brought to you by CORE

Available online at www.sciencedirect.com

Discrete Mathematics 306 (2006) 1758-1764

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

Note

Building blocks for the variety of absolute retracts

Richard C. Brewster^a, Gary MacGillivray^b

^aDepartment of Mathematics and Statistics, Thompson Rivers University, PO BOX 3010, 900 McGill Road, Kamloops, BC, Canada V2C 5N3 ^bDepartment of Mathematics and Statistics, University of Victoria, PO BOX 3045 STN CSC, Victoria, BC, Canada V8W 3P4

> Received 29 September 2004; received in revised form 9 March 2006; accepted 16 March 2006 Available online 14 June 2006

Abstract

Given a graph *H* with a labelled subgraph *G*, a *retraction* of *H* to *G* is a homomorphism $r : H \to G$ such that r(x) = x for all vertices *x* in *G*. We call *G* a *retract* of *H*. While deciding the existence of a retraction to a fixed graph *G* is NP-complete in general, necessary and sufficient conditions have been provided for certain classes of graphs in terms of *holes*, see for example Hell and Rival.

For any integer $k \ge 2$ we describe a collection of graphs that generate the variety \mathscr{AR}_k of graphs *G* with the property that *G* is a retract of *H* whenever *G* is a subgraph of *H* and no hole in *G* of size at most *k* is filled by a vertex of *H*. We also prove that $\mathscr{AR}_k \subset \text{NUF}_{k+1}$, where NUF_{k+1} is the variety of graphs that admit a near unanimity function of arity k + 1. @ 2006 Elsevier B.V. All rights reserved.

Keywords: Absolute retract; Variety; Near unanimity function

1. Introduction

We begin by introducing the terminology of products, retracts, and varieties, before describing the results of the paper. A graph is called *reflexive* if there is a loop at every vertex. For brevity, we use the term *graph* to mean finite, simple, reflexive graph.

Let G and H be graphs. A homomorphism of H to G, is a function $h : V(H) \to V(G)$ such that $h(x)h(y) \in E(G)$ whenever $xy \in E(H)$. The existence of such an edge-preserving mapping of the vertices of H to the vertices of G is denoted by $H \to G$, or $h : H \to G$ when the name of the function is important.

If G is a subgraph of H, then a *retraction of H to G* is a homomorphism $r : H \to G$ such that r(x) = x for all $x \in V(G)$. If there exists a retraction of H to G, then G is called a *retract* of H.

Let G_1, G_2, \ldots, G_n be graphs. The *strong product of* G_1, G_2, \ldots, G_n is the graph $\prod_{i=1}^n G_i$ with vertices $V(G_1) \times V(G_2) \times \cdots \times V(G_n)$, and an edge joining (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) if and only if $x_i y_i \in E(G_i)$ for $i = 1, 2, \ldots, n$. We denote by G^k the strong product of k copies of G. Observe that since we are studying reflexive graphs, the product $K_2 \times K_2$ is a (reflexive) copy of K_4 .

A set *X* of graphs is a *variety* if every retract of a graph in *X* is also in *X*, and the strong product of any finite number of graphs in *X* is also in *X*. Given a set *S* of graphs, the *variety generated by S* is the smallest variety that contains *S*.

E-mail address: gmacgill@uvic.ca (G. MacGillivray).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter @ 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2006.03.036

Let *G* be a fixed graph. The *retraction problem for G*, denoted RET_G , is the problem of deciding if a given graph *H*, with *G* as a labelled subgraph, admits a retraction to *G*. It follows from results in [5] that RET_G is polynomial time solvable for each chordal graph *G*, and from results in [3] that RET_G is NP-complete for each graph *G* that admits a retraction to a cycle of length at least four. A dichotomy theorem that, assuming $P \neq NP$, characterizes the graphs *G* for which the problem is polynomial time solvable and states that the problem is NP-complete for all other graphs *G*, is unknown. Feder and Vardi [7] have established an equivalence between constraint satisfaction problems and retraction problems for (reflexive) graphs. Their conjecture that, assuming $P \neq NP$, each constraint satisfaction problem is either NP-complete or polynomial time solvable is thus equivalent to the assertion that such a dichotomy theorem for RET_G exists. We remark that dichotomy theorems for variants of the homomorphism problem do exist for several large classes, see [4,6,9].

Given the NP-completeness results above, it is not surprising that no theorem giving necessary and sufficient conditions for a graph *G* to be a retract of a graph *H* of which it is a labelled subgraph is known. However, RET_G is tractable for certain classes of graphs. Many authors have identified such classes by describing an obvious necessary condition, say \mathscr{C} , and then studying those graphs *G* for which the condition is also sufficient. The collection of all such *G* is the set of *absolute retracts with respect to* \mathscr{C} . See [12] for an excellent survey.

One necessary condition for *G* to be a retract of *H* is that *G* is an *isometric* subgraph of *H*, meaning that for all vertices *x* and *y* of *G* the distance between *x* and *y* in *G* equals the distance between *x* and *y* in *H* (i.e. $d_G(x, y) = d_H(x, y)$). Absolute retracts with respect to isometry have been characterized in a number of different ways [10,11,13,14] (and others, see [12]). One such characterization, due to Nowakowski and Rival [13], states that a graph *G* is a retract of any graph for which it is an isometric subgraph if and only if *G* is in the variety generated by the finite paths.

A generalization of the condition "G is an isometric subgraph of H" involving k-subsets of vertices of G, $k \ge 2$, was first studied in [11]. Let G be a graph. For an integer $k \ge 2$, a k-hole in G is a pair (L, f), where L is a k-subset of V(G) and $f : L \to \mathbb{Z}^+$, such that the following two conditions are satisfied:

(i) no vertex $x \in V(G)$ satisfies $d(x, \ell) \leq f(\ell)$ for all $\ell \in L$, and

(ii) for any proper subset $L' \subset L$, there is a vertex y such that $d(y, \ell) \leq f(\ell)$ for all $\ell \in L'$.

Suppose *G* is a subgraph of *H*. A *k*-hole (L, f) in *G* is *filled* in *H* if some vertex $x \in V(H)$ satisfies $d_H(x, \ell) \leq f(\ell)$ for all $\ell \in L$. The vertex *x* is said to *fill* the hole.

As an example, consider a six cycle with vertices 0, 1, 2, 3, 4, 5 (in the natural order). The set $L = \{0, 2, 4\}$ and the function f(0) = f(2) = f(4) = 1 is a hole since no vertex in the cycle is simultaneously at distance at most one from each of 0, 2, and 4, and there is a vertex at distance at most one from any pair of vertices in *L*. Let *H* be the graph obtained by adding a single vertex *v* to the cycle, and joining *v* to each vertex in *L*. Observe that the cycle is an isometric subgraph of *H*; however, *v* fills the hole (L, f) and consequently *H* does not admit a retraction to the cycle.

We define \mathscr{AR}_k to be the set of all finite graphs *G* with the property that for any graph *H*, *G* is a retract of *H* whenever *G* is a subgraph of *H*, and for $2 \le i \le k$, no vertex of *H* fills an *i*-hole in *G*. Observe that $\mathscr{AR}_2 \subseteq \mathscr{AR}_3 \subseteq \cdots$. We define \mathscr{AR} , the set of *absolute retracts*, to be $\bigcup_{k=2}^{\infty} \mathscr{AR}_k$. We remark that the inclusion $\mathscr{AR}_k \subseteq \mathscr{AR}_{k+1}$ is in fact strict, i.e. $\mathscr{AR}_k \neq \mathscr{AR}_{k+1}$, for $k = 2, 3, \ldots$ (see [12]). It transpires that, for each $k \ge 2$, the set \mathscr{AR}_k is a variety (the proof of this fact is below), as is \mathscr{AR} . A characterization of \mathscr{AR} , attributed to an unpublished manuscript of Winkler, appears in [12].

Note that statement "no vertex in *H* fills a 2-hole in *G*" is equivalent to the statement that *G* is an isometric subgraph of *H*. Also, note that a graph which belongs to \mathscr{AR}_k cannot have an ℓ -hole for $\ell > k$ as any filled hole is an obstruction to the existence of a retraction.

Hell and Rival [10] described a set Y of graphs such that \mathscr{AR}_3 is the variety of generated by Y. For the variety \mathscr{AR}_k , it might be possible to construct a set of generators by generalizing the so-called Y-graphs from [10] that generate \mathscr{AR}_3 . However, this appears to quickly become unwieldy.

In Section 2 we present our main result: for each $k \ge 2$ we describe a collection S_k of graphs such that \mathscr{AR}_k is the variety generated by $\bigcup_{n=2}^k S_n$. The collection $S_2 \cup S_3$ that generates \mathscr{AR}_3 admits a simpler description than the *Y*-graphs. (Our original motivation for this work was to find a simpler description of the *Y*-graphs.) A number of the ideas used in this paper can be seen to follow naturally from ideas in [10].

Feder and Vardi [7] proved that if there exists k such that the graph G admits a near unanimity function of arity k (defined in Section 3), then the problem RET_G is polynomial time solvable. In Section 3, we show that $\mathscr{AR}_k \subseteq \text{NUF}_{k+1}$, where NUF_t is the variety of graphs that admit a near unanimity function of arity t.

2. The variety \mathscr{AR}_k

The following theorem is proved in [10] for k = 2 and k = 3, but the argument works for all integers $k \ge 2$.

Theorem 2.1 (*Hell and Rival* [10]). For any integer $k \ge 2$, \mathcal{AR}_k is a variety.

Corollary 2.2 (Hell and Rival [10]). The set \mathcal{AR} of absolute retracts is a variety.

The following concepts are from [10], but we include them here for completeness. Suppose $h : G \to H$ is a homomorphism. A *k*-hole (L, f) in *G* is *separated in H* if no vertex $x \in V(H)$ satisfies $d_H(x, h(\ell)) \leq f(\ell)$ for all $\ell \in L$. Such a homomorphism *h* is called a *separating map to H* for (L, f). If *G* is a subgraph of *H*, the inclusion map is a homomorphism of *G* to *H*. Moreover, it is a separating map to *H* for (L, f) if and only if (L, f) is not filled in *H*.

Let $x = (x_1, x_2, ..., x_k)$ and $y = (y_1, y_2, ..., y_k)$ be elements of \mathbb{R}^k . We say that x dominates y if $x_i \ge y_i$ for i = 1, 2, ..., k.

Let G be a graph and let L be a k-subset of V(G). The distance labelling of G with respect to L is the assignment to each vertex x of G, the k-tuple $(d(x, \ell_1), d(x, \ell_2), \dots, d(x, \ell_k))$. Let $\mathscr{S}(G, L)$ be the set of all such k-tuples that arise in the distance labelling of G with respect to L, and let M(G, L) be the largest integer that occurs in any component of a k-tuple in $\mathscr{S}(G, L)$, i.e. $M(G, L) = \max_{x, \ell_i} d(x, \ell_i)$.

A distance matrix of size k is a $k \times k$ symmetric matrix D with non-negative integer entries, such that $d_{ii} = 0$ for i = 1, 2, ..., k and $d_{ac} \leq d_{ab} + d_{bc}$ for all $a, b, c \in \{1, 2, ..., k\}$.

Let *D* be a distance matrix of size *k*, and $L = \{\ell_1, \ell_2, ..., \ell_k\}$ be a *k*-set. The graph K = K(D, L) is the subdivision of the complete graph with vertex set *L* obtained by replacing each edge $\ell_i \ell_j$ by a path of length d_{ij} , $1 \le i < j \le k$. By construction, $d_{ij} = d_K(\ell_i, \ell_j)$.

Let *D* be a distance matrix and *L* a *k*-set. Consider the distance labelling of K = K(D, L) with respect to *L*. Suppose i < j and the path $\ell_i = v_0, v_1, v_2, \ldots, v_{d_{ij}} = \ell_j$ replaced the edge $\ell_i \ell_j$ in the construction of *K*. It is not hard to see that the *k*-tuple assigned to v_p is $(m_1, m_2, \ldots, m_{i-1}, p, m_{i+1}, m_{i+2}, \ldots, m_{j-1}, d_{ij} - p, m_{j+1}, m_{j+2}, \ldots, m_k)$, where for $r = 1, 2, \ldots, k$, we have $m_r = \min\{p + d_{ir}, d_{ij} - p + d_{jr}\}$.

Lemma 2.3. Suppose *G* is a graph and (L, f) is a *k*-hole in *G*, where $L = \{\ell_1, \ell_2, ..., \ell_k\}$. Further suppose *D* is the distance matrix whose entries are defined by $d_{ij} = d_G(\ell_i, \ell_j)$. Then the *k*-tuple $(f(\ell_1), f(\ell_2), ..., f(\ell_k))$ does not dominate any element of $\mathscr{S}(K, L)$, where K = K(D, L).

Proof. For each pair of subscripts *i* and *j* with $1 \le i < j \le k$, let P_{ij} be a shortest $\ell_i - \ell_j$ path in *G*. Let *F* be the subgraph of *G* induced by $\bigcup_{1 \le i < j \le k} P_{ij}$. Consider the distance labelling of *F* with respect to *L*. The label assigned to the vertex at distance *p* from ℓ_i along P_{ij} is clearly dominated by

$$(m_1, m_2, \ldots, m_{i-1}, p, m_{i+1}, m_{i+2}, \ldots, m_{j-1}, d_{ij} - p, m_{j+1}, m_{j+2}, \ldots, m_k),$$

where $m_r = \min\{p + d_{ir}, d_{ij} - p + d_{jr}\}$. The latter is an element of $\mathscr{S}(K, L)$. By letting *i*, *j* and *p* vary, it follows that every element of $\mathscr{S}(K, L)$ dominates a label that occurs in the distance labelling of *F*, i.e. each element of $\mathscr{S}(F, L)$ is dominated by an element of $\mathscr{S}(K, L)$.

Now consider the distance labelling of *G* with respect to *L*. The label assigned to a vertex of *F* in this labelling of *G* is dominated by the label it receives in the distance labelling of *F* with respect to *L*. That is, each element of $\mathscr{S}(F, L)$ dominates an element of $\mathscr{S}(G, L)$. Therefore, each element of $\mathscr{S}(K, L)$ dominates an element of $\mathscr{S}(G, L)$. Since (L, f) is a *k*-hole in *G*, the *k*-tuple $(f(\ell_1), f(\ell_2), \ldots, f(\ell_k))$ does not dominate any element of $\mathscr{S}(G, L)$. The result now follows. \Box

Let *D* be a distance matrix of size *k*. Let $L = \{\ell_1, \ell_2, ..., \ell_k\}$ be a *k*-set and $f : L \to \mathbb{N}$ be such that $(f(\ell_1), f(\ell_2), ..., f(\ell_k))$ does not dominate any element of $\mathscr{S}(K, L)$, where K = K(D, L). A *k*-tuple $(x_1, x_2, ..., x_k)$ of non-negative integers is called *admissible with respect to D* if $x_i + x_j \ge d_{ij}$, $1 \le i, j \le k$. (We think of an admissible *k*-tuple as a label that could be received by a vertex in the distance labelling of some graph containing *L*, where the distances between vertices in *L* are given by the entries in *D*.) A *k*-separator is a graph R = R(D, L, f) defined as follows. The vertices of *R* are the admissible *k*-tuples dominated by (M(K, L), M(K, L), ..., M(K, L)) and not

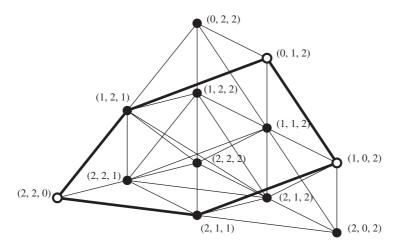


Fig. 1. An example of a 3-separator.

dominated by $(f(\ell_1), f(\ell_2), \dots, f(\ell_k))$. Two vertices $(x_1, x_2, \dots, x_k), (y_1, y_2, \dots, y_k) \in V(R)$ are adjacent if and only if $|x_i - y_i| \le 1$, $1 \le i \le k$.

Let *D* and *L* be as above. Observe that *i*th row of *D* is precisely the label received by ℓ_i in the distance labelling of K = K(D, L) with respect to *L*. In particular, the label is admissible. However, by construction of R(D, L, f), such a label is a vertex of R(D, L, f). In other words, the rows of *D* correspond to a subset of vertices in R(D, L, f). We let L_D denote this subset of vertices. Thus there is a natural correspondence between the elements of *L* and the elements of L_D , which we denote $\varphi : L \to L_D$.

An example of a 3-separator is given in Fig. 1. The distance matrix is

$$D = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$

and the function f is defined by $f(\ell_1) = f(\ell_2) = f(\ell_3) = 1$. The vertices $\varphi(\ell_1)$, $\varphi(\ell_2)$, and $\varphi(\ell_3)$ are shown in white, and the graph K(D, L) is drawn in bold.

Lemma 2.4. Suppose $x = (x_1, x_2, ..., x_k)$ is a vertex in R = R(D, L, f) Then $d_R(x, \varphi(\ell_i)) \ge x_i$ for all $\ell_i \in L$.

Proof. The *i*th coordinate of *x* is x_i , whereas, the *i*th coordinate of $\varphi(\ell_i)$ is 0. The result follows from the definition of adjacency in *R*. \Box

The following assertion, with k = 3 and 3-separator replaced by Y-graph, appears in the proof of Theorem 2 in [10].

Lemma 2.5. Suppose (L, f) is a k-hole in G. Then there exists a k-separator R for which there is a separating map from G to R for (L, f).

Proof. Let $L = \{\ell_1, \ell_2, \dots, \ell_k\}$, and let *D* be the $k \times k$ distance matrix in which $d_{ij} = d_G(\ell_i, \ell_j)$. Let R = R(D, L, f), and K = K(D, L).

Consider the distance labelling of G with respect to L. Every label that arises is admissible, and none is dominated by $(f(\ell_1), f(\ell_2), \ldots, f(\ell_k))$. Define a function $h : V(G) \to V(R)$ as follows. For each vertex $x \in V(G)$ with label (x_1, x_2, \ldots, x_k) , map x to $(M(K, L), M(K, L), \ldots, M(K, L))$ if (x_1, x_2, \ldots, x_k) dominates $(M(K, L), M(K, L), \ldots, M(K, L))$, and otherwise map x to vertex (x_1, x_2, \ldots, x_k) of R. It follows from the definitions of the distance labelling of G and adjacency in R that h is a homomorphism.

We remark that $h|_L$ is in fact the correspondence $\varphi : L \to L_D$ described above. Hence, for i = 1, 2, ..., k, the *k*-tuple $h(\ell_i) \in L_D$. Moreover, by Lemma 2.4 above there cannot be a vertex $y \in V(R)$ such that $d_R(y, h(\ell_i)) \leq f(\ell_i)$.

(Suppose to the contrary such a *y* does exist. Then $y_i \leq d_R(y, h(\ell_i)) \leq f(\ell_i)$, and *y* is not an admissible *k*-tuple, contrary to the assumption $y \in V(R)$.) It follows that *h* is a separating map to *R* for (L, f). \Box

We have just proved that given a particular hole in G, there is a homomorphism from G to R which separates the hole. The following result from [10] allows us construct a homomorphism (to a constructed target) which simultaneously separates all of the holes in G.

Lemma 2.6 (*Hell and Rival* [10]). Let G be a fixed graph. Let N be a set of integers each of which is at least two, with $2 \in N$. If for each $n \in N$ and each n-hole (L, f) of G there is a graph H(L, f) and a separating map to H(L, f) for (L, f), then G is (isomorphic to) a subgraph of $P = \prod \{H(L, f) : (L, f) \text{ is an n-hole and } n \in N \}$ such that all n-holes, $n \in N$ of G are separated in P.

Lemma 2.7. Let $k \ge 2$ be an integer. Every k-separator R(D, L, f) belongs to \mathscr{AR}_k .

Proof. Suppose R = R(D, L, f) is a subgraph of H, and no k-hole in R is filled in H. Consider the distance labelling of H with respect to L_D . Every label that arises is admissible with respect to D, and none is dominated by $(f(\ell_1), f(\ell_2), \ldots, f(\ell_k))$. Define a function $h : V(H) \to V(R)$ as follows. For each vertex $x \in V(H)$ with label (x_1, x_2, \ldots, x_k) , map x to $(M(R, L_D), M(R, L_D), \ldots, M(R, L_D))$ if (x_1, x_2, \ldots, x_k) dominates the k-tuple $(M(R, L_D), M(R, L_D), \ldots, M(R, L_D))$, and otherwise map x to the vertex (x_1, x_2, \ldots, x_k) of R. It follows from the definitions of distance labelling of H and adjacency in R that h is a homomorphism. The definition of R further implies that h maps each vertex of R to itself. Therefore, h is a retraction. \Box

Theorem 2.8. A graph belongs to \mathcal{AR}_k if and only if it is in the variety of *n*-separators, $2 \leq n \leq k$.

Proof. By Lemma 2.7, every *n*-separator belongs to \mathscr{AR}_n . Since $\mathscr{AR}_2 \subseteq \mathscr{AR}_3 \subseteq \cdots \subseteq \mathscr{AR}_k$, every *n* separator with $2 \leq n \leq k$ also belongs to \mathscr{AR}_k . Hence \mathscr{AR}_k contains the variety of *n*-separators, $2 \leq n \leq k$.

On the other hand, Lemmas 2.5 and 2.6 together imply that the variety of *n*-separators, $2 \le n \le k$, contains \mathscr{AR}_k . To see this, suppose $G \in \mathscr{AR}_k$. By Lemma 2.5, there exists an *n*-separator *R* and a separating map $G \to R$ for each *n*-hole, $2 \le n \le k$. By Lemma 2.6, *G* is a subgraph of *P*, the product of all the separators. Moreover, since no *n*-hole, $2 \le n \le k$, of *G* is filled in *P* and $G \in \mathscr{AR}_k$, we have *G* is a retract of *P*. Thus *G* is in the variety of *n*-separators. \Box

3. Near unanimity functions

Let G be a graph. A *near unanimity function of arity k* is a homomorphism $g: G^k \to G$ which is *nearly unanimous*: $g(x_1, x_2, ..., x_k) = x$ whenever at least k - 1 of $x_1, x_2, ..., x_k$ equal x.

We denote by NUF_k the set of graphs that admit a near unanimity function of arity *k*. The set NUF_k is a variety, see [2]. Connections between near unanimity functions and holes are studied in [2,7,12]. In particular, no graph with a *k*-hole can belong to NUF_k . (Also, see Theorem 3.2 below.)

Let $x_1, x_2, ..., x_t$ be integers. We denote by $\sigma_2(x_1, x_2, ..., x_t)$ the integer x_{i_2} , where $x_{i_1} \ge x_{i_2} \ge ... \ge x_{i_t}$. For clarity we note in the following lemma that *X* is simply a set of *k*-tuples, and *g* is a function.

Lemma 3.1. Let $X \subseteq \mathbb{N}^k$. Suppose $g: X^{k+1} \to X$ is defined by

 $g((x_{11}, x_{12}, \dots, x_{1k}), (x_{21}, x_{22}, \dots, x_{2k}), \dots, (x_{(k+1)1}, x_{(k+1)2}, \dots, x_{(k+1)k}))$ $= (\sigma_2(x_{11}, x_{21}, \dots, x_{(k+1)1}), \sigma_2(x_{12}, x_{22}, \dots, x_{(k+1)2}), \dots, \sigma_2(x_{1k}, x_{2k}, \dots, x_{(k+1)k})).$

Then, for any collection of k + 1 elements, $v_1, v_2, \ldots, v_{k+1} \in X$, there exists v_i , $1 \le i \le k + 1$, such that $g(v_1, v_2, \ldots, v_{k+1})$ dominates v_i .

Proof. The proof is by induction on k. The statement is clear when k = 2. Suppose it is true when k = t, for some $t \ge 2$. Consider the situation for t + 1. Without loss of generality, $\sigma_2(x_{11}, x_{21}, \dots, x_{(t+1)1}) = x_{21}$ and $x_{11} \ge x_{21}$. Let \tilde{X}

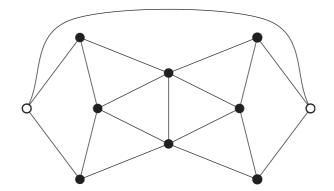


Fig. 2. The graph on the black vertices is in NUF5, but not in \mathscr{AR}_k for any k.

be the projection of X onto its last (t - 1) coordinates. That is, $\tilde{X} = \{(y_2, y_3, \dots, y_t) | (y_1, y_2, y_3, \dots, y_t) \in X\}$. Let $g' : \tilde{X}^t \to \tilde{X}$ be defined as in the statement of the lemma. Then, by the induction hypothesis,

$$g'((x_{22}, x_{23}, \dots, x_{2t}), (x_{32}, x_{33}, \dots, x_{3t}), \dots, (x_{(t+1)2}, x_{(t+1)3}, \dots, x_{(t+1)t})) = (\sigma_2(x_{22}, x_{32}, \dots, x_{(t+1)2}), \sigma_2(x_{23}, x_{33}, \dots, x_{(t+1)3}), \dots, \sigma_2(x_{2t}, x_{3t}, \dots, x_{(t+1)t}))$$

dominates one of the (t - 1)-tuples from $(x_{22}, x_{23} \dots, x_{2t}), (x_{32}, x_{33} \dots, x_{3t}), \dots, (x_{(t+1)2}, x_{(t+1)3}, \dots, x_{(t+1)t})$. Recall $x_{11} \ge x_{21} = \sigma_2(x_{11}, x_{21}, \dots, x_{(t+1)1})$ and observe $\sigma_2(x_{1i}, x_{2i}, \dots, x_{(t+1)i}) \ge \sigma_2(x_{2i}, x_{3i}, \dots, x_{(t+1)i})$ for $i = 2, 3, \dots, t$. Thus, the *t*-tuple, in *X*, $(\sigma_2(x_{11}, x_{21}, \dots, x_{(t+1)1}), \sigma_2(x_{12}, x_{22}, \dots, x_{(t+1)2}), \dots, \sigma_2(x_{1t}, x_{2t}, \dots, x_{(t+1)t}))$ dominates one of the following *t*-tuples: $(x_{21}, x_{22}, \dots, x_{2t}), (x_{31}, x_{32}, \dots, x_{3t}), \dots (x_{(t+1)1}, x_{(t+1)2}, \dots, x_{(t+1)t})$. The result now follows by induction. \Box

The following result has been independently proved by Loten [12].

Theorem 3.2. For all $k \ge 2$, $\text{NUF}_{k+1} \supseteq \mathscr{AR}_k$.

Proof. It is enough to show that every k-separator belongs to NUF_{k+1} .

Let *D* be a distance matrix of size *k*. Let $L = \{\ell_1, \ell_2, ..., \ell_k\}$ be a *k*-set and $f : L \to \mathbb{N}$ be such that $(f(\ell_1), f(\ell_2), ..., f(\ell_k))$ does not dominate any vertex of $\mathscr{S}(K, L)$, where K = K(D, L). Let R = R(D, L, f). Define *g* on $V(R^{k+1})$ by

$$g((x_{11}, x_{12}, \dots, x_{1k}), (x_{21}, x_{22}, \dots, x_{2k}), \dots, (x_{(k+1)1}, x_{(k+1)2}, \dots, x_{(k+1)k}))$$

= $(\sigma_2(x_{11}, x_{21}, \dots, x_{(k+1)1}), \sigma_2(x_{12}, x_{22}, \dots, x_{(k+1)2}), \dots, \sigma_2(x_{1(k+1)}, x_{2(k+1)}, \dots, x_{k(k+1)})) = r.$

It follows from the definition that g is nearly unanimous. We will show that g is a homomorphism of R^{k+1} to R. By definition of σ_2 and V(R), the k-tuple r is dominated by $(M(K, L), M(K, L), \dots, M(K, L))$, where K = K(D, L). By Lemma 3.1, r dominates a vertex of R. Since the vertices of R are admissible k-tuples not dominated by $(f(\ell_1), f(\ell_2), \dots, f(\ell_k))$, this implies that r is admissible and not dominated by $(f(\ell_1), f(\ell_2), \dots, f(\ell_k))$. Therefore, r is a vertex of R. It remains to argue that g preserves edges. This is implied by the definition of E(R) and the following observation. Suppose $|x_i - y_i| \leq 1$ for $i = 1, 2, \dots, k + 1$, then

 $|\sigma_2(x_1, x_2, \ldots, x_{k+1}) - \sigma_2(y_1, y_2, \ldots, y_{k+1})| \leq 1.$

This completes the proof. \Box

It is known that $\mathscr{AR}_2 = \text{NUF}_3$, see [1], but it is unknown whether or not $\mathscr{AR}_3 = \text{NUF}_4$. For $k \ge 4$, $\mathscr{AR}_k \subset \text{NUF}_{k+1}$. An example, independently found by several people, and published in [12] is shown in Fig. 2. Let *G* be the graph induced by the black vertices in the figure, and let *H* be entire graph. Then *H* does not fill any hole in *G*, but *H* does not retract to *G*. Hence $G \notin \mathscr{AR}_k$ for any *k*. Yet *G* is a chordal graph with *leafage* 4 and by a result in [2] *G* does belong to NUF₅.

Acknowlegements

The authors gratefully acknowledge the support of the Natural Science and Engineering Research Council of Canada.

References

- [1] H.J. Bandelt, Graphs with edge-preserving majority functions, Discrete Math. 103 (1992) 1-5.
- [2] R.C. Brewster, T. Feder, P. Hell, J. Huang, G. MacGillivray, Near unanimity functions and varieties of graphs, 2003, submitted for publication.
- [3] P. Dukes, H. Emerson, G. MacGillivray, Undecidable generalized colouring problems, J. Combin. Math. Combin. 26 (1998) 97–112.
- [4] T. Feder, Classification of homomorphisms to oriented cycles, and of k-partite satisfiability, SIAM J. Discrete Math. 14 (2001) 471–480.
- [5] T. Feder, P. Hell, List homomorphisms to reflexive graphs, J. Combin. Theory, Ser. B 72 (1998) 236–250.
- [6] T. Feder, P. Hell, J. Huang, Bi-arc graphs and the complexity of list homomorphisms, J. Graph Theory 42 (2003) 61-80.
- [7] T. Feder, M.Y. Vardi, The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory, SIAM J. Comput. 28 (1998) 57–104.
- [9] P. Hell, J. Nešetřil, On the complexity of H-colouring, J. Combin. Theory B 48 (1990) 92-110.
- [10] P. Hell, I. Rival, Absolute retracts and varieties of reflexive graphs, Canad. J. Math. XXXIX (1987) 544-567.
- [11] E.M. Jawhari, M. Pouzet, I. Rival, A classification of reflexive graphs: the use of "holes", Canad. J. Math. XXXVIII (1986) 1299–1328.
- [12] C. Loten, Retractions of chordal and related graphs, Ph.D. Thesis, Simon Fraser University, 2003.
- [13] R.J. Nowakowski, I. Rival, The smallest graph variety containing all paths, Discrete Math. 43 (1983) 223-234.
- [14] A. Quilliot, Homomorphismes, points fixes, rétractions et jeux de poursouite dans les graphes, let ensembles ordonées et les espaces métriques. Thèse d'Etat, Université de Paris VI, 1983.