Note

Building blocks for the variety of absolute retracts

Richard C. Brewster ${ }^{\text {a }}$, Gary MacGillivray ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics and Statistics, Thompson Rivers University, PO BOX 3010, 900 McGill Road, Kamloops, BC, Canada V2C 5N3
${ }^{\mathrm{b}}$ Department of Mathematics and Statistics, University of Victoria, PO BOX 3045 STN CSC, Victoria, BC, Canada V8W 3P4

Received 29 September 2004; received in revised form 9 March 2006; accepted 16 March 2006
Available online 14 June 2006

Abstract

Given a graph H with a labelled subgraph G, a retraction of H to G is a homomorphism $r: H \rightarrow G$ such that $r(x)=x$ for all vertices x in G. We call G a retract of H. While deciding the existence of a retraction to a fixed graph G is NP-complete in general, necessary and sufficient conditions have been provided for certain classes of graphs in terms of holes, see for example Hell and Rival.

For any integer $k \geqslant 2$ we describe a collection of graphs that generate the variety $\mathscr{A}^{\mathscr{R}}{ }_{k}$ of graphs G with the property that G is a retract of H whenever G is a subgraph of H and no hole in G of size at most k is filled by a vertex of H. We also prove that $\mathscr{A} \mathscr{R}_{k} \subset \mathrm{NUF}_{k+1}$, where NUF_{k+1} is the variety of graphs that admit a near unanimity function of arity $k+1$. © 2006 Elsevier B.V. All rights reserved.

Keywords: Absolute retract; Variety; Near unanimity function

1. Introduction

We begin by introducing the terminology of products, retracts, and varieties, before describing the results of the paper. A graph is called reflexive if there is a loop at every vertex. For brevity, we use the term graph to mean finite, simple, reflexive graph.

Let G and H be graphs. A homomorphism of H to G, is a function $h: V(H) \rightarrow V(G)$ such that $h(x) h(y) \in E(G)$ whenever $x y \in E(H)$. The existence of such an edge-preserving mapping of the vertices of H to the vertices of G is denoted by $H \rightarrow G$, or $h: H \rightarrow G$ when the name of the function is important.

If G is a subgraph of H, then a retraction of H to G is a homomorphism $r: H \rightarrow G$ such that $r(x)=x$ for all $x \in V(G)$. If there exists a retraction of H to G, then G is called a retract of H.

Let $G_{1}, G_{2}, \ldots, G_{n}$ be graphs. The strong product of $G_{1}, G_{2}, \ldots, G_{n}$ is the graph $\prod_{i=1}^{n} G_{i}$ with vertices $V\left(G_{1}\right) \times$ $V\left(G_{2}\right) \times \cdots \times V\left(G_{n}\right)$, and an edge joining $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ if and only if $x_{i} y_{i} \in E\left(G_{i}\right)$ for $i=1,2, \ldots, n$. We denote by G^{k} the strong product of k copies of G. Observe that since we are studying reflexive graphs, the product $K_{2} \times K_{2}$ is a (reflexive) copy of K_{4}.

A set X of graphs is a variety if every retract of a graph in X is also in X, and the strong product of any finite number of graphs in X is also in X. Given a set S of graphs, the variety generated by S is the smallest variety that contains S.

E-mail address: gmacgill@uvic.ca (G. MacGillivray).

Let G be a fixed graph. The retraction problem for G, denoted RET_{G}, is the problem of deciding if a given graph H, with G as a labelled subgraph, admits a retraction to G. It follows from results in [5] that RET_{G} is polynomial time solvable for each chordal graph G, and from results in [3] that RET_{G} is NP-complete for each graph G that admits a retraction to a cycle of length at least four. A dichotomy theorem that, assuming $\mathrm{P} \neq \mathrm{NP}$, characterizes the graphs G for which the problem is polynomial time solvable and states that the problem is NP-complete for all other graphs G, is unknown. Feder and Vardi [7] have established an equivalence between constraint satisfaction problems and retraction problems for (reflexive) graphs. Their conjecture that, assuming $P \neq N P$, each constraint satisfaction problem is either NP-complete or polynomial time solvable is thus equivalent to the assertion that such a dichotomy theorem for RET_{G} exists. We remark that dichotomy theorems for variants of the homomorphism problem do exist for several large classes, see $[4,6,9]$.

Given the NP-completeness results above, it is not surprising that no theorem giving necessary and sufficient conditions for a graph G to be a retract of a graph H of which it is a labelled subgraph is known. However, RET_{G} is tractable for certain classes of graphs. Many authors have identified such classes by describing an obvious necessary condition, say \mathscr{C}, and then studying those graphs G for which the condition is also sufficient. The collection of all such G is the set of absolute retracts with respect to \mathscr{C}. See [12] for an excellent survey.

One necessary condition for G to be a retract of H is that G is an isometric subgraph of H, meaning that for all vertices x and y of G the distance between x and y in G equals the distance between x and y in H (i.e. $d_{G}(x, y)=d_{H}(x, y)$). Absolute retracts with respect to isometry have been characterized in a number of different ways [10,11,13,14] (and others, see [12]). One such characterization, due to Nowakowski and Rival [13], states that a graph G is a retract of any graph for which it is an isometric subgraph if and only if G is in the variety generated by the finite paths.

A generalization of the condition " G is an isometric subgraph of H " involving k-subsets of vertices of $G, k \geqslant 2$, was first studied in [11]. Let G be a graph. For an integer $k \geqslant 2$, a k-hole in G is a pair (L, f), where L is a k-subset of $V(G)$ and $f: L \rightarrow \mathbb{Z}^{+}$, such that the following two conditions are satisfied:
(i) no vertex $x \in V(G)$ satisfies $d(x, \ell) \leqslant f(\ell)$ for all $\ell \in L$, and
(ii) for any proper subset $L^{\prime} \subset L$, there is a vertex y such that $d(y, \ell) \leqslant f(\ell)$ for all $\ell \in L^{\prime}$.

Suppose G is a subgraph of H. A k-hole (L, f) in G is filled in H if some vertex $x \in V(H)$ satisfies $d_{H}(x, \ell) \leqslant f(\ell)$ for all $\ell \in L$. The vertex x is said to fill the hole.

As an example, consider a six cycle with vertices $0,1,2,3,4,5$ (in the natural order). The set $L=\{0,2,4\}$ and the function $f(0)=f(2)=f(4)=1$ is a hole since no vertex in the cycle is simultaneously at distance at most one from each of 0,2 , and 4 , and there is a vertex at distance at most one from any pair of vertices in L. Let H be the graph obtained by adding a single vertex v to the cycle, and joining v to each vertex in L. Observe that the cycle is an isometric subgraph of H; however, v fills the hole (L, f) and consequently H does not admit a retraction to the cycle.
We define $\mathscr{A} \mathscr{R}_{k}$ to be the set of all finite graphs G with the property that for any graph H, G is a retract of H whenever
 define $\mathscr{A} \mathscr{R}$, the set of absolute retracts, to be $\bigcup_{k=2}^{\infty} \mathscr{A}^{\mathscr{R}}{ }_{k}$. We remark that the inclusion $\mathscr{A}_{\mathscr{R}_{k} \subseteq \mathscr{A} \mathscr{R}_{k+1} \text { is in fact }}$ strict, i.e. $\mathscr{A} \mathscr{R}_{k} \neq \mathscr{A} \mathscr{R}_{k+1}$, for $k=2,3, \ldots$ (see [12]). It transpires that, for each $k \geqslant 2$, the set $\mathscr{A}_{\mathscr{R}_{k}}$ is a variety (the proof of this fact is below), as is $\mathscr{A} \mathscr{R}$. A characterization of $\mathscr{A} \mathscr{R}$, attributed to an unpublished manuscript of Winkler, appears in [12].

Note that statement "no vertex in H fills a 2-hole in G " is equivalent to the statement that G is an isometric subgraph of H. Also, note that a graph which belongs to $\mathscr{A}_{\mathscr{R}_{k}}$ cannot have an ℓ-hole for $\ell>k$ as any filled hole is an obstruction to the existence of a retraction.

Hell and Rival [10] described a set Y of graphs such that $\mathscr{A}_{\mathscr{R}}^{3}$ is the variety of generated by Y. For the variety $\mathscr{A} \mathscr{R}_{k}$, it might be possible to construct a set of generators by generalizing the so-called Y-graphs from [10] that generate $\mathscr{A} \mathscr{R}_{3}$. However, this appears to quickly become unwieldy.

In Section 2 we present our main result: for each $k \geqslant 2$ we describe a collection S_{k} of graphs such that $\mathscr{A} \mathscr{R}_{k}$ is the variety generated by $\bigcup_{n=2}^{k} S_{n}$. The collection $S_{2} \cup S_{3}$ that generates $\mathscr{A}_{\mathscr{R}_{3}}$ admits a simpler description than the Y-graphs. (Our original motivation for this work was to find a simpler description of the Y-graphs.) A number of the ideas used in this paper can be seen to follow naturally from ideas in [10].

Feder and Vardi [7] proved that if there exists k such that the graph G admits a near unanimity function of arity k (defined in Section 3), then the problem RET_{G} is polynomial time solvable. In Section 3, we show that $\mathscr{A}_{\mathscr{R}} \subseteq \mathrm{NUF}_{k+1}$, where NUF_{t} is the variety of graphs that admit a near unanimity function of arity t.

2. The variety $\mathscr{A}_{\mathscr{R}_{k}}$

The following theorem is proved in [10] for $k=2$ and $k=3$, but the argument works for all integers $k \geqslant 2$.
Theorem 2.1 (Hell and Rival [10]). For any integer $k \geqslant 2, \mathscr{A}_{\mathscr{R}_{k}}$ is a variety.
Corollary 2.2 (Hell and Rival [10]). The set $\mathscr{A} \mathscr{R}$ of absolute retracts is a variety.
The following concepts are from [10], but we include them here for completeness. Suppose $h: G \rightarrow H$ is a homomorphism. A k-hole (L, f) in G is separated in H if no vertex $x \in V(H)$ satisfies $d_{H}(x, h(\ell)) \leqslant f(\ell)$ for all $\ell \in L$. Such a homomorphism h is called a separating map to H for (L, f). If G is a subgraph of H, the inclusion map is a homomorphism of G to H. Moreover, it is a separating map to H for (L, f) if and only if (L, f) is not filled in H.
Let $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ be elements of \mathbb{R}^{k}. We say that x dominates y if $x_{i} \geqslant y_{i}$ for $i=1,2, \ldots, k$.

Let G be a graph and let L be a k-subset of $V(G)$. The distance labelling of G with respect to L is the assignment to each vertex x of G, the k-tuple $\left(d\left(x, \ell_{1}\right), d\left(x, \ell_{2}\right), \ldots, d\left(x, \ell_{k}\right)\right)$. Let $\mathscr{S}(G, L)$ be the set of all such k-tuples that arise in the distance labelling of G with respect to L, and let $M(G, L)$ be the largest integer that occurs in any component of a k-tuple in $\mathscr{S}(G, L)$, i.e. $M(G, L)=\max _{x, \ell_{i}} d\left(x, \ell_{i}\right)$.

A distance matrix of size k is a $k \times k$ symmetric matrix D with non-negative integer entries, such that $d_{i i}=0$ for $i=1,2, \ldots, k$ and $d_{a c} \leqslant d_{a b}+d_{b c}$ for all $a, b, c \in\{1,2, \ldots, k\}$.

Let D be a distance matrix of size k, and $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$ be a k-set. The graph $K=K(D, L)$ is the subdivision of the complete graph with vertex set L obtained by replacing each edge $\ell_{i} \ell_{j}$ by a path of length $d_{i j}, 1 \leqslant i<j \leqslant k$. By construction, $d_{i j}=d_{K}\left(\ell_{i}, \ell_{j}\right)$.

Let D be a distance matrix and L a k-set. Consider the distance labelling of $K=K(D, L)$ with respect to L. Suppose $i<j$ and the path $\ell_{i}=v_{0}, v_{1}, v_{2}, \ldots, v_{d_{i j}}=\ell_{j}$ replaced the edge $\ell_{i} \ell_{j}$ in the construction of K. It is not hard to see that the k-tuple assigned to v_{p} is $\left(m_{1}, m_{2}, \ldots, m_{i-1}, p, m_{i+1}, m_{i+2}, \ldots, m_{j-1}, d_{i j}-p, m_{j+1}, m_{j+2}, \ldots, m_{k}\right.$), where for $r=1,2, \ldots, k$, we have $m_{r}=\min \left\{p+d_{i r}, d_{i j}-p+d_{j r}\right\}$.

Lemma 2.3. Suppose G is a graph and (L, f) is a k-hole in G, where $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$. Further suppose D is the distance matrix whose entries are defined by $d_{i j}=d_{G}\left(\ell_{i}, \ell_{j}\right)$. Then the k-tuple $\left(f\left(\ell_{1}\right), f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$ does not dominate any element of $\mathscr{S}(K, L)$, where $K=K(D, L)$.

Proof. For each pair of subscripts i and j with $1 \leqslant i<j \leqslant k$, let $P_{i j}$ be a shortest $\ell_{i}-\ell_{j}$ path in G. Let F be the subgraph of G induced by $\bigcup_{1 \leqslant i<j \leqslant k} P_{i j}$. Consider the distance labelling of F with respect to L. The label assigned to the vertex at distance p from ℓ_{i} along $P_{i j}$ is clearly dominated by

$$
\left(m_{1}, m_{2}, \ldots, m_{i-1}, p, m_{i+1}, m_{i+2}, \ldots, m_{j-1}, d_{i j}-p, m_{j+1}, m_{j+2}, \ldots, m_{k}\right)
$$

where $m_{r}=\min \left\{p+d_{i r}, d_{i j}-p+d_{j r}\right\}$. The latter is an element of $\mathscr{S}(K, L)$. By letting i, j and p vary, it follows that every element of $\mathscr{S}(K, L)$ dominates a label that occurs in the distance labelling of F, i.e. each element of $\mathscr{S}(F, L)$ is dominated by an element of $\mathscr{S}(K, L)$.

Now consider the distance labelling of G with respect to L. The label assigned to a vertex of F in this labelling of G is dominated by the label it receives in the distance labelling of F with respect to L. That is, each element of $\mathscr{S}(F, L)$ dominates an element of $\mathscr{S}(G, L)$. Therefore, each element of $\mathscr{S}(K, L)$ dominates an element of $\mathscr{S}(G, L)$. Since (L, f) is a k-hole in G, the k-tuple $\left(f\left(\ell_{1}\right), f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$ does not dominate any element of $\mathscr{S}(G, L)$. The result now follows.

Let D be a distance matrix of size k. Let $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$ be a k-set and $f: L \rightarrow \mathbb{N}$ be such that $\left(f\left(\ell_{1}\right)\right.$, $\left.f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$ does not dominate any element of $\mathscr{S}(K, L)$, where $K=K(D, L)$. A k-tuple $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of non-negative integers is called admissible with respect to D if $x_{i}+x_{j} \geqslant d_{i j}, 1 \leqslant i, j \leqslant k$. (We think of an admissible k-tuple as a label that could be received by a vertex in the distance labelling of some graph containing L, where the distances between vertices in L are given by the entries in D.) A k-separator is a graph $R=R(D, L, f)$ defined as follows. The vertices of R are the admissible k-tuples dominated by ($M(K, L), M(K, L), \ldots, M(K, L)$) and not

Fig. 1. An example of a 3-separator.
dominated by $\left(f\left(\ell_{1}\right), f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$. Two vertices $\left(x_{1}, x_{2}, \ldots, x_{k}\right),\left(y_{1}, y_{2}, \ldots, y_{k}\right) \in V(R)$ are adjacent if and only if $\left|x_{i}-y_{i}\right| \leqslant 1, \quad 1 \leqslant i \leqslant k$.

Let D and L be as above. Observe that i th row of D is precisely the label received by ℓ_{i} in the distance labelling of $K=K(D, L)$ with respect to L. In particular, the label is admissible. However, by construction of $R(D, L, f)$, such a label is a vertex of $R(D, L, f)$. In other words, the rows of D correspond to a subset of vertices in $R(D, L, f)$. We let L_{D} denote this subset of vertices. Thus there is a natural correspondence between the elements of L and the elements of L_{D}, which we denote $\varphi: L \rightarrow L_{D}$.

An example of a 3-separator is given in Fig. 1. The distance matrix is

$$
D=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 2 \\
2 & 2 & 0
\end{array}\right]
$$

and the function f is defined by $f\left(\ell_{1}\right)=f\left(\ell_{2}\right)=f\left(\ell_{3}\right)=1$. The vertices $\varphi\left(\ell_{1}\right), \varphi\left(\ell_{2}\right)$, and $\varphi\left(\ell_{3}\right)$ are shown in white, and the graph $K(D, L)$ is drawn in bold.

Lemma 2.4. Suppose $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a vertex in $R=R(D, L, f)$ Then $d_{R}\left(x, \varphi\left(\ell_{i}\right)\right) \geqslant x_{i}$ for all $\ell_{i} \in L$.
Proof. The i th coordinate of x is x_{i}, whereas, the i th coordinate of $\varphi\left(\ell_{i}\right)$ is 0 . The result follows from the definition of adjacency in R.

The following assertion, with $k=3$ and 3-separator replaced by Y-graph, appears in the proof of Theorem 2 in [10].

Lemma 2.5. Suppose (L, f) is a k-hole in G. Then there exists a k-separator R for which there is a separating map from G to R for (L, f).

Proof. Let $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$, and let D be the $k \times k$ distance matrix in which $d_{i j}=d_{G}\left(\ell_{i}, \ell_{j}\right)$. Let $R=R(D, L, f)$, and $K=K(D, L)$.

Consider the distance labelling of G with respect to L. Every label that arises is admissible, and none is dominated by $\left(f\left(\ell_{1}\right), f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$. Define a function $h: V(G) \rightarrow V(R)$ as follows. For each vertex $x \in V(G)$ with label $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, map x to $(M(K, L), M(K, L), \ldots, M(K, L))$ if $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ dominates $(M(K, L)$, $M(K, L), \ldots, M(K, L))$, and otherwise map x to vertex $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of R. It follows from the definitions of the distance labelling of G and adjacency in R that h is a homomorphism.

We remark that $\left.h\right|_{L}$ is in fact the correspondence $\varphi: L \rightarrow L_{D}$ described above. Hence, for $i=1,2, \ldots, k$, the k-tuple $h\left(\ell_{i}\right) \in L_{D}$. Moreover, by Lemma 2.4 above there cannot be a vertex $y \in V(R)$ such that $d_{R}\left(y, h\left(\ell_{i}\right)\right) \leqslant f\left(\ell_{i}\right)$.
(Suppose to the contrary such a y does exist. Then $y_{i} \leqslant d_{R}\left(y, h\left(\ell_{i}\right)\right) \leqslant f\left(\ell_{i}\right)$, and y is not an admissible k-tuple, contrary to the assumption $y \in V(R)$.) It follows that h is a separating map to R for (L, f).

We have just proved that given a particular hole in G, there is a homomorphism from G to R which separates the hole. The following result from [10] allows us construct a homomorphism (to a constructed target) which simultaneously separates all of the holes in G.

Lemma 2.6 (Hell and Rival [10]). Let G be a fixed graph. Let N be a set of integers each of which is at least two, with $2 \in N$. If for each $n \in N$ and each n-hole (L, f) of G there is a graph $H(L, f)$ and a separating map to $H(L, f)$ for (L, f), then G is (isomorphic to) a subgraph of $P=\prod\{H(L, f):(L, f)$ is an n-hole and $n \in N\}$ such that all n-holes, $n \in N$ of G are separated in P.

Lemma 2.7. Let $k \geqslant 2$ be an integer. Every k-separator $R(D, L, f)$ belongs to $\mathscr{A} \mathscr{R}_{k}$.
Proof. Suppose $R=R(D, L, f)$ is a subgraph of H, and no k-hole in R is filled in H. Consider the distance labelling of H with respect to L_{D}. Every label that arises is admissible with respect to D, and none is dominated by $\left(f\left(\ell_{1}\right), f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$. Define a function $h: V(H) \rightarrow V(R)$ as follows. For each vertex $x \in V(H)$ with label $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, map x to $\left(M\left(R, L_{D}\right), M\left(R, L_{D}\right), \ldots, M\left(R, L_{D}\right)\right)$ if $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ dominates the k-tuple $\left(M\left(R, L_{D}\right), M\left(R, L_{D}\right), \ldots, M\left(R, L_{D}\right)\right)$, and otherwise map x to the vertex $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ of R. It follows from the definitions of distance labelling of H and adjacency in R that h is a homomorphism. The definition of R further implies that h maps each vertex of R to itself.Therefore, h is a retraction.

Theorem 2.8. A graph belongs to $\mathscr{A} \mathscr{R}_{k}$ if and only if it is in the variety of n-separators, $2 \leqslant n \leqslant k$.
Proof. By Lemma 2.7, every n-separator belongs to $\mathscr{A}_{\mathscr{R}_{n}}$. Since $\mathscr{A} \mathscr{R}_{2} \subseteq \mathscr{A} \mathscr{R}_{3} \subseteq \cdots \subseteq \mathscr{A}_{k}$, every n separator with $2 \leqslant n \leqslant k$ also belongs to $\mathscr{A}_{\mathscr{R}}^{k}$. Hence $\mathscr{A}_{\mathscr{R}_{k}}$ contains the variety of n-separators, $2 \leqslant n \leqslant k$.

On the other hand, Lemmas 2.5 and 2.6 together imply that the variety of n-separators, $2 \leqslant n \leqslant k$, contains $\mathscr{A} \mathscr{R}_{k}$. To see this, suppose $G \in \mathscr{A} \mathscr{R}_{k}$. By Lemma 2.5, there exists an n-separator R and a separating map $G \rightarrow R$ for each n-hole, $2 \leqslant n \leqslant k$. By Lemma 2.6, G is a subgraph of P, the product of all the separators. Moreover, since no n-hole, $2 \leqslant n \leqslant k$, of G is filled in P and $G \in \mathscr{A} \mathscr{R}_{k}$, we have G is a retract of P. Thus G is in the variety of n-separators.

3. Near unanimity functions

Let G be a graph. A near unanimity function of arity k is a homomorphism $g: G^{k} \rightarrow G$ which is nearly unanimous: $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)=x$ whenever at least $k-1$ of $x_{1}, x_{2}, \ldots, x_{k}$ equal x.

We denote by NUF_{k} the set of graphs that admit a near unanimity function of arity k. The set NUF_{k} is a variety, see [2]. Connections between near unanimity functions and holes are studied in [2,7,12]. In particular, no graph with a k-hole can belong to NUF_{k}. (Also, see Theorem 3.2 below.)

Let $x_{1}, x_{2}, \ldots, x_{t}$ be integers. We denote by $\sigma_{2}\left(x_{1}, x_{2}, \ldots, x_{t}\right)$ the integer $x_{i_{2}}$, where $x_{i_{1}} \geqslant x_{i_{2}} \geqslant \cdots \geqslant x_{i_{t}}$.
For clarity we note in the following lemma that X is simply a set of k-tuples, and g is a function.
Lemma 3.1. Let $X \subseteq \mathbb{N}^{k}$. Suppose $g: X^{k+1} \rightarrow X$ is defined by

$$
\begin{aligned}
& g\left(\left(x_{11}, x_{12}, \ldots, x_{1 k}\right),\left(x_{21}, x_{22}, \ldots, x_{2 k}\right), \ldots,\left(x_{(k+1) 1}, x_{(k+1) 2}, \ldots, x_{(k+1) k}\right)\right) \\
& \quad=\left(\sigma_{2}\left(x_{11}, x_{21}, \ldots, x_{(k+1) 1}\right), \sigma_{2}\left(x_{12}, x_{22}, \ldots, x_{(k+1) 2}\right), \ldots, \sigma_{2}\left(x_{1 k}, x_{2 k}, \ldots, x_{(k+1) k}\right)\right) .
\end{aligned}
$$

Then, for any collection of $k+1$ elements, $v_{1}, v_{2}, \ldots, v_{k+1} \in X$, there exists $v_{i}, 1 \leqslant i \leqslant k+1$, such that $g\left(v_{1}\right.$, v_{2}, \ldots, v_{k+1}) dominates v_{i}.

Proof. The proof is by induction on k. The statement is clear when $k=2$. Suppose it is true when $k=t$, for some $t \geqslant 2$. Consider the situation for $t+1$. Without loss of generality, $\sigma_{2}\left(x_{11}, x_{21}, \ldots, x_{(t+1) 1}\right)=x_{21}$ and $x_{11} \geqslant x_{21}$. Let \tilde{X}

Fig. 2. The graph on the black vertices is in NUF_{5}, but not in $\mathscr{A}_{\mathscr{R}_{k}}$ for any k.
be the projection of X onto its last $(t-1)$ coordinates. That is, $\tilde{X}=\left\{\left(y_{2}, y_{3}, \ldots, y_{t}\right) \mid\left(y_{1}, y_{2}, y_{3}, \ldots, y_{t}\right) \in X\right\}$. Let $g^{\prime}: \tilde{X}^{t} \rightarrow \tilde{X}$ be defined as in the statement of the lemma. Then, by the induction hypothesis,

$$
\begin{aligned}
& g^{\prime}\left(\left(x_{22}, x_{23} \ldots, x_{2 t}\right),\left(x_{32}, x_{33} \ldots, x_{3 t}\right), \ldots,\left(x_{(t+1) 2}, x_{(t+1) 3}, \ldots, x_{(t+1) t}\right)\right) \\
& \quad=\left(\sigma_{2}\left(x_{22}, x_{32}, \ldots, x_{(t+1) 2}\right), \sigma_{2}\left(x_{23}, x_{33}, \ldots, x_{(t+1) 3}\right) \ldots, \sigma_{2}\left(x_{2 t}, x_{3 t}, \ldots, x_{(t+1) t}\right)\right)
\end{aligned}
$$

dominates one of the $(t-1)$-tuples from $\left(x_{22}, x_{23} \ldots, x_{2 t}\right),\left(x_{32}, x_{33} \ldots, x_{3 t}\right), \ldots,\left(x_{(t+1) 2}, x_{(t+1) 3}, \ldots, x_{(t+1) t}\right)$. Recall $x_{11} \geqslant x_{21}=\sigma_{2}\left(x_{11}, x_{21}, \ldots, x_{(t+1) 1}\right)$ and observe $\sigma_{2}\left(x_{1 i}, x_{2 i}, \ldots, x_{(t+1) i}\right) \geqslant \sigma_{2}\left(x_{2 i}, x_{3 i}, \ldots, x_{(t+1) i}\right)$ for $i=$ $2,3, \ldots, t$. Thus, the t-tuple, in $X,\left(\sigma_{2}\left(x_{11}, x_{21}, \ldots, x_{(t+1) 1}\right), \sigma_{2}\left(x_{12}, x_{22}, \ldots, x_{(t+1) 2}\right), \ldots, \sigma_{2}\left(x_{1 t}, x_{2 t}, \ldots, x_{(t+1) t}\right)\right)$ dominates one of the following t-tuples: $\left(x_{21}, x_{22}, \ldots, x_{2 t}\right),\left(x_{31}, x_{32}, \ldots, x_{3 t}\right), \ldots\left(x_{(t+1) 1}, x_{(t+1) 2}, \ldots, x_{(t+1) t}\right)$. The result now follows by induction.

The following result has been independently proved by Loten [12].
Theorem 3.2. For all $k \geqslant 2, \mathrm{NUF}_{k+1} \supseteq \mathscr{A} \mathscr{R}_{k}$.
Proof. It is enough to show that every k-separator belongs to NUF_{k+1}.
Let D be a distance matrix of size k. Let $L=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{k}\right\}$ be a k-set and $f: L \rightarrow \mathbb{N}$ be such that $\left(f\left(\ell_{1}\right)\right.$, $\left.f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$ does not dominate any vertex of $\mathscr{S}(K, L)$, where $K=K(D, L)$. Let $R=R(D, L, f)$. Define g on $V\left(R^{k+1}\right)$ by

$$
\begin{aligned}
& g\left(\left(x_{11}, x_{12}, \ldots, x_{1 k}\right),\left(x_{21}, x_{22}, \ldots, x_{2 k}\right), \ldots,\left(x_{(k+1) 1}, x_{(k+1) 2}, \ldots, x_{(k+1) k}\right)\right) \\
& \quad=\left(\sigma_{2}\left(x_{11}, x_{21}, \ldots, x_{(k+1) 1}\right), \sigma_{2}\left(x_{12}, x_{22}, \ldots, x_{(k+1) 2}\right), \ldots, \sigma_{2}\left(x_{1(k+1)}, x_{2(k+1)}, \ldots, x_{k(k+1)}\right)\right)=r
\end{aligned}
$$

It follows from the definition that g is nearly unanimous. We will show that g is a homomorphism of R^{k+1} to R. By definition of σ_{2} and $V(R)$, the k-tuple r is dominated by ($M(K, L), M(K, L), \ldots, M(K, L)$), where $K=$ $K(D, L)$. By Lemma 3.1, r dominates a vertex of R. Since the vertices of R are admissible k-tuples not dominated by $\left(f\left(\ell_{1}\right), f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$, this implies that r is admissible and not dominated by $\left(f\left(\ell_{1}\right), f\left(\ell_{2}\right), \ldots, f\left(\ell_{k}\right)\right)$. Therefore, r is a vertex of R. It remains to argue that g preserves edges. This is implied by the definition of $E(R)$ and the following observation. Suppose $\left|x_{i}-y_{i}\right| \leqslant 1$ for $i=1,2, \ldots, k+1$, then

$$
\left|\sigma_{2}\left(x_{1}, x_{2}, \ldots, x_{k+1}\right)-\sigma_{2}\left(y_{1}, y_{2}, \ldots, y_{k+1}\right)\right| \leqslant 1 .
$$

This completes the proof.
It is known that $\mathscr{A} \mathscr{R}_{2}=\mathrm{NUF}_{3}$, see [1], but it is unknown whether or not $\mathscr{A} \mathscr{R}_{3}=\mathrm{NUF}_{4}$. For $k \geqslant 4, \mathscr{A} \mathscr{R}_{k} \subset \mathrm{NUF}_{k+1}$. An example, independently found by several people, and published in [12] is shown in Fig. 2. Let G be the graph induced by the black vertices in the figure, and let H be entire graph. Then H does not fill any hole in G, but H does not retract to G. Hence $G \notin \mathscr{A} \mathscr{R}_{k}$ for any k. Yet G is a chordal graph with leafage 4 and by a result in [2] G does belong to NUF_{5}.

Acknowlegements

The authors gratefully acknowledge the support of the Natural Science and Engineering Research Council of Canada.

References

[1] H.J. Bandelt, Graphs with edge-preserving majority functions, Discrete Math. 103 (1992) 1-5.
[2] R.C. Brewster, T. Feder, P. Hell, J. Huang, G. MacGillivray, Near unanimity functions and varieties of graphs, 2003, submitted for publication.
[3] P. Dukes, H. Emerson, G. MacGillivray, Undecidable generalized colouring problems, J. Combin. Math. Combin. Comput. 26 (1998) $97-112$.
[4] T. Feder, Classification of homomorphisms to oriented cycles, and of k-partite satisfiability, SIAM J. Discrete Math. 14 (2001) $471-480$.
[5] T. Feder, P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory, Ser. B 72 (1998) 236-250.
[6] T. Feder, P. Hell, J. Huang, Bi-arc graphs and the complexity of list homomorphisms, J. Graph Theory 42 (2003) 61-80.
[7] T. Feder, M.Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory, SIAM J. Comput. 28 (1998) 57-104.
[9] P. Hell, J. Nešetřil, On the complexity of H-colouring, J. Combin. Theory B 48 (1990) 92-110.
[10] P. Hell, I. Rival, Absolute retracts and varieties of reflexive graphs, Canad. J. Math. XXXIX (1987) 544-567.
[11] E.M. Jawhari, M. Pouzet, I. Rival, A classification of reflexive graphs: the use of "holes", Canad. J. Math. XXXVIII (1986) $1299-1328$.
[12] C. Loten, Retractions of chordal and related graphs, Ph.D. Thesis, Simon Fraser University, 2003.
[13] R.J. Nowakowski, I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223-234.
[14] A. Quilliot, Homomorphismes, points fixes, rétractions et jeux de poursouite dans les graphes, let ensembles ordonées et les espaces métriques. Thèse d'Etat, Université de Paris VI, 1983.

