its last (t − 1) coordinates. That is, X̃ = {(y2, y3, . . . , yt )|(y1, y2, y3, . . . , yt ) ∈ X}. Let
g′ : X̃t → X̃ be defined as in the statement of the lemma. Then, by the induction hypothesis,

g′((x22, x23 . . . , x2t ), (x32, x33 . . . , x3t ), . . . , (x(t+1)2, x(t+1)3, . . . , x(t+1)t ))

= (�2(x22, x32, . . . , x(t+1)2), �2(x23, x33, . . . , x(t+1)3) . . . , �2(x2t , x3t , . . . , x(t+1)t ))

dominates one of the (t − 1)-tuples from (x22, x23 . . . , x2t ), (x32, x33 . . . , x3t ), . . . , (x(t+1)2, x(t+1)3, . . . , x(t+1)t ).
Recall x11 �x21 = �2(x11, x21, . . . , x(t+1)1) and observe �2(x1i , x2i , . . . , x(t+1)i ) ��2(x2i , x3i , . . . , x(t+1)i ) for i =
2, 3, . . . , t . Thus, the t-tuple, in X, (�2(x11, x21, . . . , x(t+1)1), �2(x12, x22, . . . , x(t+1)2), . . . , �2(x1t , x2t , . . . , x(t+1)t ))

dominates one of the following t-tuples: (x21, x22, . . . , x2t ), (x31, x32, . . . , x3t ), . . . (x(t+1)1, x(t+1)2, . . . , x(t+1)t ). The
result now follows by induction. �

The following result has been independently proved by Loten [12].

Theorem 3.2. For all k�2, NUFk+1 ⊇ ARk .

Proof. It is enough to show that every k-separator belongs to NUFk+1.
Let D be a distance matrix of size k. Let L = {�1, �2, . . . , �k} be a k-set and f : L → N be such that (f (�1),

f (�2), . . . , f (�k)) does not dominate any vertex of S(K, L), where K = K(D, L). Let R = R(D, L, f ). Define g on
V (Rk+1) by

g((x11, x12, . . . , x1k), (x21, x22, . . . , x2k), . . . , (x(k+1)1, x(k+1)2, . . . , x(k+1)k))

= (�2(x11, x21, . . . , x(k+1)1), �2(x12, x22, . . . , x(k+1)2), . . . , �2(x1(k+1), x2(k+1), . . . , xk(k+1))) = r .

It follows from the definition that g is nearly unanimous. We will show that g is a homomorphism of Rk+1 to
R. By definition of �2 and V (R), the k-tuple r is dominated by (M(K, L), M(K, L), . . . , M(K, L)), where K =
K(D, L). By Lemma 3.1, r dominates a vertex of R. Since the vertices of R are admissible k-tuples not dominated by
(f (�1), f (�2), . . . , f (�k)), this implies that r is admissible and not dominated by (f (�1), f (�2), . . . , f (�k)). Therefore,
r is a vertex of R. It remains to argue that g preserves edges. This is implied by the definition of E(R) and the following
observation. Suppose |xi − yi |�1 for i = 1, 2, . . . , k + 1, then

|�2(x1, x2, . . . , xk+1) − �2(y1, y2, . . . , yk+1)|�1.

This completes the proof. �

It is known that AR2 =NUF3, see [1], but it is unknown whether or not AR3 =NUF4. For k�4, ARk ⊂ NUFk+1.
An example, independently found by several people, and published in [12] is shown in Fig. 2. Let G be the graph
induced by the black vertices in the figure, and let H be entire graph. Then H does not fill any hole in G, but H does not
retract to G. Hence G /∈ARk for any k. Yet G is a chordal graph with leafage 4 and by a result in [2] G does belong
to NUF5.
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