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This paper is concerned with the dynamic process governed by the boundary
value problem. We examine the situation with the appearance of singular con-
trollers and formulate a second-order optimality criterion on the basis of the
increment formula. We also show how to apply this criterion as a verifying
condition for optimality and how to perform an optimal design for a singular
controller.  © 1997 Academic Press

1. INTRODUCTION

In the theory of optimal control, great importance is fairly attached to
the maximum principle of L. S. Pontryagin. On the other hand, in certain
cases the maximum principle has a tendency to “degenerate,” i.e., to be
fulfilled trivially on a series of admissible controllers, and therefore it
cannot serve as a verifying condition for optimality nor as a basis for the
construction of optimal design algorithms. This situation, called in the
theory of optimal control ‘“singular,” is not a rare exception. On the
contrary, it is rather a regularity which is typical for complicated dynamic
processes.

A number of research works have been devoted to the investigation of
singularities in dynamic processes governed by the Cauchy problem (i.e.,
the initial value problem), see, e.g., [1, 2]. One of the directions in this
research was to obtain an optimality criterion for a singular controller on
the basis of second-order increment formula (if the classic increment
formula whence the maximum principle follows is regarded as the first-
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SINGULAR CONTROLLERS 621

order increment formula). For the dynamic process governed by the
Cauchy problem, the second-order increment formula and optimality crite-
rion for a singular controller expressed in terms of an adjoint matrix
system have been discovered in [1, 2]. For a long time this criterion has
been used only as a verifying condition. Later in [3] this criterion has been
integrated into the general scheme of an optimal design algorithm.

This paper deals with the dynamic processes governed by the boundary
value problem which have various applications in the simulation of physi-
cal, mechanical, chemical, and other systems (and also includes the pro-
cesses considered in [1-3] as a special case). For this type of dynamic
processes the authors have recently obtained an optimality criterion in the
form of the maximum principle and set up an optimal design algorithm [5,
6]. To complete this research it is necessary to examine the situation with
the appearance of singularities and formulate the optimality criterion for a
singular controller.

This is exactly the purpose of our paper. However, it should be noted
that here we consider linear boundary conditions in contrast to the
generalized formulation of the problem given in [5, 6]. This restriction is
not caused by the essence of the research technique. The complexity of
deductions forces us to deal with linear boundary conditions in order to
make all the descriptions and explanations as understandable and clear as
possible under the limited length of the paper.

2. PROBLEM FORMULATION AND PRELIMINARIES

Let us start by posing the problem to minimize the performance index

T(u) = o(x(ty), x(t,)) + fTF(x,u,t) di — min (1)

which is defined on the solution set of the boundary value problem
(henceforward BVP)

x=f(x,u,t)y, t€T=/[ty 1] (2)
Lox(t) + Lyx(4,) —b =0. (3)

Here x = x(¢), x(¢) € R" describes the state of dynamic process (2), (3);
u = u(t), u(tr) € R" represents the controller; vector-function f =
(f1, ..., f,) and scalar functions ¢, F are continuous in (x,u,t) together
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with their partial derivatives up to second order; L,, L,, and b are
specified numerical (n X n),(n X n),(n X 1) matrices, and

rank[ L,L,] = n.

We shall refer to the class of admissible controllers as a set of measur-
able vector-functions u(:) € L’(T) with direct constraint

u(tyeU, teT, (4)

where U is a compact set in R’.

Remark 2.1. For L, =1 (identity matrix), L, = 0, problem (1)—(4)
turns into the familiar free end-point problem. In this case, the question of
existence and uniqueness of solution to the Cauchy problem in any
admissible controller is answered straightforwardly. The same may be said
about BVP (2)-(3) only if system (2) is linear in the state variable (see, e,g.,
[5]. Therefore, from now on we ought to introduce

Assumption 2.1. Suppose that BVP (2)—(3) is resolvable in any admissi-
ble controller, and that the set formed by all admissible pairs {u, x = x(¢, u)}
is closed.

3. SECOND-ORDER INCREMENT FORMULA

For two admissible processes—basic {u, x = x(¢, u)} and varying {z/ = u
+ Au, ¥ = x + Ax = x(¢, W)}—we can define an incremental BVP

Ax = Af(x,u,t), LoAx(ty) + LAx(t;) =0, (5)
where
Af(x,u,t) =f(x,u,t) —f(x,u,t)

denotes total increment in contrast to partial increments to be used later
on

Ayf(x,u,t) =f(x,u,t) —f(x,u,t).
Let us introduce some non-trivial vector-functions = (¢), (¢) € R",

the matrix function ¥ = ¥(¢), ¥(t) € R"*", numerical vector A € R", and
numerical matrices A,, A, of dimension (n X r). Then the increment of
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performance index (1) may be represented as

AJ(u) = Agp(x(to), x(t;)) + fTAF(x,u,t) dt
1 )
+/T<¢(t) + S W()Ax, Ak(1) - Af(x,u,t)>dt

1 1
+<)\ + EAoAx(to) + EAle(tl)' LoAx(to) + Lle(tl)>’

(6)
where ( -, - ) stands for the inner product in R”".
Now we are about to perform a few necessary transformations, viz.,

—introduce the Hamiltonian function

H(y, x,u,t) =Ci (1), f(x,u,0)) = F(x,u,1);

—expand Ag, A
term

Ap(x(t), x(11))
do do
= <—&x(t0) ,Ax(t0)> + <—r?x(t1) ,Ax(t1)>

1 d% 1 %
+§<(9 (0) SAx(ty), Ax(to)> < SAx(ty), Ax(t1)>

<H(, x, 1, t) in Taylor series up to the second-order

0x(1)"

1
+ E< 73 (1) (?x(tl) Ax(ty), Ax(t1)>

1
T2 ﬁx(tl) 73 (to) Ax(rl)’Ax(t°)>

+ o, ([[Ax(1o) |, [ Ax (1) |)
AmH(,x,u,t)

=A;H(y,x,u,t) + A:H(, x,U,t)

=A;H(¢,x,u,t)+ <W,A){(t‘)>

1 ZH , ,'II, 2
+E<z_j%?;_lex0,Ax@)>+0HmAxU)ny
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—in the last equation represent each summand of the form K(i7) as
K() = K(u) + AzK(u);

—perform the integration by parts
[ o), ak(o)) de

= (1), Ax(1)) = (W(10), Ax(ta) = [ {d(1), Ax(0)) e
[ (U0 Ax(1), k(o)) e

= (W (1) Ax(1y), Ax(1y)) =W (1) Ax(1g), Ax(£o))

= [ (U Ax(0), Ax(n)) de = [ (W(1)Ak(r), Ax(n)) dr,
where

[ (U0 ak(e), ax(1)) de

- fT<W(t)Af(x, u,t), Ax(t)) dt
f(x,u,t)
ax

= fr<qf(t)[Agf(x,u,t) + Ax(1)

af(x,u,t
RN
x

Ax(1) +0,([[Ax(2) ||)} : Ax(t)>dt;

—transform the second entry in the last row

[ <\p( )ﬁf( )Ax(t) Ax(t)>dt

_ %/T<xp( )ﬁf(Z’x”’t)Ax(z),Ax(t)>dt
1

2[ <ﬁf( )‘I’(t)Ax(t) Ax(t)>
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—and convert the last summand in (6) into
1 1
</\ + EAOAx(tO) + EAle(tl), L,Ax(ty) + Lle(t1)>
! ! l !
=(LoA, Ax(ty)) +( LA, Ax(1y)) + E<L0A0Ax(t0)’ Ax(t,))
1 ! 1 !
+ §< LA Ax (1), Ax(ty)) + §< LA GAx(ty), Ax(ty))

+ %< LyAAx(ty), Ax(1,)).

Then, having substituted all these processed expressions into the incre-
ment formula (6), one ought to separate the principal summands

oH
_fTAﬁHdt - fT <Aﬁa—x + \Ingf,Ax>dt
from the reminder n = n, — m, where
m = 0,([8x(10) [ | ax (1) IF) = [ ou(lAx(0) ) de
—[T<~y(t)Ax(z), 5r(llax(e) 1)) dr, (7)

1 APH(, x,u,t) df(x,u,t)
e szMT R

Ax(t),Ax(t)>dt
(8)

and by using the arbitrary choice of , ¥, A, A,, A; make all the corre-

sponding coefficients vanish. Thus, we obtain an increment formula of
second order,

AJ(u) = —fTAEH(lp,x,u,t) dt

-/ <Ag%§’”’” V()AL f(x 1), Ax(t)>dt

+ e~ ny, (9)
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where the vector-function ¢ = (¢) is subordinated to the vector adjoint
system

. H(Y,x,u,
= -l (10)

and the matrix function ¥ = W(¢) is subordinated to the matrix adjoint
system

~ &f(x,u,t)'qﬂ ~ \P&f(x,u,t) ~ IPH(, x,u,t)

V= 2
x ox ox

(11)

Boundary conditions for both system (10) and (11) are defined by the
equalities

i LA 0
+ LA — ¢(ty) =
&x(lo) 0 dj( 0) (12)
—— + LA+ () =0
&x(tl) 1 l/l( 1)
A V(1) = 0
+ LyAy — V(1) =
D °
o'?zgo
—— + LA + V(1) =0
dx(ty) (13)
7% LA 0
_ + ! —
dx(ty) dx(ty) v
(92g0
—— + LA, =0.
dx(1y) dx(ty) o

Remark 3.1. In contrast to the free end-point problem (see, e.g., [1, 2]),
the matrix function ¥ = ¥(¢) here is asymmetric in the general sense.

Further, to eliminate vector A and matrices A,, A; out of (12), (13), we
select such matrices B,, B, distinct from zero that

ByLy + B,L, = 0. (14)
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Then boundary conditions (12), (13) become equivalent to linear bound-
ary conditions for vector and matrix adjoint systems (10) and (11), respec-
tively,

de

de
—Boy(to) + By (1) + By dx(ty) 5 dx(1y) )

0 (15)

&2(,0 &Zgo
5 + B 5
dx(ty) ax(t,)

_BOW(tO) + qu’(tl) + Bo

&Zgo 0247
B +B =0.
®ax(ty) dx(to) Yox(t,) dx(ty)

(16)

To complete this section it is useful to survey some examples. First of
all, let us consider the Cauchy problem as a special case of BVP. In other
words, let L, =1, L, = 0. Then ¢ = ¢(x(¢))). It is obvious that equality
(14) holds for B, = 0, B, = I, and Eqgs. (15), (16) turn into

de d%

(1)) and Y(t) = _—ax(tl)z'

P(t,) = —

In this case the increment formula of the form (9) has been obtained in [1,
2] though in another way.

Now let us examine another type of BVP generally known as the
two-point BVP. For the system (2) it is defined by the boundary conditions

XO(1) =bD,  x®(1,) = b® (17)

where x = (x®, x@), x» e R™, x®» e R"~™, Boundary conditions (17)
come out of (3) when

L Im><m OmX(nfm) L. — [0 O:I
0 ’ 1 .
O(n—m)><m O(n—m)><(n—m) 0 I

There is no difficulty to prove that the matrix equality (14) holds for

0 0 I 0
B":[o I]’ Bl:[o 0]'
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Then boundary conditions (15) for the vector adjoint system (10) are
given by

) op @ op
W (f1)=—m, W (t°)=+axT(tO)’

where, of course, ¢ = e(x®(¢,), x?(t,)), and boundary conditions (16) for
the matrix adjoint system (11) will be written as

2

J
\Ifll(tl) = _Wa q’lz(tl) =0
2 (?Zzp P &ZQD 18
t,) = + , ty) = +—.
21( 0) (9x(1)(t1) (?x(Z)(tO) 22( O) &x(z)(tO)Z ( )
Here
\Irllme q’lZmX(nfm)

Vo= .
(rxm) q’Zl(n—m)Xm \I,ZZ(n—m)X(n—m)

A great many dynamic processes in physics and mechanics are usually
described by BVP of the form

y=f(y.y.ut), y(t)ERrR"
y(ty) =b°  y(1,) = b

It becomes clear that this type also belongs to the class of two-point BVP
when we denote x = (x®, x@), x € R?", x» € R", x® € R", x® =y,
x® =y. Boundary conditions x®(z,) = b°, x®(¢,) = b* follow from the
boundary conditions (3) for

nXxn _ O O
0 } Ll_[l o]'

It is obvious that ¢ = o(x®@(¢,), x'®(¢,)) and the matrix equality (14) holds

for
i {0 0
B°‘[o 0}’ Bl‘[o 1]'
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Then boundary conditions (15) in this case are given by

de de

@ S — @ R
d’ (tO) +é,x(2)(t0)' l/j (tl) &x(z)(tl)

and boundary conditions (16) will be written as

Wo(to) =0, Wyp(1) =0

(92<p 19240
W,,(t,) = + ,
z2(fo) ax@(t))?  9xP(ty) axD(1,)
3%
Yalh) = = 5@ @)

4. NEEDLE-SHAPED VARIATION

First, let us recall the state-increment estimate caused by control varia-
tion, which has been obtained in [5]

IAx() | < K[ [|Azf(x,u,0)[|de, K =const>0.  (19)
T

Now if we replace an arbitrary admissible controller #(t) € U by
needle-shaped variation, i.e., set u(¢) = u(¢t) + A, u(z) where
Au(t) =v —u(t), velUte(r—e,1]CT, e>0
A u(t) =0, teT\(r—e,71] (20)

then by virtue of estimate (19), the increment of state A_x(¢) caused by
needle-shaped variation (20) will be of order &,

[Ax(2)] < K, - &, K, = const > 0
and increment formula (7)—(9) turns into
8 J(w) = = [0 AH(p,xu 1) dr

—[7 <AW + ‘If(t)AL,f(x,u,t),Asx(t)>dt

+ 0(82), (21)

where o(e?)/e? > 0, £ > 0.
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Generally speaking, the necessary condition for optimality (i.e., maxi-
mum principle) which has been obtained in [3-5] results from the formula
(21). Factually, it follows from (21) that

A J(u) = —AH(Y,x,u,7) s+ o(¢), reT,velU

which implies that for the optimal process {u*, x*} and associated solution
¢* of adjoint BVP (10), (14), (15)

A J(u*) =0, reT,velU
and indeed

AH(Y* x*,u*, 1) <0, reT,vel. (22)
Further, we ought to extract an explicit coefficient of 2 in the varia-
tional increment formula (21). To cope with this task, it is sufficient to
extract a coefficient of & in A_x(7).
One should approach this task by examining the incremental BVP (5) on
the needle-shaped variation (20). It is clear that

Ax = Azf(x,u,t) + Apf(x,u,t)

_ WAX(I) + Agf(x,u, t)Ax(t)
APNICALID)

LE2Ax(0) + oy ax(n)])

or in integral form

f(x,u, &)
J

Ax(t) = Ax(te) + [ .

Ax(€) + Agf(x,u, )

+Ag&f(x,u,t)

) oy (asto )| ae

Then, after carry-over onto needle-shaped variation (20)
Asx(t) = Af:x(IO)

| af(x,u, €)
+/[ ox

fy

Ax(€)+ A f(x,u, &)|déE+o(e).
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Thus, incremental BVP (5) may be rewritten as

A€k=WA€x+AUf(x,u,t) +0(8) (23)

LoA, x(ty) + LA, x(t;) = 0.

The solution to the linear BVP (23) is found (to within o(g)) by the
Cauchy formula analogy derived by the authors in [5].

Let X = X(¢) be a fundamental (n X n) matrix function of homoge-
neous system (23):

- &f(x,u,t)X

X=— L X(1) = 1. (24)

Suppose that BVP (23) has a unique solution in any admissible process
{u, x}, i.e.,

det[ L, + L, X(t,)] # 0. (25)
Then
A, x(t)
= — [ X()®(t) X H(€)A,f(x,u, £) de
0, t e [to, T— &)
+ [ X(OXHEAS(xu ), 1e]r—e1) e
° 0, te[r ]
+o(¢),
where
®(1;) = [Lo + L X(1y)] "Ly X(1). (26)
Whence

Ax(t) = = X()®(t)) X H(7)A, f(x,u,7) e

0, t e [tO,T —-&)
X)X Y()A f(x,u,7)(t—T+¢€), t€ [7—8,7)
X)X Hr)A f(x,u,T)"e, te[rt]

+o(¢)
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and therefore
Ax(r) =[I=X(1)®(t) X ()| A f(x,u,7) - e+ 0(e). (27)
It should be noted that

. o af(x,u,t) . B
X't=-X - , X () =1L (28)

It is obvious that
XN )X(t)=I and X Y(6)X(1) + X (t)X(t) =0
and with regard to (24)
[X2(r) + X X()] X (1) =0

whence Egs. (28) immediately follow.
If we set

Y(1) =X()P(1) X (1), Y(t) = P(1y)
then with regard to (24) and (27),

Y(t) = X()D(t) X71(t) + X(1)D(t,) X (1)

= LD ) xi(0) - X0 a1 TELD
_ &f();,xu,f) Y1) — Y(0) f?f(l;,xu,f) _
So far,
Ax(t) =[1-Y(7)]A,f(x,u,7)e+ o(e), (29)
where
_ ﬁf(x,u,t)Y_Y&f(x,u,t) (30)

ox ax
Y(ty) = [Lo + Ly X(1,)] "Ly X(1y). (31)
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Thus, in order to calculate the coefficient of A, f(x,u,7)e in A_x(7),
7€ T one should

(a) solve the matrix Cauchy problem (24);
(b) compute the matrix Y(¢,) by the formula (31);
(c) solve the matrix Cauchy problem (30), (31).

5. OPTIMALITY CRITERION FOR
SINGULAR CONTROLLERS

Taking into account (29), the increment formula (21) will take on its
final representation

M) = = [7 AH(, x,u ) dr

—<A0M W (r)A, f(x 7,

ax

[I—Y(T)]A,,f(x,u,’r)>-82+0(.92). (32)

DeriNITION 5.1. The admissible controller u = u(z) is called singular
on the set ) ¢ T of positive measure if

A;H(,x,u,t) =0 (33)

atany ¢t € Q and for all u(¢) € U.

For example, if the optimal controller u*(¢) is singular on Q c T,
mes ) > 0 then the function H(y*, x*, u*, t) does not depend upon the
control variable u on the direct product U X €. Therefore, at all r €
the maximum principle (22) becomes useless as a verifying condition for
optimality in the first place. Secondly, the singular controller u* = u*(¢)
may appear on some kth step of the iterative decision process which would
stop the process even if u* is not optimal yet.

In other words, condition (33) conveys the degeneracy (or triviality) of
the maximum principle within ) € T and indicates the need of another
optimality criterion which would involve a deeper analysis of the primary
problem (1)—(4). The second-order increment formula (32) just allows us to
formulate such a criterion if the variation procedure is carried out within
the range (7 — &, 7] € Q where the maximum principle loses its signifi-
cance.
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In this case, having calculated *, ¥*, and Y* which are associated
with the optimal process {u*, x*} it becomes clear that

FH(Y™*, x*,u*, 1)
ax

A J(u*) = —<AL, + WH(r)A f(x* u*, 1),

[1- Y*('r)]Al,f(x*,u*,7')><92 +0(e%) =0

TeE ), vel.

Thus, all the foregoing calculations result in the second-order optimality
criterion being formulated in the form of

THEOREM 5.1.  In order that an admissible controller u* = u*(t) singular
on Q C T be optimal in the primary problem (1)—(4) it is necessary that two
conditions hold.:

(1) The maximum condition with respect to u* for the Hamiltonian
function

AH(Y™, x* u*,t) <0, velU (34)

almost everywhere on T \ Q;
(2) The second-order condition in the form of inequality

A JH(y™, x*, u*,t)
U (7x

+ UH() A, f(x*,u*, 1),

[1- Y*(t)]AUf(x*,u*,t)>s 0, veU (35)

almost everywhere on Q) and along the solutions *, V*, X*,Y* to adjoint
vector (10), (14), (15) and matrix (11), (14), (16) BVP and auxiliary initial
value problems (24), (30), (31).

6. APPLICATION OF THE OPTIMALITY CRITERION

First of all, the optimality criterion for singular controller (35) may be
adopted as the verifying condition. In other words, by means of this
criterion one can easily exclude a singular non-optimal process out of
consideration and narrow the class of admissible controllers which are
suspected to be optimal.

Moreover, the necessary condition (35) may be highly useful in computa-
tions. For example, when the decision process for the primary problem
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(1)—(4) is carried out by some successive approximation algorithm of
maximum principle there might appear some locality () € T where the
maximum principle degenerates (i.e., identity (33) holds) and the decision
process would be forced to stop. In this situation we can introduce an
additional calculation procedure which gives us a chance to improve an
admissible controller within such a locality Q. This procedure (hencefor-
ward called the improving procedure) will complete the main body of
iterative method of the maximum principle set forth in [3-6].

Before the description of the improving procedure, we shall introduce a
scalar function

Q(u,v,t)
_ <AU JH(, x,u,t)

+W()A, f(x,u,t), [I — Y(t)]AUf(x,u,t)>
O(u,u,t)=0 (36)

defined on some admissible process {u, x} and associated solutions
o, P, X,Y.

ox

Assumption 6.1.  Assume the resolvability of the maximum condition for
function B6)inv e U forall t €T

u(t) = argmax O(u,v,t). (37)

Now let us proceed to the improving procedure. Suppose that on some
kth iteration of the algorithm of the maximum principle like [3—6]

W(u*, 7,) = max max W(u*,v,t) =0 38
(1 mi) = max max W(ut, o.1) (38)
W(uk, v, t) = AUH(d/k,xk,uk,t)
if only within the limits of adequate accuracy which implies that either the
controller u* = u*(¢) satisfies the maximum principle or the algorithm has
exhausted all its resources because the value of the performance index (1)

does not decrease any more.

Thereupon we form Q(u*, v, t) by formula (36), find 7Z¥(¢) according to
(37), and calculate

0,(t) = O(u*,@*, 1) = 0.
Then we construct the set

O, ={teT:w(u* u* 1) =0} (39)
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If mes (), = 0 then there are no singularities and the decision process for
the primary problem (1)—(4) is terminated on the non-singular controller
uk = u*(t). Otherwise, if mes Q, > 0 then we look for a non-isolated point

T, = arg max Qk(t) (40)
te,
and construct a set T,(&) € Q, ¢ € [0, 1] according to the rule
T.(¢) = [Tk — E(Tk — té‘),'rk + s(tf — Tk)], [té‘,tf] c Q.. (41)
If 0,(r,) = 0 then the singular controller u* = u*(z) satisfies the second-
order optimality criterion (35) and the decision process is terminated on
the singular control u* = u*(¢). Otherwise, if Q,(r,) > 0 then we compose

a one-parameter family of controllers as

ak(t), teT(e)cQ,, e<c[0,1]

uk(t) = 42
(1) uk(t), te&T(e), (42)
calculate the best value of the parameter
=arg min J(u*), 43
gk geE[O,l] ( s) ( )
and set
w' () = ug(t). (44)

Having completed all these operations, we should return to the main body
of the algorithm of the maximum principle [3—6] since this new controller
u**1(t) may not satisfy the maximum principle much longer.

It is obvious that for the computational scheme (38)—(44)

J(uk) = J(u*) = =0u(m) - €2 + 0,(e2),  e<[0,1].

Whence the existence of solutions to problem (43) and the relaxation
property J(u**1) < J(u*) follows.

Improving procedure (38)-(44) yields quite good results only if u
contains singular sections defined by (39). Thereupon, the improving
procedure will either find a singular optimal controller or just jump out of
some deep local minimum back on the main solution algorithm. This is an
advantage of the improving procedure.

Theoretically, the improving procedure might have been applied without
waiting for the situation when (38) holds, but it would be inexpedient since
this procedure involves a great deal of additional calculations.

k
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In conclusion let us consider two examples which illustrate how to make
use of the optimality criterion (35) as a verifying condition.

ExAmMPLE 6.1.

X =u, x,(0) =1,
1 t)|<1, T=1]0,2
I (Ol [0.2]
2 2 ’

1
J(u) = Exf(Z) — x,(0) = min.

As a controller which is suspected to be optimal let us take

-1, t<€[0,1)
u*(t) = .
0, te]1,2]
On this controller
1—1¢, te][0,1) 1(1 )? [0,1)
* — b ' * _ - = —1), te y
xl(t) 0, t e [112]1 x2(t) 6

0, te[1,2].
The vector adjoint BVP (10), (14), (15) has the form

l-pl = —xi{,, (-pz =0; $1(2) = —x1(2), ¥(0) = —1.
Whence

1 2
~5(=1), te(o)

gi (1) = g (1) = 1.

0, te1,2],
Then
A H(*, x* u*, 1)

¥ (0 — u*)
—%(1—1‘)2(04—1), re[0,1)
0-v, te[1,2]

which means that the controller u*(¢) satisfies the maximum principle on
[0,1) and that [1,2] = Q is a locality where the maximum principle
degenerates, i.e., u*(¢) is singular within [1, 2].
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Let us write down all the constructions which are needed in order to
apply the optimality criterion for the singular controller (35). The matrix
adjoint BVP (11), (18) takes on the form

_ |0 x| Y Wi
0 0]||¥Yy Yy
VY, Yyl[o o -1 0
_[‘1'21 |l oo ) @

\Pll(z) \I’lz(Z) -1 0
[‘1’21(0) q’zz(o)l - [ 0 0] (46)

\Pll q’lZ

\PZl lI}ZZ

and after integration

V() =t =3, WiH(1) =W5(1) = (1) =0

V(0 (0 - u (1)) }

W*(O)A f(x*,u*,t) = [ 0

It should be noted that

OH(Y*, x* u* ¢t
| H )

= 0.
ox

Then we solve the Cauchy problem

X, X X, X

tu 4| [qu 8} 1 12 , X(0) = [l 0}
X, Xy 1 Xu Xy 0 1

and obtain

Xi(r) =1, X5() =0,

1
I—Etz, t<[0,1)
X5 =1 o XH() =1
E, t e [1,2]
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Calculate matrix

N~ -

Lo+ L,X*(2) = [é (ﬂ + [8 (1’}
and its inverse
[Lo + le*(z)]_l =
in order to compute

®*(2) =

N| — O

by formula (26) which is needed to write down
problem (30), (31)

Y Y _ [ 0 0} Yo Y| [Yu
)"21 Yzz xf 0 Ya Yp Yy
0 O
Yll(o) YlZ(O) _ 1
Y(0)  Y,(0) 2
Finally, after integration
Yi(r) =0, Y5(1) =0,
1 1, (0.1
——t+ =t°, te]|0,
Y5i(t) =<2 2 ),
0, te[1,2]

and

[ =Y*(O)]Af(x* u* 1)

_| 1 Offo—u*
YA 0 0

-]
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0 1 0
=11
1 |- O
2
0
1

an additional Cauchy

0 O
x¥ 0

Yl 2
YZ 2

11

Y5(1) =1

v—u*
-Yi(v—u*) |’
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Thereby, the optimality criterion for the singular controller (35), (36)
may be represented as

O, v, 1) =(W* (1) A F(x*,u* 1), [T = Y* ()] A, f(x*,u*, 1))
= Wi(1) (v —u* (1))’
= (t—3)(v —u*(1))><0 since (1 —3) <0, < [0,2]

which means that the singular controller on Q =[1,2] and the optimal
controller u* = u*(¢) satisfy both the maximum principle and the optimal-
ity criterion for the singular controller, i.e., both first and second-order
necessary conditions for optimality hold in u* = u*(¢) whose optimality
immediately follows from geometric interpretation of the problem as well.

ExampLE 6.2. In Example 6.1 we define the performance index in a
different way

1
J(u) = = 554(2) = x,(0)

and verify whether the same controller u* = u*(¢) of Example 6.1 is
optimal. In this case

Jy= —xfY,,  Py(2) = +x5(2), and

1
P (E) = —5(1 -0’ te][0,1)
0, te[1,2]

<0, t€]0,1)

A 'H * , * , * , 1) = *k t — *Y =
Obviously, u* here also satisfies the maximum principle on [0, 2] and the
definition of the singular controller on Q = [1,2]. In the matrix adjoint
BVP (45), (46) ¥,,(2) = +1 and therefore ¥}i(¢) =t — 1. The rest of the
W% are the same as in Example 6.1. Then

O(u*,v,t) = (t = 1)(v —u*(1))

which implies that u* satisfies the second-order optimality criterion on
[0,1) but does not on Q =[1,2], i.e., u* = u*(¢) cannot be an optimal
controller.

Generally speaking, when one is facing some practical problem of the
form (1)-(4) and has already found a suitable controller u = u(z) which
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satisfies the maximum principle, we would suggest to verify this controller
by using the optimality criterion (35) and apply the improving procedure
(38)—(44) if needed.
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