JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 90, 421-430 (1982)

Generic Existence of a Nonempty Compact Set of Fixed Points

TOMÁS DOMÍNGUEZ BENAVIDES

Facultad de Matemáticas, Universidad de Sevilla. Sevilla, Spain

Submitted by Ky Fan

Let X be a complete metric space, \mathscr{M} a set of continuous mappings from X into itself, endowed with a metric topology finer than the compact-open topology. Assuming that there exists a dense subset \mathscr{N} contained in \mathscr{M} such that for every mapping T in \mathscr{N} the set $\{x \in X: Tx = x\}$ is nonempty, it is proved that most mappings (in the Baire category sense) in \mathscr{M} do have a nonempty compact set of fixed points. Some applications to α -nonexpansive operators, semiaccretive operators and differential equations in Banach spaces are derived.

INTRODUCTION

A property is said to be generic in a Baire space E if it holds in a residual subset of E. In [7, 11] the generic existence of a fixed point for a metric space \mathcal{M} of mappings on a complete metric space X has been studied. In both papers it is assumed that there exists a dense subset \mathcal{N} of \mathscr{M} such that every mapping T in \mathcal{N} has a unique fixed point. Proofs in these papers heavily rest upon the uniqueness of the fixed point in \mathcal{N} . The main result in this paper is a generic existence theorem of fixed points (Theorem 1, Section 1) with the weaker assumption: For every mapping T in \mathcal{N} the set $\{x \in X: Tx = x\}$ is a nonempty set. We also prove that fixed points of T continuously depends (in a weak sense, see, (Theorem 1(ii)) on the mapping T). In Section 2, we apply Theorem 1 to prove the generic existence (and weak continuous dependence) of fixed points for α -nonexpansive mappings (i.e., mappings which satisfy $\alpha(T(A)) \leq \alpha(A)$ for every bounded set A, where $\alpha(\cdot)$ denotes the Kuratowski's noncompactness measure [9, p. 412]) and α nonexpansive mappings defined on cones. Generic problems concerning α nonexpansive mappings have been treated in [2, 5]. In Section 3, Theorem 1 is applied to prove that most of the semiaccretive mappings (i.e., compact perturbations of accretive mappings, see the definition in Section 3) satisfying a boundary condition do have a zero. In Section 4, using Theorem 1, we answer to an open question proposed in [11] about the

generic existence of solution of a differential equation in a Banach space with Caratheodory's hypotheses. Further application are indicated in Sections 2 and 4.

1. MAIN RESULT

In the following X will be a complete metric space, \mathbb{N} the set of the positive integers and \mathscr{M} a set of continuous mappings from X into X endowed with a metric finer than the compact open topology.

THEOREM 1. Assume that there exists a subset \mathcal{N} of \mathcal{M} satisfying:

- (a) \mathcal{N} is dense in \mathcal{M} .
- (b) For every f in \mathcal{N} the set of the solutions of

$$x = f(x) \tag{1}$$

is nonempty.

(c) For every f in \mathcal{N} and every sequence $\{x_n\}$ such that x_n is a solution of

$$x = f_n(x), \tag{2}$$

where $\{f_n\} \to f$ in \mathcal{M} , there exists a subsequence of $\{x_n\}$ which converges to a solution of (1).

Then, there exists a residual subset \mathcal{M}' of \mathcal{M} such that the following conditions are satisfied by every f in \mathcal{M}' :

(i) $\{x \in X : x = f(x)\}$ is a nonempty compact set.

(ii) If $\{f_n\} \to f$ in \mathscr{M} and x_n is a solution of (2), there exists a subsequence of $\{x_n\}$ which converges to a solution of (1).

Proof. Let $\{x_n\}$ be a sequence in X. Define

$$A(\{x_n\}) = \sup\{d(x_n, x_m): n, m \in \mathbb{N}\}$$
$$B(\{x_n\}) = \inf\{A(\{x'_n\}): \{x'_n\} \text{ is a subsequence of } \{x_n\}\}.$$

For every f in \mathcal{M} denote

 $V(f) = \sup\{B(\{x_n\}): \{f_n\} \to f \text{ in } \mathscr{M} \text{ and } x_n \text{ is a solution of } (2)\}.$

Claim 1. Assume V(f) = 0. If $\{f_n\} \to f$ in \mathscr{M} and x_n is a solutions of (2) there exists a Cauchy subsequence of $\{x_n\}$.

Since $B(\{x_n\}) = 0$ there exists a subsequence $\{x_n^1\}$ such $A(\{x_n^1\}) < 1$. By induction, if $\{x_n^m\}$ is a subsequence of $\{x_n\}$ satisfying $A(\{x_n^m\}) < 1/m$ we can construct a subsequence $\{x_n^{m+1}\}$ of $\{x_n^m\}$ such that $A(\{x_n^{m+1}\}) < 1/(m+1)$. Consider the diagonal sequence $\{x_n^n\}$. For every real number $\varepsilon > 0$ let N be an integer number greater than $1/\varepsilon$. Since x_n^n is a term of $\{x_n^N\}$ for n > N we obtain that $\{x_n^n\}$ is a Cauchy sequence.

Claim 2. For every f in \mathcal{N} , V(f) = 0.

Let f be a mapping in \mathcal{N} , $\{f_n\}$ a sequence converging to f in \mathcal{M} , and x_n a solution of (2). By (c) there exists a Cauchy subsequence $\{x'_n\}$ of $\{x_n\}$. For every real number $\varepsilon > 0$ we can choose a subsequence $\{x''_n\}$ of $\{x'_n\}$ such that $A(\{x''_n\}) < \varepsilon$. Thus $B(\{x_n\}) < \varepsilon$ that implies V(f) = 0.

Claim 3. At every mapping f in $V^{-1}(\{0\})$, V is continuous.

Otherwise, for some f in \mathscr{M} with V(f) = 0 we can find a real number $\eta > 0$ and a sequence $\{f_n\} \to f$ in \mathscr{M} such that $V(f_n) > \eta$ for every n in \mathbb{N} . Then, for each n there exists a sequence $\{f_{n,m}\} \to f_n$ in \mathscr{M} and a sequence $\{x_{n,m}\}$ of solutions of $x = f_{n,m}(x)$ such that $B(\{x_{n,m}\}) > \eta/2$. We can assume $d(f_{n,m},f_n) < 1/n$ for every $m \ge n$. For each n we can construct a subsequence $\{x_{n,\varphi(m)}\}$ ($\phi: \mathbb{N} \to \mathbb{N}$ order preserving) satisfying

$$d(x_{n,\phi(m)}, x_{n,\phi(m')}) > \eta/4$$
 (3)

for every $m, m' \in \mathbb{N}$ $(m \neq m')$. In order to do that choose $\phi(1) = 1$. Let ϕ be defined for j = 1, ..., k - 1, satisfying (3). There exists $m > \phi(k - 1)$ such that $d(x_{n,m}, x_{n,\phi(j)}) > \eta/4$ (j = 1, ..., k - 1) because otherwise we could choose for some $x_{n,\phi(j)}$ $(j \leq k - 1)$ a subsequence of $\{x_{n,m}\}$ formed by all points whose distance to $x_{n,\phi(j)}$ is less or equal than $\eta/4$, contradicting $B(\{x_{n,m}\}) > \eta/2$. Denote again $\{x_{n,m}\}$ the subsequence which satisfies (3). Hence we have

$$d(x_{n,m}, x_{n,m'}) > \eta/4 \quad \text{for every} \quad n, m, m' \in \mathbb{N}, \quad m \neq m'.$$
(4)

By $A \leq B$ we shall mean that A and B are ordered subset of \mathbb{N} and A is contained in B, so that $\{(n, x_n): n \in A\}$ is a subsequence of $\{x_n\}$ if $A \leq \mathbb{N}$. Consider the sequence $\{(n, x_{n,n}): n \in \mathbb{N}\}$. Since $\{f_{n,n}\} \rightarrow f$ and V(f) = 0 there exists $N_0 \leq \mathbb{N}$ such that the sequence $\{(n, x_{n,n}): n \in N_0\}$ converges to a solution x_0 of (1). Consider the sequence $\{(n, x_{n,n+1}): n \in N_0\}$. We can construct a subsequence $\{(n, x_{n,n+1}): n \in N_1\}$ $(N_1 \leq N_0)$ converging to a solution x_1 of (1). By induction we can construct sequences $\{n, x_{n,n+k}: n \in N_k\}$ $(N_k \leq N_{k-1})$ converging to solutions x_k of (1). Since V(f) = 0 we choose by Claim 1 a Cauchy subsequence $\{(k, x_k): k \in K\}$ $(K \leq \mathbb{N})$ of $\{x_k\}$. Hence for $k, k' \in K$ (k < k') large enough one has $d(x_k, x_{k'}) < \eta/8$. Since $\{(n, x_{n,n+k}): n \in N_{k'}\}$ and $\{(n, x_{n,n+k'}): n \in N_{k'}\}$ converge to x_k and $x_{k'}$ respectively, we obtain for $n \in N_{k'}$ large enough $d(x_{n,n+k}, x_{n,n+k'}) < \eta/4$ contradicting (4).

Claim 4. The subset $V^{-1}(\{0\})$ is a residual subset of \mathcal{M} .

It suffices to note that $V^{-1}(\{0\}) = \bigcap_{n=1}^{\infty} V^{-1}([0, 1/n))$ and by Claims 2 and 3 $V^{-1}([0, 1/n))$ contains a dense open subset of \mathcal{M} .

We can easily complete the proof. If f is in $\mathscr{M}' = V^{-1}(\{0\})$, let $\{f_n\}$ be a sequence in \mathscr{N} which converges to f. Let x_n be a solution of (2). By Claim 1 there exists a Cauchy subsequence, which converges to a solution x of (1). Continuous dependence follows in the same way. From (ii) every sequence in the set $\{x \in X: f(x) = x\}$ contains a converging subsequence. Thus this set is compact.

2. Applications to α -nonexpansive Mappings

Let X be a Banach space and C a bounded closed nonempty convex subset of X. If $\alpha(\cdot)$ denotes the Kuratowski's noncompactness measure and T from C into C is a continuous mapping satisfying $\alpha(T(A)) < \alpha(A)$ for every set A contained in C, it is known [10, p. 127] that the set $\{x \in X: Tx = x\}$ is a nonempty compact set. This result is not longer true if T is α -nonexpansive, i.e., T satisfies $\alpha(T(A)) \leq \alpha(A)$, even if X is uniformly convex [10, p. 126]. By applying Theorem 1 we prove the generic existence of fixed points of α nonexpansive mappings.

THEOREM 2. Let \mathscr{M} be the set of all continuous mappings $T: C \to C$ which satisfy $\alpha(T(A)) \leq \alpha(A)$ for every subset A of C, endowed with the topology of uniform convergence. Then, there exists a residual subset \mathscr{M}' of \mathscr{M} such that for every T in \mathscr{M}' the following conditions are satisfied:

(i) $\{x \in C: Tx = x\}$ is a nonempty compact set.

(ii) If $\{T_n\}$ converges to T in \mathscr{M} and x_n is a fixed point of T_n there exists a subsequence of $\{x_n\}$ which converges to some fixed point of T.

Proof. Let \mathscr{N} be the set of all α -Lipschitz operators with constant less than 1. Since $(1 - 1/n)T \to T \mathscr{N}$ is a dense subset of \mathscr{M} . By a Darbo's result [3] the set $\{x \in X: Tx = x\}$ is a nonempty compact set for every T in \mathscr{N} . To prove condition (c) in Theorem 1 let $\{T_n\}$ be a sequence converging in \mathscr{M} to $T \in \mathscr{N}$, x_n a fixed point of T_n and assume $\alpha(\{x_n: n \in \mathbb{N}\}) > 0$. Choose $\varepsilon = (1 - k_T)/3\alpha(\{x_n : n \in \mathbb{N}\})$, where k_T is te α -Lipschitz constant of T. For N large enough so that $d(T, T_n) < \varepsilon$ for $n \ge N$ we have

$$\begin{aligned} \alpha(\{x_n : n \in \mathbb{N}\}) &= \alpha(\{x_n : n \ge N\}) = \alpha(\{T_n x_n : n \ge N\}) \\ &\leq 2\varepsilon + \alpha(T(\{x_n : n \ge N\})) \\ &< 2\varepsilon + k_T \alpha(\{x_n : n \in \mathbb{N}\}) < \alpha(\{x_n : n \in \mathbb{N}\}) \end{aligned}$$

Then $\{x_n : n \in \mathbb{N}\}$ is a relatively compact set.

Remark. Condition (i) in Theorem 2 has been proved in [2, 5] with a different technique. In [5] it is proved that the successive approximation are precompact and a similar result for upper semicontinuous α -nonexpansive mappings which are compact convex valued. This result (replacing precompactness of the successive approximation by (ii)) can be derived from the result corresponding to Theorem 1 for multivalued mapping and the fixed point theorem of Fan [6]. Theorem 2 also holds if we consider the β -measure defined by $\beta(A) = \inf\{\varepsilon > 0: A \text{ can be covered by finitely many balls with diameter less than } \varepsilon\}$.

Theorem 1 can be also applied to quasibounded α -nonexpansive mappings defined on a cone. We recall [10, p. 128] that a mapping T defined from a cone C in a Banach space X into X is said to be quasibounded if T maps bounded sets into bounded sets and

$$q(T) = \lim_{\substack{|x|\to\infty\\x\in C}} |x|^{-1} |Tx| < +\infty.$$

It is known [10, p. 129] that every α -contractive quasibounded mapping $T: C \to C$ with q(T) < 1 has a fixed point.

THEOREM 3. Let \mathscr{M} be the space of all quasibounded continuous mappings $T: C \to C$ that satisfy: $(q_1) \alpha(T(A)) \leq \alpha(A)$ for every bounded set A contained in C; $(q_2) q(T) \leq 1$, endowed with the uniform convergence on bounded sets topology. Then, there exists a residual subset \mathscr{M}' of \mathscr{M} such that for every T in \mathscr{M}' one has:

(i) $\{x \in X: Tx = x\}$ is a nonempty compact set.

(ii) If $\{T_n\} \to T$ in \mathscr{M} and x_n is a fixed point of T_n , there exists a subsequence of $\{x_n\}$ which converges to a fixed point of T.

Proof. It runs as that of Theorem 2, \mathscr{N} being the set of all quasibounded α -Lipschitz mappings T with Lipschitz constant $k_T < 1$ and q(T) < 1. To prove condition (c) in Theorem 1, let T be a mapping in \mathscr{N} and $\{T_n\}$ a sequence converging to T in \mathscr{M} . If q(T) < h < 1 choose R > 0 such that

|Tx| < h|x| for every x in C, |x| > R. Denote $M = \sup\{|Tx|: |x| \le R\}$, $r = \max\{R, M+1\}, C_r = \{x \in C: |x| \le r\}$. Choose n_0 large enough such that $|T_n(x)| \le r$ for every $n \ge n_0$ and x in C_r . Then T_n maps C_r into C_r for $n \ge n_0$. As in the proof of Theorem 2, we can obtain (ii).

3. Aplication to Semiaccretive Mappings

Let X be a real Banach space with uniformly convex dual X^* , D a bounded closed convex subset of X. Denote by $J: X \to X^*$ the (unique) duality mapping. If T of D into X is a strongly accretive mapping, (i.e., there exists a constant c > 0 such that

$$\langle J(x-y), Tx-Ty \rangle \ge c |x-y|^2$$

for every x, y in D) and T satisfies $(I - T)(\partial D) \subset D$, it is known [12] that T has a unique zero in D. De Blasi [6] proves that this result holds for most accretive mappings (i.e., mappings which satisfy

$$\langle J(x-y), Tx-Ty \rangle \ge 0$$

for every x, y in D) in the sense of the Baire category.

DEFINITION [1, p. 234, 236]. A mapping $T: D \to X$ is said to be strongly semiaccretive if there exists a continuous mapping S of $D \times D$ into X for which the following conditions are all satisfied:

 (s_1) Tx = S(x, x) for every x in D.

 (s_2) For every x in D, the mapping $S_x: D \to X$ defined by $S_x y = S(x, y)$ is strongly accretive.

 (s_3) The mapping $x \to S_x$ is a continuous mapping from D into a relatively compact set of the space of continuous mappings from D into X, endowed with the topology of uniform convergence.

A mapping $T: D \to X$ is said to be semiaccretive if there exists a continuous mapping S of $D \times D$ into X for which (s_1) and the following conditions are satisfied

(s'_2) For every x in D, the mapping $S_x: D \to X$ is accretive.

 (s'_3) The mapping $x \to S_x$ is a continuous mapping from the weak topology on D to the topology of uniform convergence on the set of continuous mappings from D into X.

We say that a mapping $T: D \to X$ is weakly semiaccretive if there exists a continuous mapping $S: D \times D \to X$ for which (s_1) , (s'_2) , and (s_3) are satisfied.

Since X^* is uniformly convex, condition (s'_3) implies condition (s_3) . Thus, every semiaccretive mapping is a weakly semiaccretive mapping. If T is strongly semiaccretive and satisfies $(I - T)(\partial D) \subset D$ it is known [1, Theorem 13.15] that there exists a point x in D such that Tx = 0. This result is also valid [1, Theorems 13.17] if T is semiaccretive and X is a uniformly convex space. The Theorem 4 shows that this result still remains valid for most semiaccretive and weakly semiaccretive mappings in arbitrary Banach spaces with uniformly convex dual.

THEOREM 4. Let X be a Banach space with uniformly convex dual, D a closed bounded convex subset of X. Denote \mathscr{M} (resp. \mathscr{T}) the set of semiaccretive mappings (resp. weakly semiaccretive mappings) from D into X satisfying $(I - T)(\partial D) \subset D$, endowed with the topology of uniform convergence. Then, there exists a residual subset \mathscr{M}' of \mathscr{M} (resp. \mathscr{T}' of \mathscr{T}) such that every T in \mathscr{M}' (resp. \mathscr{T}') has a zero in D.

Proof. We may assume without loss of generality that 0 is an interior point of D, since translation of the independent variable for a mapping does not affect its accretiveness and hence its semiaccretiveness. Denote by \mathcal{A} the set of the strongly semiaccretive mapping T that satisfy for some constant $c_T > 0$ and for every x, u, v in D the inequality $\langle J(u-v); S_x u - S_x v \rangle \ge c_T |u-v|^2$, where S is the mapping given for T by the semiaccretiveness. For every T in \mathscr{M} or \mathscr{F} the mapping $T_{\varepsilon} = (1-\varepsilon) T + \varepsilon I$ is in \mathscr{F} (for $S_{\varepsilon}(x,y) = (1-\varepsilon) S(x,y) + \varepsilon y$) and $I - T_{\varepsilon}$ maps ∂D into D. Thus $\mathscr{F} \cap \mathscr{K}$ (resp. $\mathscr{F} \cap \mathscr{F}$) is a dense subset of \mathscr{M} (resp. \mathscr{F}). To prove Theorem 1(c) let $\{T_n\}$ be a sequence converging in \mathscr{M} or \mathscr{F} to a mapping T in \mathscr{F} . Let x_n be a zero of T_n . From (s₃) there exists a subsequence of $\{S_{x_n}\}$, denoted again by $\{S_{x_n}\}$ which converges uniformly to a mapping $U: D \to X$ satisfying $\langle J(u-v), Uu - Uv \rangle \ge c_T |u-v|^2$ for every u, vin D. Let L be the diameter of D and $\varepsilon > 0$ arbitrary. Choose N large enough so that $d(T_n, T) < \varepsilon$, $d(S_{x_n}, U) < \varepsilon$ for n > N. For every n, m > N one has

$$\langle J(x_n - x_m), Tx_n - Tx_m \rangle = \langle J(x_n - x_m), Ux_n - Ux_m \rangle$$

+ $\langle J(x_n - x_m), T_m x_m - Tx_m \rangle \leq 2L\varepsilon.$

Furthermore

$$c_T |x_n - x_m|^2 \leq \langle J(x_n - x_m), Ux_n - Ux_m \rangle$$

= $\langle J(x_n - x_m), S(x_n, x_n) - S(x_m, x_m) \rangle$
+ $\langle J(x_n - x_m), Ux_n - S(x_n, x_n) \rangle$
+ $\langle J(x_n - x_m), S(x_m, x_m) - Ux_m \rangle \leq 4L\varepsilon.$

Thus $\{x_n\}$ is a Cauchy sequence. Let Λ be defined by $\Lambda(T) = I - T$. Applying Theorem 1 to $\Lambda(\mathscr{M})$ (resp. $\Lambda(\mathscr{S})$) the poof is complete.

THEOREM 5. Let X be a Banach space with uniformly convex dual, D a closed bounded convex subset of X. Denote by \mathcal{A} the set of all continuous mappings from D into X which satisfy the following conditions

(c₁) T = A + C, where A is accretive and C is a compact continuous mapping from D into X.

(c₂)
$$(I - A - C)$$
 maps ∂D into D.

Then, there exists a residual subset \mathcal{A}' of \mathcal{A} such that every T in \mathcal{A}' has a zero in D.

Proof. It runs as that of Theorem 4.

4. Applications to Differential Equations

Let X be a Banach space, I an interval in the set \mathbb{R} of real numbers and f a mapping from $I \times X$ into X. Consider the Cauchy problem

$$x' = f(t, x), \qquad x(t_0) = x_0.$$
 (5)

If (5) has unique solution for (t_0, x_0) running in a dense subset A of $I \times X$ and f satisfies Caratheodory hypotheses for $X = \mathbb{R}$, Cafiero [3] proves that uniqueness holds almost everywhere in $I \times \mathbb{R}$. Vidossich [11] extends this result (in the sense of Baire category) to an arbitrary Banach space X, assuming that for every (t_0, x_0) in $I \times X$ the mapping

$$x(\cdot) \to x_0 + \int_{t_0}^t f(s, x(s)) \, ds$$
 (6)

is a compact mapping from C(I, X) into itself, C(I, X) being the set of all continuous mappings from I into X with the compact open topology. Since in infinite-dimensional spaces, Caratheodory hypotheses do not assure the existence of solution, we can study an existence problem analogous to Cafiero uniqueness problem. This question was raised in [11]. By using Theorem 1 we can easily prove

THEOREM 6. Let $f: I \times X \to X$ be a mapping which satisfies

 (e_1) f is continuous with respect to the second variable,

(e₂) f is medible with respect to the first variable and there exists $h \in L^1_{loc}(I, \mathbb{R})$ such that $|f(t, x)| \leq h(t)$ for every (t, x) in $I \times X$.

Assume in addition

(e₃) There is a solution of (5) for (t_0, x_0) running in a dense subset A of $I \times X$.

(e₄) If (t_0, x_0) is in A, $\{(t_n, x_n)\} \rightarrow (t_0, x_0)$ in $I \times X$ and ϕ_n is a solution of x' = f(t, x); $x(t_n) = x_n$, then there exists a subsequence of $\{\phi_n\}$ which converges to a solution of (5).

Then, existence of solution is a generic property in $I \times X$.

Proof. Define for (t_0, x_0) in $I \times X$ a mapping from C(I, X) into C(I, X) as in (6). It is easy to prove that this mapping, denoted by $F(t_0, x_0)$, is continuous on C(I, X). We can topologize $\{F(t, x): (t, x) \in I \times X\}$ setting $d(F(t, x), F(s, y)) = \max\{|t-s|, |x-y|\}$. This topology is finer than the topology of uniform convergence. By applying Theorem 1 we can complete easily the proof.

Remark. The technique used in Theorem 6 can be equally well applied to prove similar results for integral equations or functional equations. For instance, consider the nonlinear integral equation of Volterra type

$$x(t) = g(t) + \int_0^t \alpha(t, s) f(s, x(s)) \, ds, \tag{7}$$

where $g: I \to X$ is a continuous mapping, f is as in Theorem 6, and α is a continuous mapping from $I \times I$ into the set of bounded linear operators on X. If there exists solution for (7) when g runs in a dense subset of C(I, X) we can prove the analogue of Theorem 6.

References

- F. E. BROWDER, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in "Proc. Sympos. Pure Math.," Vol. 18 II, Amer. Math. Soc., Providence, R.I., 1976.
- G. J. BUTLER, Almost all 1-set-contractions have a fixed point, Proc. Amer. Math. Soc. 74 (2) (1979), 353-357.
- F. CAFIERO, Sul fenomeno di Peano nelle equazioni differenziali ordinarie del primo ordine, Rend. Accad. Sci. Fis. Mat. Napoli. 17 (1950), 51-61.
- G. DARBO, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
- 5. F. S. DE BLASI, Some generic properties in fixed point theory, J. Math. Anal. Appl. 71 (1979), 161-166.
- F. S. DE BLASI AND J. MYJAK, Generic properties of contraction semigroups and fixed points of nonexpansive operators, *Proc. Amer. Math. Soc.* 77 (3) (1979), 341–347.
- 7. F. S. DE BLASI, M. KWAPISZ, AND J. MYJAK, Generic properties of functional equations. Nonlinear Anal. 2 (1977), 239-249.

- 8. K. FAN, Fixed point and minimax theorems in locally convex topological linear spaces, *Proc. Nat. Acad. Sci. U.S.A.* 38 (1952), 121-126.
- 9. K. KURATOWSKI, "Topology," Vol. I, Academic Press, New York, 1966.
- R. H. MARTIN, "Nonlinear Operators and Differential Equations in Banach Spaces," Wiley-Interscience, New York, 1976.
- 11. G. VIDOSSICH, Existence, uniqueness and approximation of fixed points as a generic property, Bol. Soc. Brasil. Mat. 5 (1974), 17-29.
- 12. G. VIDOSSICH, How to get zeros of nonlinear operators using the theory of ordinary differential equations, in "Atas. Semana Analise Funcional," Sao Paulo, 1973.