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Let X be a complete metric space, J’ a set of continuous mappings from X into 
itself. endowed with a metric topology finer than the compact-open topology. 
Assuming that there exists a dense subset L I contained in -H such that for every 
mapping T in -4’. the set (x E X: TX = x) is nonempty, it is proved that most 
mappings (in the Baire category sense) in J do have a nonempty compact set of 
fixed points. Some applications to a-nonexpansive operators. semiaccretive 
operators and differential equations in Banach spaces are derived. 

A property is said to be generic in a Baire space E if it holds in a residual 
subset of E. In (7, 11) the generic existence of a fixed point for a metric 
space -I of mappings on a complete metric space X has been studied. In 
both papers it is assumed that there exists a dense subset J-of ,X such that 
every mapping T in JV has a unique fixed point. Proofs in these papers 
heavily rest upon the uniqueness of the fixed point in N. The main result in 
this paper is a generic existence theorem of fixed points (Theorem 1, 
Section 1) with the weaker assumption: For every mapping T in .H the set 
(x E X: TX = x) is a nonempty set. We also prove that fixed points of T 
continuously depends (in a weak sense, see, (Theorem l(ii)) on the mapping 
T). In Section 2, we apply Theorem 1 to prove the generic existence (and 
weak continuous dependence) of fixed points for a-nonexpansive mappings 
(i.e., mappings which satisfy a(T(A)) < a(A) for every bounded set A, where 
a(.) denotes the Kuratowski’s noncompactness measure (9, p. 412j) and a- 

nonexpansive mappings defined on cones. Generic problems concerning a- 
nonexpansive mappings have been treated in [2,5]. In Section 3, Theorem 1 
is applied to prove that most of the semiaccretive mappings (i.e., compact 
perturbations of accretive mappings, see the definition in Section 3) 
satisfying a boundary condition do have a zero. In Section 4, using 
Theorem 1, we answer to an open question proposed in [I I ] about the 
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generic existence of solution of a differential equation in a Banach space with 
Caratheodory’s hypotheses. Further application are indicated in Sections 2 
and 4. 

1. MAIN RESULT 

In the following X will be a complete metric space, N the set of the 
positive integers and A a set of continuous mappings from X into X 
endowed with a metric finer than the compact open topology. 

THEOREM 1. Assume that there exists a subset JV of 1 satisfying: 

(a) JV is dense in J. 

(b) For every f in JV the set of the solutions of 

x =f @I (1) 

is nonempty. 

(c) For every f in O1F and every sequence {x,) such that x, is a 
solution of 

x =f,(x), (2) 

where {f,} -fin A, there exists a subsequence of {x”} which converges to a 
solution of (1). 

Then, there exists a residual subset A’ of M such that the following 
conditions are satisJed by every f in J’ : 

(i) {x E X: x = f (x)} is a nonempty compact set. 

(ii) If {f,) -+f in M an d x, is a solution of (2), there exists a subse- 
quence of {xn } which converges to a solution of (1). 

Proof: Let (x,) be a sequence in X. Define 

A({x,j)=sup{d(x,,x,):n,mENJ 
B({x,}) = inf {A({xA)): {XL} is a subsequence of Ix,,}). 

For every f in M denote 

V(j) = sup(B({x,}): (f,) -fin Aandx, is a solution of (2)}. 
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Claim 1. Assume Vdf) = 0. If (f,,} -fin -/ and x, is a solutions of (2) 
there exists a Cauchy subsequence of {xn}. 

Since B({x,}) = 0 there exists a subsequence {XI} such A((xL}) < 1. By 
induction, if (xt} is a subsequence of {x”} satisfying A({xf}) < l/m we can 
construct a subsequence {xr”} of (x:} such that A((xz+‘t) < l/(m + 1). 
Consider the diagonal sequence (xi}. For every real number E > 0 let N be 
an integer number greater than l/e. Since xi is a term of {xt} for n > N we 
obtain that {x:} is a Cauchy sequence. 

Claim 2. For every f in A *, V(f) = 0. 

Let f be a mapping in JV, {f,) a sequence converging to f in ,,I, and X, a 
solution of (2). By (c) there exists a Cauchy subsequence {xi} of (x,,}. For 
every real number E > 0 we can choose a subsequence (XI} of (x;} such that 
A((xi)) < E. Thus B((x,)) < E that implies V(f) = 0. 

Claim 3. At every mappingf in V-‘( (O)), V is continuous. 

Otherwise, for some f in ..X with V(f) = 0 we can find a real number 
n > 0 and a sequence (f,) -fin .J? such that V(f,) > q for every n in bJ. 
Then, for each n there exists a sequence (f,,,} -f, in M and a sequence 
(x,.,} of solutions of x =f,,,(x) such that B({x,,,}) > q/2. We can assume 
4f”.,~f,> < 1/ n f or every m 2 n. For each n we can construct a subse- 
quence LL.~(~) } (4: N --* N order preserving) satisfying 

d(x x n,m(m)’ n,*,m’J > VI4 (3) 

foreverym,m’En\i (m#m’).Inordertodothatchoose~(l)=l.Let@be 
defined for j = 1 ,..., k - 1, satisfying (3). There exists m > $(k - 1) such that 
d(x x n.m 1 n.mti,) > v/4 (j= I,..., k - 1) because otherwise we could choose for 
some x,*,o) (j < k - 1) a subsequence of {x,,,} formed by all points whose 
distance to x,,@o) is less or equal than v/4, contradicting B({x,,,}) > q/2. 
Denote again {x,.,{ h t e subsequence which satisfies (3). Hence we have 

dk., 3 -G,,,) > v/7/4 for every n, m, m’ E N. m f m’. (4) 

By A < B we shall mean that A and B are ordered subset of N and A is 
contained in B, so that {(n, x,): n E A} is a subsequence of (x,) if A < N. 
Consider the sequence {(n, x,,,): n E lN). Since If,.,} -f and V(f) = 0 there 
exists N, < N such that the sequence {(n,~,,,): n E N,} converges to a 
solution x0 of (1). Consider the sequence {(n, x,+,+ ,): n E N,}. We can 
construct a subsequence ((n, x,,, + , ): n E N,} (N, < N,) converging to a 
solution x, of (1). By induction we can construct sequences 
in,x n,n+k): n E A$} (Nk < Nk-,) converging to solutions .yk of (1). Since 
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V(J) = 0 we choose by Claim 1 a Cauchy subsequence ((k, x&k E K} 
(K ,< N) of (xk}. Hence for k, k’ E K (k < k’) large enough one has 
d(x,,x,,) < q/8. Since {(n,x, n+k): n EN,,) and ((n,x,,,+,.): n EN,,) 
converge to xk and xk, respectively, we obtain for n E Nk, large enough 
d(x,,rt+~~xn,,+~ ,) < q/4 contradicting (4). 

Claim 4. The subset V-‘((0)) is a residual subset of J. 

It suffices to note that I’-‘((O}) = n$, V-‘([O, l/n)) and by Claims 2 
and 3 I’-‘([0,1/n)) contains a dense open subset of A. 

We can easily complete the proof. If/is in A’ = V-‘({O}), let {f,} be a 
sequence in JV which converges toJ: Let x, be a solution of (2). By Claim 1 
there exists a Cauchy subsequence, which converges to a solution x of (I). 
Continuous dependence follows in the same way. From (ii) every sequence in 
the set {x E X: f (x) = x) contains a converging subsequence. Thus this set is 
compact. 

2. APPLICATIONS TO CX-NONEXPANSIVE MAPPINGS 

Let X be a Banach space and C a bounded closed nonempty convex subset 
of X. If a(.) denotes the Kuratowski’s noncompactness measure and T from 
C into C is a continuous mapping satisfying a(T(A)) < a(A) for every set A 
contained in C, it is known [ 10, p. 1271 that the set (x E X: TX =x) is a 
nonempty compact set. This result is not longer true if T is a-nonexpansive, 
i.e., T satisfies a(T(A)) < a(A), even if X is uniformly convex [lo, p. 1261. 
By applying Theorem 1 we prove the generic existence of fixed points of a- 
nonexpansive mappings. 

THEOREM 2. Let M be the set of all continuous mappings T: C + C 
which satisfy a(T(A)) < a(A) for every subset A of C, endowed with the 
topology of uniform convergence. Then, there exists a residual subset A’ of 
Jr such that for every T in A’ the following conditions are satisfied: 

(i) (x E C: TX =x) is a nonempty compact set. 

(ii) If (T,,} converges to T in J and x, is a fixed point of T,, there 
exists a subsequence of {x,1 which converges to some fixed point of T. 

ProojI Let ,Y be the set of all a-Lipschitz operators with constant less 
than 1. Since (1 - l/n)T-+ TN is a dense subset of Yx: By a Darbo’s result 
[3] the set {x E X: TX =x) is a nonempty compact set for every T in A”-. To 
prove condition (c) in Theorem 1 let {T,,) be a sequence converging in M to 
T E M, x, a fixed point of T,, and assume a({x, : n E IN)) > 0. Choose 
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E = (1 - k,)/3a({x,: n E n\l}), where k, is te a-Lipschitz constant of T. For 
N large enough so that d(T, T,) < E for n > N we have 

a(~x,:nE~})=a((x,:n>N))=a((T,x,:n>N)) 

< 2~ + a(T((x,: n > NJ)) 

< 2~ + k,a((x,: n E 6J)) < a({~.,: n E K}) 

Then (x, : n E N ) is a relatively compact set. 

Remark. Condition (i) in Theorem 2 has been proved in [2,5] with a 
different technique. In [5] it is proved that the successive approximation are 
precompact and a similar result for upper semicontinuous a-nonexpansive 
mappings which are compact convex valued. This result (replacing 
precompactness of the successive approximation by (ii)) can be derived from 
the result corresponding toTheorem 1 for multivalued mapping and the fixed 
point theorem of Fan 161. Theorem 2 also holds if we consider the P-measure 
defined by /?(A) = inf(e > 0: A can be covered by finitely many balls with 
diameter less than E). 

Theorem 1 can be also applied to quasibounded a-nonexpansive mappings 
defined on a cone. We recall ( 10, p. 1281 that a mapping T defined from a 
cone C in a Banach space X into X is said to be quasibounded if T maps 
bounded sets into bounded sets and 

It is known [ 10, p. 1291 that every a-contractive quasibounded mapping 
T: C -+ C with q(T) < 1 has a fixed point. 

THEOREM 3. Let ..X be the space of all quasibounded continuous 
mappings T: C+ C that satisfy: (9,) a(T(A)) < a(A) for every bounded set A 
contained in C; (q2) q(T) < 1, endowed with the uniform convergence on 
bounded sets topology. Then, there exists a residual subset A’ of M such 
that for every T in A’ one has: 

(i) {x E X: TX = x) is a nonempty compact set. 

(ii) If {T,} --* T in .X and x, is a fixed point of T,,, there exists a 
subsequence of {x,} which converges to a fixed point of T. 

Proof. It runs as that of Theorem 2,. Z - being the set of all quasibounded 
a-Lipschitz mappings T with Lipschitz constant k, < I and q(T) < 1. To 
prove condition (c) in Theorem 1, let T be a mapping in .A - and (T,} a 
sequence converging to T in X. If q(T) < h < 1 choose R > 0 such that 
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IT'1 <hlxj for every x in C, (xl> R. Denote M= sup((Tx(:Ixl,< RI, 
r = max(R, M + 11, C, = (x E C: 1x(< r). Choose n, large enough such that 
1 T&x)/ < r for every n > n, and x in C,. Then T,, maps C, into C, for 
n > n,. As in the proof of Theorem 2, we can obtain (ii). 

3. APLICATION TO SEMIACCRETIVE MAPPINGS 

Let X be a real Banach space with uniformly convex dual X*, D a 
bounded closed convex subset of X. Denote by J: X+ X* the (unique) 
duality mapping. If T of D into X is a strongly accretive mapping, (i.e., there 
exists a constant c > 0 such that 

(J(x-y), TX- Ty)2c(x-Jq 

for every x, y in D) and T satisfies (I - T)@D) c D, it is known [ 12 ] that T 
has a unique zero in D. De Blasi [6 1 proves that this result holds for most 
accretive mappings (i.e., mappings which satisfy 

(J(x - y), TX - TJJ) > 0 

for every x,y in D) in the sense of the Baire category. 

DEFINITION [I, p. 234,236]. A mapping T: D +X is said to be strongly 
semiaccretive if there exists a continuous mapping S of D X D into X for 
which the following conditions are all satisfied: 

(sl) TX = S(x, x) for every x in D. 

(sz) For every x in D, the mapping S,: D + X defined by 
S, y = S(x, y) is strongly accretive. 

(sJ The mapping x+ S, is a continuous mapping from D into a 
relatively compact set of the space of continuous mappings from D into X, 
endowed with the topology of uniform convergence. 

A mapping T: D-+X is said to be semiaccretive if there exists a 
continuous mapping S of D x D into X for which (s,) and the following 
conditions are satisfied 

(s;) For every x in D, the mapping S,: D +X is accretive. 

(s{) The mapping x+ S, is a continuous mapping from the weak 
topology on D to the topology of uniform convergence on the set of 
continuous mappings from D into X. 
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We say that a mapping T: D + X is weakly semiaccretive if there exists a 
continuous mapping S: D x D + X for which (s,), (s;), and (So) are satisfied. 

Since X* is uniformly convex, condition (si) implies condition (So). Thus, 
every semiaccretive mapping is a weakly semiaccretive mapping. If T is 
strongly semiaccretive and satisfies (I - T)(aD) c D it is known ( I, 
Theorem 13.15 ] that there exists a point x in D such that T,u = 0. This result 
is also valid [ 1, Theorems 13.17 1 if T is semiaccretive and X is a uniformly 
convex space. The Theorem 4 shows that this result still remains valid for 
most semiaccretive and weakly semiaccretive mappings in arbitrary Banach 
spaces with uniformly convex dual. 

THEOREM 4. Let X be a Banach space with uniformly convex dual, D a 
closed bounded convex subset of X. Denote H (resp. .‘i ) the set of semiac- 
cretive mappings (resp. weakly semiaccretive mappings) from D into X 
satisfying (I - T)(aD) c D. endowed with the topology of uniform con 
vergence. Then, there exists a residual subset 4’ qf 4 (resp. .i ’ of / ) 
such that ever), T in H’ (resp. .Y ‘) has a zero in D. 

Proof. We may assume without loss of generality that 0 is an interior 
point of D, since translation of the independent variable for a mapping does 
not affect its accretiveness and hence its semiaccretiveness. Denote by 
. / the set of the strongly semiaccretive mapping T that satisfy for some 
constant c, > 0 and for every ?I, U, 1’ in D the inequality 
(J(u - L’ ); S,u - S,c) > cr Iu - L’I’, where S is the mapping given for T by 
the semiaccretiveness. For every T in ST or .i the mapping 
T,=(l -s)T+eI is in .J‘(for S,(.u,l’)=(l-c:)S(x,~)+~~) and I-T, 
maps iiD into D. Thus L I ‘nM (resp. . t -f’ .i ) is a dense subset of 4 
(resp. f ). To prove Theorem l(c) let (T,} be a sequence converging in. X 
or i to a mapping T in ~ 1 ‘. Let -Y, be a zero of T,, . From (sJ) there exists a 
subsequence of (S,,}, denoted again by (Sx,,} which converges uniformly to a 
mapping U: D + X satisfying (J(u - c), Uu - Ck 1, > cT / u - I’ jz for every K. I‘ 
in D. Let L be the diameter of D and E > 0 arbitrary. Choose N large enough 
so that d( T,,, T) < E. d(S,“, CJ) < E for n > N. For every n. m > N one has 

(J(s, - x,), Tu,, - Tx,: = (.I(~,, - x,). Ux,, - (Ix,,,“> 

Furthermore 
+ (J(s,, - .I.,,,), T,s, - T.Y,,) < 2Le. 

CT lx, -x,1* < (J(X” - xm), ux, - ux,,:. 
= (J(xn - Xm), qx,, X”) - s(x,n, x,)‘) 

+ (J(x, - x,), UK, - S(.x,,. x,,:: 
+ (J(x, - xm), S(x,. x,) -- I/x,) < 4L&. 
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Thus (x,} is a Cauchy sequence. Let /i be defined by /1(T) = I - T. 
Applying Theorem 1 to ,4(M) (resp. /i(Y)) the poof is complete. 

THEOREM 5. Let X be a Banach space with uniformly convex dual, D a 
closed bounded convex subset of X. Denote by 6Y the set of all continuous 
mappings from D into X which satisfv the following conditions 

(c ,) T = A + C, where A is accretive and C is a compact continuous 
mapping from D into X. 

(c,) (I-A - C) maps 8D into D. 

Then, there exists a residual subset (7’ of 0’ such that every T in 6Y’ has a 
zero in D. 

ProoJ It runs as that of Theorem 4. 

4. APPLICATIONS TO DIFFERENTIAL EQUATIONS 

Let X be a Banach space, I an interval in the set R of real numbers and f 
a mapping from I x X into X. Consider the Cauchy problem 

x’ = f (t, x), x(t,) = x0. (5) 

If (5) has unique solution for (t,,, x,,) running in a dense subset A of Z x X 
and f satisfies Caratheodory hypotheses for X = IF?, Cafiero 131 proves that 
uniqueness holds almost everywhere in Z x IR. Vidossich [ 111 extends this 
result (in the sense of Baire category) to an arbitrary Banach space X, 
assuming that for every (to, x0) in Z x X the mapping 

is a compact mapping from C(Z, X) into itself, C(Z, X) being the set of all 
continuous mappings from I into X with the compact open topology. Since 
in infinite-dimensional spaces, Caratheodory hypotheses do not assure the 
existence of solution, we can study an existence problem analogous to 
Cafiero uniqueness problem. This question was raised in [ll 1. By using 
Theorem 1 we can easily prove 

THEOREM 6. Let f: I x X + X be a mapping which satisfies 

(e,) f is continuous with respect to the second variable, 

(e,) f is medible with respect to the jkst variable and there exists 
h E L:,,(Z, R) such that 1 f (t, x)1 < h(t) for every, (t, x) in I X X. 
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Assume in addition 

(e3) There is a solution of (5) for (to, x0) running in a dense subset A 
of I x x. 

(e,) Zf (to, x,,) is in A, ((t,, x,)} -+ (to, x,,) in I x X and 4, is a solution 
of x’ =f (t, x); x(t,) = x,, then there exists a subsequence of (@,,} which 
converges to a solution of (5). 

Then, existence of solution is a generic property in I x X. 

Proof. Define for (f,, x,) in I x X a mapping from C(Z. X) into C(I, X) 
as in (6). It is easy to prove that this mapping, denoted by F(t,, x,,). is 
continuous on C(I, X). We can topologize (F(t, x): (t, x) E I x X} setting 
d(F(t, x), F(s, 4’)) = max (1 t - s 1, Ix -y I}. This topology is finer than the 
topology of uniform convergence. By applying Theorem 1 we can complete 
easily the proof. 

Remark. The technique used in Theorem 6 can be equally well applied to 
prove similar results for integral equations or functional equations. For 
instance, consider the nonlinear integral equation of Volterra type 

x(t) = g(t) + 1.’ a@, s)f(s, x(s)) ds, 
-0 

(7) 

where g: I-+X is a continuous mapping, f is as in Theorem 6, and a is a 
continuous mapping from Z x I into the set of bounded linear operators on 
X. If there exists solution for (7) when g runs in a dense subset of C(Z, X) we 
can prove the analogue of Theorem 6. 
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