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Based on a suitably adapted notion of irreducibility an analogue of

the classical characterization of real nonnegative primitivematrices

by irreducibility and aperiodicity for matrices with univariate poly-

nomial entries is given. In particular, univariate polynomials with

nonnegative coefficients which admit a power with strictly posi-

tive coefficients are characterized. Moreover, a primitivity criterion

based on almost linear periodic matrices over dioids is presented.
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1. Introduction

In this paper, we are interested in the behavior of powers of matrices over a commutative semiring.

Inside this semiring we fix a subset which we think of as the ‘nonnegative’ elements and which in

turn contains another subset which we think of as the ‘positive’ elements. Given a matrix with only

‘nonnegative’ entries we ask for conditions which guarantee that a power of this matrix has only

‘positive’ entries. In this case we talk of a primitive matrix.

We answer the aforementioned question in two different ways. Our first approach is a generaliza-

tion of the classical Perron–Frobenius Theorem on real matrices with nonnegative coefficients: Here

primitivity is characterized by irreducibility and aperiodicity. Our second approach is based on the
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theory of almost linear periodic sequences over dioids as introduced by Gavalec [7]. We introduce a

new dioid, namely a variant of the standard max-plus algebra whose elements carry additional in-

formation: the first coordinate is the ‘arrival time’, and the second coordinate taking the values 0 or

1 indicates the ‘successiveness’ of inputs (see Section 6.3 for the definition). Thus the projection on

the first coordinate lies in the usual max-plus algebra. The second coordinate is 1 when the supply

of inputs is stable in time, otherwise it is 0. This seemingly minor change causes many troubles and

it is hard to apply usual linear algebra techniques in max-plus algebra. However, we find that this

generalization fits well in describing our primitivity question over polynomial semirings. We are also

expecting applications in the theory of invariants of topological Markov chain [10].

Nowwe describe our results in more detail. In a first step (Sections 2–5) we collect straightforward

extensions of usual Perron–Frobenius theory to our settings. Then we turn to the main topic of this

paper and address matrices over polynomials rings. Firstly, we reduce the property of primitivity of

a given matrix to an easier to handle property of primitivity of the entries of a suitable power of this

matrix (Theorem 5.7 and Corollary 5.8). Secondly, we establish a primitivity criterion for polynomial

matrices which corresponds to the classical result, but which needs additional requirements on the

behavior of the coefficients of the polynomial entries (Theorem 5.17). Apart from the statements on

the primitive exponent Section 2 treats a special case of Section 5.

In a second step (Section 6) we provide a primitivity criterion in terms of our new idempotent

semiring. To our knowledge this criterion does not have a classical analogue as it exploits properties of

almost linear periodic matrices over dioids. Note that our dioid cannot be embedded into a max-plus

algebra; consequences of this fact are illustrated by several examples. Regardless of this difficulty, it

turns out that some essential results of Gavalec [7] can be exploited in our settings. In particular,

our final result relates primitivity to almost periodicity of a sequence of matrices over this new dioid

(Theorem 6.25).

In 6.4 we present a formal treatment of the characterization of primitive real matrices in the vein

of Pták [19] and Holladay–Varga [12].

The authors are indebted to an anonymous referee whose careful reading and critical comments

helped to considerably improve this work.

2. An easy generalization of the classical case

In this section we formulate familiar notions in our surroundings. More specifically, we restate a

well-knowncharacterizationof primitivematrices (see Theorem2.6)makinguse of the classical bound

on the exponent of primitive matrices.

Throughout this paper we let R be a unital commutative semiring with 1 �= 0.

2.1. The weighted digraph of a matrix over a semiring

Various notions of irreducibility of matrices will play an important role in our considerations. Let

us first recall a classical notion slightly extended to matrices over semirings. 1

Let A ∈ Rr×r . We associate a directed graph to the matrix A. More specifically, the digraph G(A) is
the weighted digraph ([r], E, v) with vertex set [r], arc set

E =
{
(i, j) ∈ [r]2 : Aij �= 0

}
and weight function v : E → R\ {0} with

v(i, j) = Aij

for all (i, j) ∈ E. Recall that A is called irreducible if the graph G(A) is strongly connected. 2

1 Schneider [22] defined irreducibility for matrices over integral domains; a similar concept was introduced by Ryser [20].
2 The graph � is called strongly connected if for all vertices i, j of � there is a cycle in � which contains both i and j. Instead of

‘cycle’ the notion ‘circuit’ is frequently used, e.g. in [21].
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2.2. Primitive matrices over semirings

The following definition was introduced in [11] for rings: The nonempty subset P of R is called a

preprime of R if P is additively and multiplicatively closed.

From now on, we assume that R has characteristic 0, and we let P be a preprime of R and P+ be a

preprime which is contained in P\ {0}. We are aiming at studying matrices with entries in P which

admit a power all of whose entries belong to P+.

For the subset S of R we denote by Sr×r the set of r × r matrices all of whose entries belong to S;

here and in the following r is a fixed positive integer.

Definition 2.1. The matrix A ∈ Pr×r is called P+-primitive if there is some m ∈ N>0 such that

Am ∈ Pr×r+ . The least suchm is called the (primitive) exponent of A w.r.t. P+ and denoted by γP+(A).

We collect some easy observations.

Remark 2.2. Let A ∈ Pr×r .

(i) As observed by Frobenius [5, Satz XI] Am is P+-primitive for every m ∈ N>0 provided A is

P+-primitive.

(ii) A is P+-primitive if and only if for some k ∈ N>0 the matrix Ak is P+-primitive.

(iii) If A is P+-primitive then there is some m ∈ N>0 such that Akm ∈ Pr×r+ for all k ∈ N>0. In

particular A �= 0.

2.3. Irreducibility and aperiodicity

We introduce some kind of relative irreducibility of matrices. In Section 5.2 we shall need a more

restrictive notion of irreducibility suitable for univariate polynomial semirings.

Let A ∈ Pr×r .

Definition 2.3. A is called P+-irreducible if for every3 i, j ∈ [r] there is some m ∈ N such that

(Am)ij ∈ P+.

Lemma 2.4. Let A ∈ Pr×r be P+-irreducible and assume A �= 0.

(i) A is irreducible.

(ii) For every n ∈ N>0 and i ∈ [r] there is some j ∈ [r] with (An)ij �= 0.

(iii) For every n ∈ N>0 and j ∈ [r] there is some i ∈ [r] with (An)ij �= 0.

Proof. This can easily be checked. �

Definition 2.5. A is called P+-aperiodic if the greatest common divisor of the set

{per 1(A,P+), . . . , per r(A,P+)}
equals 1 where we denote by per i(A,P+) the greatest common divisor of the set{

n ∈ N>0 : (An)ii ∈ P+
}

if this set is non-void, and per i(A,P+) = ∞, otherwise. 4

3 For n ∈ N>0 we use the abbreviation [n] = {1, . . . , n}.
4 Weadopt the convention that everypositive integer divides∞. Furthermore,max ∅ = −∞, deg(0) = −∞, (−∞)±(−∞) =

−∞, x + (−∞) = −∞, −∞ < x, and |−∞| > x for all x ∈ R.
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Theorem 2.6. Let R be a unital commutative semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+ and

P = P+ ∪ {0}. Let r ∈ N>0 and A ∈ Pr×r .

(i) A is P+-primitive if and only if A is P+-irreducible and P+-aperiodic.

(ii) If A is P+-primitive then γP+(A) ≤ (r − 1)2 + 1, and this bound for the primitive exponent

w.r.t. P+ is optimal.

Proof. (i) The proof given by Lind–Marcus [14, §4.5] can easily be carried over to our case. Alterna-

tively, put

Eij = {
m ∈ N : (Am)ij ∈ P+

}
(i, j ∈ [r])

and apply Theorem A.4 (see 6.4).

(ii) The arguments given in [12] or [19] can easily be applied to this purely combinatorial statement.

For optimality of the given constant see Wielandt’s example [25] (for a proof see e.g. [15]). �
As we are interested in preprimes of univariate polynomial semirings which are induced by

preprimes of the coefficient semiring we need the following Proposition 2.7. For the subset S of R

we denote by S[X] is the set of univariate polynomials all of whose coefficients belong to S. For in-

stance, P+[X] is the set of univariate polynomials all of whose coefficients belong to the preprime P+
of R, and we think of P+[X] as the set of ‘positive’ polynomials.

Proposition 2.7. P+[X] is a preprime of R[X] contained in the preprime P[X] of R[X].
Proof. Obvious. �

Note thatP+[X] is strictly contained inP[X]\ {0}; thus Theorem2.6 cannot directly be carried over.

Therefore we start with some preparations for the proof of Theorem 5.17.

For the remainder of this paper we assume

P+ = P\ {0} .

Note that this implies that P does not contain zero divisors.

3. Combinatorial equivalence

In this section we introduce an equivalence relation on the set of matrices with entries in P[X]; we

think of these matrices as ‘nonnegative’. This equivalence relation may help to find an analogue of the

cyclic structure of real nonnegative matrices (e.g., see Lind–Marcus [14, §4.5] and Schneider [22] for

historical remarks on the discussion of cyclic structures in the theory of matrices).

For f ∈ R[X]\ {0} and k = 0, . . . , we denote by κk(f ) the kth coefficient of f , i.e.,

f =
deg(f )∑
k=0

κk(f )X
k ∈ R[X]

with the usual convention κ0(f )X
0 = κ0(f ). If k > deg(f ) or f = 0 we put κk(f ) = 0. Thus κk is an

R-linear function from R[X] to R.

In order to decidewhether or not a certain power Xt occurs in a result of a polynomial operationwe

may simplify this operation in the followingway: First we replace all occurring nonzero coefficients by

1 (or any other fixed element of P+), then we perform the operation and finally we check whether the

coefficient of Xt has a nonzero coefficient. To make this argument precise we extend an equivalence

relation introduced by Gregory–Kirkland–Pullman [8].

Definition 3.1. The matrices A, B ∈ P[X]r×r are said to be P+-combinatorially equivalent if for all

i, j ∈ [r] and k ∈ N we have5

5 For convenience we sometimes write A > 0 if all coefficients of all entries of A belong to P+.
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κk(Aij) ∈ P+ ⇐⇒ κk(Bij) ∈ P+.

In this case we write A ∼ B.

For later use we introduce the polynomials

pn = 1 + X + · · · + Xn (n ∈ N).

Lemma 3.2

(i) f · pn + pm ∼ pmax{m,n+deg (f )} (f ∈ P[X], 0 ≤ deg (f ) ≤ m + 1).
(ii) pn · pm ∼ pn+m.

(iii) Let a ∈ P+. Then

(a + aXk) · pn ∼ apk+n (0 ≤ k ≤ n + 1).

Proof. Trivial. �

4. Powers of polynomials over commutative semirings

In this section we treat the simple case r = 1, i.e., we deal with powers of polynomials. For

convenience, we define lc(f ) = 0 if f = 0, and lc(f ) the leading coefficient of f , otherwise. Thus we

have lc(f ) �= 0 for f �= 0. Further, we put slc(f ) = 0 if deg(f ) < 1, and slc(f ) = κdeg(f )−1(f ) if

deg(f ) ≥ 1. We collect some obvious consequences of this notation.

Lemma 4.1. Let f , g ∈ P[X].
(i) κ0(fg) = κ0(f )κ0(g).
(ii) κ1(fg) = κ1(f )κ0(g) + κ0(f )κ1(g).
(iii) lc(fg) = lc(f ) lc(g).
(iv) slc(fg) = slc(f ) lc(g) + lc(f ) slc(g).
(v) Let f ∈ P[X], deg(f ) > 0 and m ∈ N>0. If κ1(f ) = 0 then κ1(f

m) = 0, and if slc(f ) = 0 then

slc(f m) = 0.

(vi) Let f1, . . . , fr ∈ P[X]. Then
deg (f1 + · · · + fr) = max {deg (f1), . . . , deg (fr)} .

(vii) Let f1, . . . , fr ∈ P[X]\ {0}. Then
deg (f1 · · · fr) = deg (f1) + · · · + deg (fr).

(viii) Let κ0(f ) ∈ P+, g ∈ P+[X] and deg (f ) ≤ deg (g) + 1. Then fg ∈ P+[X].
(ix) Let f ∈ P[X], g ∈ P+[X] and deg (f ) ≤ deg (g) + 1. Then f + g ∈ P+[X].
(x) Let d ∈ N, p1, . . . , pr ∈ P+[X] and f1, . . . , fr ∈ P[X] with fk(0) ∈ P+ for some k ∈ [r]. If

deg (fi) ≤ 1 + d, deg (pi) ≥ d for all i = 1, . . . , r

then

f1p1 + · · · + frpr ∈ P+[X].
(xi) Let f1, . . . , fr ∈ P[X], f = f1 + · · · + fn and d = deg (f ) > 0. Then slc(f ) ∈ P+ if there is

some i ∈ [n] with deg (fi) = d − 1 or deg (fi) = d and slc(fi) ∈ P+.

The next lemma plays a crucial role in the proof of Theorem 4.3.



S. Akiyama, H. Brunotte / Linear Algebra and its Applications 436 (2012) 3568–3596 3573

Lemma 4.2. Let n ∈ N>0.

(i) If a, b, c, d ∈ P+ then

(aXn+1 + bXn + cX + d)n−1 ∈ P+[X].
(ii) If n ≥ 3 and 0 < m < n − 1 then

(Xn+1 + Xn + X + 1)m /∈ P+[X].
Proof. For m ∈ N>0 we have the relations

(Xn+1 + Xn + X + 1)m = ((Xn + 1)(X + 1))m ∼
⎛⎝ m∑

i=0

Xni

⎞⎠ · pm. (4.1)

(i) By the above we may assume a = b = c = d. By (4.1) we have

(Xn+1 + Xn + X + 1)n−1 ∼
⎛⎝n−1∑

i=0

Xni

⎞⎠ · pn−1 ∼ pn2−1.

(ii) The left hand side of (4.1) has degree (n + 1)m, while the right hand side has at most (m + 1)2

nonzero coefficients. As (n + 1)m > (m + 1)2 the polynomial cannot belong to P+[X]. �
We are now in a position to characterize polynomials with ‘nonnegative’ coefficients which admit

a power with only ‘positive’ coefficients.

Theorem 4.3. Let R be a unital commutative semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+
and P = P+ ∪ {0}. Further, let f ∈ P[X] and d = deg (f ) > 0. Then f is P+[X]-primitive if and only if

κ0(f ), κ1(f ), κd−1(f ) ∈ P+.

Proof. If f is P+[X]-primitive then κ0(f ), κ1(f ), κd−1(f ) �= 0 by Lemma 4.1 and Lemma 4.1 (v). An

application of Lemma 4.2 concludes the proof. �

Corollary 4.4. Let f ∈ P[X] be P+[X]-primitive.

(i) f n ∈ P+[X] for all n ≥ γP+[X](f ).
(ii) If deg (f ) ≥ 3 then

γP+[X](f ) ≤ deg (f ) − 2,

and this bound is optimal.

Proof. (i) is clear by Lemma 4.1 (viii).

(ii) The bound for γP+[X](f ) and its optimality are clear by Lemma 4.2. �

Remark 4.5. Theorem 4.3 does not hold if P+ �= P\{0}. For instance, if R = Z, P = N and P+ =
4N>0 then the polynomial 2X + 2 is P+[X]-primitive.

Trivially, the primitivity of the sum f1 + · · · + fn does not imply that fi is primitive for some i ∈ [n]
(e.g., let f1 = 1 + X2, f2 = X). However, primitive polynomials seem to be easier to handle than

‘positive’ polynomials: Theorem 4.3 yields the following useful statements on primitive and ‘positive’

polynomials whose proofs are left to the reader.

Proposition 4.6

(i) The set of P+[X]-primitive polynomials is closed under addition and multiplication.

(ii) Let f , p ∈ P[X] anddeg (f ) ≤ deg (p)+1. If p isP+[X]-primitive then f +p isP+[X]-primitive.
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(iii) Let f , p ∈ P[X] and assume that p is P+[X]-primitive and non-constant. If κ0(f ) ∈ P+ then

f · p is P+[X]-primitive. If slc(f ) ∈ P+ then f + p is P+[X]-primitive.

(iv) Let f1, . . . , fn ∈ P[X] and assume that f1 and

f1 + fi (i = 2, . . . , n)

are P+[X]-primitive. Then f1 + · · · + fn is P+[X]-primitive.

(v) Let f beP+[X]-primitive and p ∈ P+[X]with deg (p) ≥ deg (f )−3. Thenwe have pf ∈ P+[X].
We end this section by an observation which seems to of interest for its own sake. Furthermore, it

will be applied in the proof of Theorem 5.7 below.

Theorem 4.7. Let R be a unital commutative semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+ and

P = P+ ∪ {0}. Let fi ∈ P[X] (i = 1, 2, . . . ) be non-constant P+[X]-primitive polynomials such that

deg (fi) ≤ B for a given constant B ∈ N≥3. Then
∏B−2

i=1 fi is in P+[X].
Proof. If fi = 1 + X for all i, then (1 + X)B−2 ∼ pB−2. Let us inductively substitute fi = 1 + X by

1 + X + Xmi−1 + Xmi for 2 ≤ mi ≤ B. First

(1+X+Xm1−1+Xm1)(1+X)B−3=(1+X)B−2+Xm1−1(1+X)B−2∼pB+m1−3

by Lemma 3.2, and second

(1+X+Xm1−1+Xm1)(1+X+Xm2−1+Xm2)(1+X)B−4 ∼ pB+m1−3+Xm2pB+m1−3∼pB+m1+m2−3.

Iterating this process, we find

B−2∏
i=1

(1 + X + Xmi−1 + Xmi) ∼ pB−3+∑i mi
. �

5. Powers of polynomial matrices over commutative semirings

In this sectionweconcentrate onmatriceswhose entries are univariate polynomials over semirings.

5.1. Primitivity of polynomial matrices

For A ∈ R[X]r×r and k ∈ Nwe denote by κk(A) thematrix in Rr×r whose entries are κk(Aij) (i, j ∈
[r]). Further we set (see [6])

deg (A) = max
{
deg Aij : i, j ∈ [r]} ,

thus we can write

A = A0 + A1X + · · · + AdX
d (5.1)

with d = deg (A) and uniquely determined matrices A0, . . . , Ad ∈ Rr×r (see [6,16]). For convenience

we set

lc (A) = Ad

and

slc (A) =
{
Ad−1, if d > 0,

0, otherwise.

The statements of the next lemma can easily be verified.
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Lemma 5.1. Let k ∈ N>0.

(i) κ0(A
n) = κ0(A)

n.

(ii) κ1(A
n) = n−1∑

i=0

κ0(A)
n−1−i κ1(A) κ0(A)

i.

(iii) If lc (A) is not nilpotent then

lc (An) = lc (A)n

and

slc (An) =
n−1∑
i=0

lc (A)n−1−i slc (A) lc (A)i.

Theorem 5.2. Let R be a commutative unital semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+ and

P = P+ ∪ {0}, r ∈ N>0 and A ∈ P[X]r×r . If A is P+[X]-primitive then the matrix
(
κ0(Aij)

)
i,j∈[r] ∈ Pr×r

is P+-primitive, and we have

γP+[X](A) ≥ γP+(κ0(A)).

Proof. With the notation of (5.1) we obviously have A0 = κ0(A), and the result follows. �

Corollary 5.3. If A is P+[X]-primitive then for all i ∈ [r] there is some j ∈ [r] such that κ0(Aij) ∈ P+
(analogously for columns).

Remark 5.4

(i) For the R>0[X]-primitive matrix

A =
⎛⎝ 0 1 + X

1 1

⎞⎠ ∈ R≥0[X]2×2

we have

lc(A) = κ1(A) =
⎛⎝ 0 1

0 0

⎞⎠ , slc(A) = κ0(A) =
⎛⎝ 0 1

1 1

⎞⎠ .

Note that lc (A) is nilpotent.
(ii) In case deg (A) > 0 we cannot replace κ0(Aij) by κ1(Aij) or slc(Aij) in Corollary 5.3 (e.g., see

the matrix A in (i)).

Our next Theorem 5.7 plays a key role in our arguments. It shows that under seemingly strong

conditions primitivity of a matrix A can be checked without calculating powers of A. First we derive

a lower bound for the degrees of the entries of powers of A. Our argument requires some technical

preparations.

For n, r ∈ N>0 we denote by Mn the set of finite sums of monomials 6 of the form

X
mi1 j1

i1j1
· · · Xminjn

injn
(i1, . . . , in, j1, . . . , jn ∈ [r], mi1j1 , . . . ,minjn ∈ N>0),

6 Schneider [22] introduced polynomials which are linear in X1, . . . , Xn aiming at characterizing reducibility by means of deter-

minants.
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where X1,1, X1,2, . . . , Xr,r−1, Xr,r are r2 commuting variables. For p ∈ Mn and ν, μ ∈ [r] we denote

by degνμp the degree of p written as a polynomial in Xνμ.

The following Lemma is certainly well known, however, we could not find a suitable reference.

Lemma 5.5. Define recursively a sequence of polynomials by

p
(1)
ij = Xij ∈ M1

and

p
(n+1)
ij = ∑

k∈[r]
p
(n)
ik Xkj ∈ Mn+1 (n ≥ 1, i, j ∈ [r]).

Then we have for n ≥ 1 and i, j ∈ [r]:

(i) degiip
(n)
ii = n.

(ii) If i �= j then

degiip
(n)
ij = degjjp

(n)
ij = n − 1.

(iii) Let i �= j. If n is even then

degijp
(n)
ii = degijp

(n)
ij = n

2
,

and if n is odd then

degijp
(n)
ii = n − 1

2
and degijp

(n)
ij = n + 1

2
.

(iv) For ν ∈ [r]\ {i, j} we have

degνjp
(n)
ij = degiνp

(n)
ij =

{
n
2

(n even),
n−1
2

(n odd).

(v) For ν ∈ [r]\ {i} , μ ∈ [r]\ {j} we have

degνμp
(n)
ij =

{
n
2

− 1 (n even),
n−1
2

(n odd).

(vi) degνμp
(n)
ij ≥

⌊
n − 1

2

⌋
(ν, μ ∈ [r]).

(vii) p
(n)
ij (ta11, . . . , tarr) = tnp

(n)
ij (a11, . . . , arr) for all t, a11, . . . , arr ∈ R.

Proof. (i)–(v) and (vii) by induction, (vi) by the above. �

Let A ∈ Rr×r . For p ∈ Mn we write by abuse of notation

p(A) = p(A1,1, A1,2, . . . , Ar,r−1, Arr).

Corollary 5.6. Let A ∈ Rr×r , n ≥ 1 and i, j ∈ [r]. Then (An)ij = p
(n)
ij (A).

Nowwecan formulate a sufficient primitivity condition and a bound for the exponent of primitivity.
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Theorem 5.7. Let R be a unital commutative semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+
and P = P+ ∪ {0}. Let A ∈ P[X]r×r and assume that Aij is P+[X]-primitive for all i, j ∈ [r]. Then A is

P+[X]-primitive. Furthermore, if deg (A) ≤ 3 we have A ∈ P+[X]r×r , otherwise we have

γP+[X](A) ≤ 2 deg (A) − 3,

and this constant is best possible.

Proof. For d = deg (A) ≤ 3 we have nothing to prove, therefore we assume d ≥ 4. Pick ν, μ ∈ [r]
with d = deg (Aνμ). Fix i, j ∈ [r] and let n ≥ 2d − 3. We infer from Lemma 5.5 (vi) that degνμp

(n)
ij ≥

(n−1)/2�. Therefore,written as a polynomial in the variableXνμ the polynomial p
(n)
ij has amonomial

uwith at least⌊
n − 1

2

⌋
≥ d − 2

factors of degree d. The product of these factors belongs to P+[X] by Theorem 4.7, thus the same is

true for u by Lemma 4.1 (viii). Using Lemma 4.1 (ix) and Corollary 5.6 we conclude

(An)ij = p
(n)
ij (A) ∈ P+[X].

Finally, the bound 2d − 3 is best possible by inspecting the (1, 2)-entry of the matrix⎛⎝ 1 1 + X + Xd−1 + Xd

1 1

⎞⎠2d−4

. �

Note that Remark 5.4 shows that the converse of Theorem 5.7 does not hold. However, we can now

reduce the property of primitivity of a matrix A to an easier to handle property of primitivity of the

entries of a suitable power of A; certainly, this is a tautology in the cases deg (A) = 0 or r = 1.

Corollary 5.8. A is P+[X]-primitive if and only if there is some m ∈ N>0 such that for all i, j ∈ [r] the
entry (Am)ij is P+[X]-primitive, i.e., either

(Am)ij ∈ P+
or

deg (Am)ij ≥ 1 and κ0(A
m)ij, κ1(A

m)ij, slc(Am)ij ∈ P+.

Proof. Clear by Theorems 4.3 and 5.7 and Remark 2.2. �

We conclude this subsection by a generalization of an example given by Perron [18]. It shows that

in favorable cases primitivity can be seen directly.

Example 5.9. Let 1 ∈ P, , f1, . . . , fr ∈ P[X] and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 · · · · · · · · · 0 f1

1 0 · · · · · · 0 f2

0
...

...

... 0 fr−1

0 · · · · · · 0 1 fr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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If f1 and fr are P+[X]-primitive and f2, . . . , fr−1 are either P+[X]-primitive or zero then A is P+[X]-
primitive, and we have

γP+[X](A) ≤
⎧⎪⎨⎪⎩
max {1, deg (A) − 2} if r = 1,

2 max {1, 4 deg (A) − 3} if r = 2,

(r + 1) max {1, 2(r + 1) deg (A) − 3} if r ≥ 3,

because the essentials of the proof given in [18] can be carried over to our situation: For n ∈ N>0 and

i ∈ [r] we have

(An+1)i,j = (An)i,j+1 (0 ≤ j ≤ r − 1), (An+1)i,r =
r∑

k=1

(An)i,kfk

andby inductionusingProposition4.6weshowthat (An)ij is eitherprimitiveor zero (j ∈ [r]). Similarly,

we show (An)ir primitive for n ≥ 2, i ∈ [r]. By induction over k we find that (An+k)i,r−k is primitive

for n ≥ 2, i ∈ [r] and 0 ≤ k ≤ r − 1, and derive

(Ar+1)ij primitive (i, j ∈ [r]).
From Theorem 5.7 we infer that Ar+1 is primitive, hence A is primitive. Using

deg(Am) ≤ m deg(A)

the bounds for γP+[X](A) can easily be derived from Corollary 4.4 and Theorem 5.7.

5.2. Strong irreducibility and strong aperiodicity

In an attempt to find a direct analogue to the classical Perron–Frobenius Theorem we introduce

more restrictive notions of irreducibility and aperiodicity for matrices over polynomial semirings. In

the first step we concentrate our attention on the lower coefficients (see Definition 5.13 (i)) and in a

second step on the higher coefficients (see Definition 5.15) of the polynomials involved.

We start with an observation on the growth of the degree of a matrix once we are sure that none

of its entries vanishes.

Lemma 5.10. Let A ∈ P[X]r×r , m ∈ N>0 such that (Am)ij �= 0 for all i, j ∈ [r]. For all t ∈ N>0 and all

i, j ∈ [r] we have

deg (A2(m+1)t)ij ≥ t · deg (A).

Proof. We start by showing deg (Am+1)ij ≥ deg A�j for all i, j, � ∈ [r]. If A�j = 0 there is nothing to

prove. Otherwise setting B = Am and using Lemma 4.1 we find

deg (Am+1)ij = deg (BA)ij = max
{
deg (Bik · Akj) : k ∈ [r]} ≥ deg (Bi� · A�j) ≥ deg A�j.

Analogously we find deg (Am+1)ij ≥ deg Ai� for all i, j, � ∈ [r]. Thus we have established

deg (Am+1)ij ≥ max
{
deg Ai�, deg A�j : � ∈ [r]} ≥ 0 (i, j ∈ [r]).

Pick i′, j′ ∈ [r] with deg Ai′j′ = deg (A). Then clearly

deg (Am+1)ij′ ≥ deg (A) (i ∈ [r]).
Now we prove our assertion by induction on t. By Lemma 4.1 and what we have seen above we

settle the case t = 1 by
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deg (A2(m+1))ij = max
{
deg ((Am+1)ik · (Am+1)kj) : k ∈ [r]

}
≥ deg ((Am+1)ij′ · (Am+1)j′j)

= deg (Am+1)ij′ + deg (Am+1)j′j ≥ deg (A).

Finally we observe that all entries of the first factor of the product

A2(m+1)(t+1) = A2(m+1)t · A2(m+1)

have degree at least t · deg (A) and that all entries of the second factor have degree at least

deg (A). �

Lemma 5.11. Let A ∈ P[X]r×r , i ∈ [r] and n ∈ N>0 such that for all j ∈ [r] we have κ0((A
n)ij) > 0.

Then for all j ∈ [r] there is some k ∈ [r] such that κ0(Akj) > 0.

Proof. Using Lemma 4.1 (i) the assumption of the contrary would lead to the contradiction

κ0((A
n)ij) = ∑

k∈[r]
κ0((A

n−1)ik) κ0(Akj) = 0. �

Lemma 5.12. Let A ∈ P[X]r×r and assume that for all j ∈ [r] there is some � ∈ [r] such that κ0(A�j) > 0.
Let i ∈ [r] and n ∈ N have the property: For all j ∈ [r] we have

(An)ij > 0 and deg (An)ij ≥ deg (A).

Then for all m ≥ n and j ∈ [r] we have

(Am)ij > 0 and deg (Am)ij ≥ deg (A).

Proof. We proceed by induction on m. Pick � ∈ [r] such that κ0(A
m)�j > 0, hence (Am)i�A�j > 0 by

Lemma 4.1 (viii). Then Lemma 4.1 (x) yields

(Am+1)ij = ∑
k∈[r]

(Am)ikAkj > 0,

and an application of Lemma 4.1 (vi), (vii) concludes the proof. �

Note that in case deg (A) = 0 the following definitions agree with the classical notions.

Definition 5.13. Let A ∈ P[X]r×r .

(i) A is called strongly P+[X]-irreducible if for all i, j ∈ [r] there is some n ∈ N such that the

following three properties are satisfied:

(a) κ0(A
n)ij ∈ P+,

(b) deg (An)ij ≥ min {1, deg (A)},
(c) If deg (An)ij > 0 then we have κ1(A

n)ij ∈ P+.
(ii) Let i ∈ [r]. We denote by sper i(A) the greatest common divisor of the set{

n ∈ N>0 : κ0(A
n)ii ∈ P+, deg (An)ij ≥ min {1, deg (A)} , and deg (An)ij > 0

�⇒ κ1(A
n)ij ∈ P+

}
if this set is non-void, and sper i(A) = ∞, otherwise. A is called strongly P+[X]-aperiodic if
gcd {sper 1(A), . . . , sper r(A)} = 1.
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Clearly, strong irreducibility implies irreducibility. Note that in case deg (A) > 0 strong irreducibil-

ity and strongaperiodicitydonot implyprimitivity (e.g., 1+X+X3 ∈ R≥0[X] is notR>0[X]-primitive).

For the notions used in the following Lemma we refer the reader to 6.4.

Lemma 5.14. Let A ∈ P[X]r×r . For i, j ∈ [r] let Eij be the set of all nonnegative integers which satisfy the

three properties (i), (ii) and (iii) of Definition i.

(i) If i �= j then 0 /∈ Eij.

(ii) For i, j ∈ [r], m ∈ Eij and n ∈ Ejj we have m + n ∈ Eij.

(iii) For i, j ∈ [r], m ∈ Eij and n ∈ Eji we have m + n ∈ Eii.

(iv)
{
Eij
}
i,j∈[r] is a suitable family of subsets of N.

(v) If A is strongly P+[X]-irreducible we have for all i, j ∈ [r]:
(a) There exists some m ∈ N such that m + n ∈ Eij for all n ∈ Ejj.

(b) If i �= j then there exists s ∈ Eij and t ∈ Eji such that s + n + t ∈ Eii for all n ∈ Ejj ∪ {0}.
(vi) If A is stronglyP+[X]-irreducible and stronglyP+[X]-aperiodic then there exists somem ∈ N>0

such that n ∈ Eij for all n ≥ m and all i, j ∈ [r].
Proof

(i) The assumption 0 ∈ Eij yields the contradiction 0 = κ0(0) = κ0(A
0)ij ∈ P+.

(ii) Write

(Am+n)ij = (Am)ij(A
n)jj + h

with some h ∈ P[X]. By Lemma 4.1 we find κ0((A
m+n)ij) ∈ P+. Further, by Lemma 4.1 (vi)

deg (Am+n)ij ≥ deg (Am)ij + deg (An)jj ≥ min {1, d} .

If deg (Am+n)ij > 0 then d ≥ 1, hence

deg (Am)ij, deg (An)jj > 0

and therefore by assumption

κ1(A
m)ij, κ1(A

n)jj ∈ P+
which implies κ1(A

m+n)ij ∈ P+ by Lemma 4.1. Thus we have shownm + n ∈ Eij .

(iii) This is proved analogously as (ii).

(iv) By (ii) the set Eii is additively closed. Together with (i) this implies that the family of sets is

suitable.

(v) Note that Eij �= ∅ for all i, j ∈ [r]. Thus (a) is clear by (ii), and (b) follows from (ii) and (iii) by

s + n + t = (s + n) + t ∈ Eij + Eji ⊆ Eii.

(vi) Using (iv) and (v) we see that
{
Eij
}
i,j∈[r] is a suitable aperiodic and properly irreducible family

of subsets of N. Then our assertion is clear by Theorem A.4.

For convenience we introduce the following notion.

Definition 5.15. The integer n ∈ N is called good for the matrix A ∈ P[X]r×r if for all i, j ∈ [r] the
following implication holds:

deg (An)ij > 0 �⇒ slc(An)ij ∈ P+. (5.2)

Note that in case deg (A) = 0 all n ∈ N are good for A. Clearly, the existence of a good integer for

A clearly does not imply the

Lemma 5.16. If m ∈ N is good for the matrix A ∈ P[X]r×r then tm is good for A for all t ∈ N>0.
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Proof. Clearly, we need only consider the case deg (A) > 0. Now, we proceed by induction on t

exploiting Lemma 4.1. �
We are now in a position to state a final result in this direction.

Theorem 5.17. Let R be a unital commutative semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+,

P = P+ ∪ {0}, r ∈ N>0 and A ∈ P[X]r×r . The following statements are equivalent.

(i) A is P+[X]-primitive.

(ii) There exists some N ∈ N>0 such that for all n ≥ N we have

An > 0 and deg (An)ij ≥ deg (A) (i, j ∈ [r]).
(iii) A is strongly P+[X]-irreducible and strongly P+[X]-aperiodic and there exists some N ∈ N>0

which is good for A.

Proof. Let d = deg (A).
(i) �⇒ (ii) Let m ∈ N>0 such that Am > 0 and set N = 2m(m + 1). By Lemma 5.10 we have

deg (AN)ij ≥ m d ≥ d (i, j ∈ [r]).
Clearly, AN is ‘positive’ as it is the product of ‘positive’ factors:

AN = Am · · · Am︸ ︷︷ ︸
2(m+1) factors

.

By Lemma 5.11 for all j ∈ [r] there is some i ∈ [r] such that κ0(Aij) > 0, and an application of Lemma

5.12 concludes the proof.

(ii) �⇒ (iii) Obviously, A is strongly P+[X]-irreducible. For all ∈ [r] the crucial set for the determi-

nation of sper i(A) contains N≥N , hence sper i(A) = 1, and A is strongly P+[X]-aperiodic. Clearly, N is

good for A.

(iii) �⇒ (i) By Lemma 5.14 (vi) we find somem ∈ N>0 such that for all n ≥ m and i, j ∈ [r] we have

κ0(A
n)ij ∈ P+, deg (An)ij ≥ min {1, d} and
deg (An)ij > 0 �⇒ κ1(A

n)ij ∈ P+.

In case d = 0 the assertion is clear by Theorem 2.6, therefore we assume d > 0 and choose an

integer twithM = tN ≥ m. Thus, by the above, Lemma5.16 andDefinition 5.15we find for all i, j ∈ [r]
κ0(A

M)ij ∈ P+, deg (AM)ij > 0, κ1(A
M)ij ∈ P+, slc(AM)ij ∈ P+,

which means that (AM)ij is primitive by Theorem 4.3. Now, AM is primitive by Theorem 5.7, and

Remark 2.2 (ii) concludes the proof. �

6. An alternative primitivity criterion for polynomial matrices

In this section we introduce a different tool to describe primitivity. Having in mind Remark 5.4 (i)

we no longer study the behavior of the coefficient matrices (see Section 5.1) κk(A) (k > 1), but turn
to some additional matrix which we think to better control the two highest coefficients of the entries

of the polynomial matrix A.

6.1. Almost linear periodic sequences in monoids

In this subsection we let (M, ◦) be a commutative monoid with neutral element e. For simplicity

we write
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an = a ◦ · · · ◦ a︸ ︷︷ ︸
n factors

(a ∈ M, n ∈ N>0)

and a0 = e.

Definition 6.1 (cf. [7, Definition 2.3, 2.4]). The sequence a. = (an)n∈N of elements of M is called

almost linear periodic if there are N ∈ N, p ∈ N>0 and q ∈ M such that for every n > N

an+p = an ◦ qp. (6.1)

In this case the smallest numberN ∈ Nwith the property that there are p ∈ N>0 and q ∈ M such that

(6.1) holds for every n > N is called the linear defect of a., and we write N = ldef a.. The minimal

number p ∈ N>0 such that there is some q ∈ M such that (6.1) holds for every n > ldef a. is called

the linear period of a., and we write p = lper a.. Finally, an element q with (6.1) is called a linear

factor of a.. In case q is unique we write q = lfac a..

We are now aiming at some kind of divisibility of elements of amonoid by positive integers. Clearly,

this goal cannot be achieved for arbitrary monoids.

Definition 6.2. We say that the monoid (M, ◦) has property (.) if for every a, b ∈ M and n ∈ N>0

the equality an = bn implies a = b.

Remark 6.3. If themonoid (M, ◦) is cancellative it need not have property (.) (e.g., take themonoid

of nonzero real numbers together with the usual multiplication).

For the remainder of this subsection we assume that (M, ◦) has property (.). We define the

following relation onM × N>0:

(a, n) ∼ (b,m) ⇐⇒ am = bn.

Lemma 6.4

(i) ∼ is an equivalence relation onM × N>0.

(ii) The pair (M̂, ◦) consisting of the set of equivalence classes ofM×N>0 and the binary operation

[a, n] ◦ [b,m] := [am ◦ bn, nm]
is a commutative monoid with neutral element [e, 1]; here we write [a, n] for the class of (a, n).
Furthermore, it is divisible 7 and has property (.).

(iii) For every a ∈ M and n ∈ N>0 we have

[a, n]n = [a, 1].
(iv) The map ι : M → M̂ given by a �→ [a, 1] defines a monoid monomorphism.

(v) If M is divisible then M and M̂ are isomorphic.

Proof. This can easily be checked. �

In view of Lemma 6.4 we tacitly treat M as a submonoid of M̂. In particular, this implies that the

sequence (an)n∈N of elements ofM is almost linear periodic if there are N ∈ N, p ∈ N>0 and q ∈ M̂
such that (6.1) is satisfied for all n > N.

7 The monoid (M, ◦) is called divisible if for any y ∈ M and any n ∈ N>0 there is a unique x ∈ M such that xn = y. For reasons

of analogy we write x = y

n
(cf. [7, Definition 2.1]).
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Lemma 6.5. Let (M, ◦) be a commutative cancellative monoid with property (.).

(i) M̂ is cancellative.

(ii) Let a. = (an)n∈N be an almost linear periodic sequence in M. Then there is a uniquely deter-

mined q ∈ M with

an+p = an ◦ qlper a.

for every n > ldef a., and we write q = lfac a..

Proof. Using Lemma 6.4 this can easily be checked. �

We close this subsection by an example of a monoid which will play a decisive role in Section 6.4.

Example 6.6. ((Q≥0 × {0, 1})\ {(0, 1)} , ◦, ≤) with

(x, a) ◦ (y, b) = (x + y,max {a, b}), (x, y ∈ Q≥0, a, b ∈ {0, 1})
is a commutative linearly ordered divisible monoid where we order Q≥0 × {0, 1} lexicographically.

Furthermore, this monoid has property (.), however, it is not cancellative (e.g., we have (1, 1) ◦
(1, 0) = (1, 1) ◦ (1, 1)). However, notice that

(x, a) ◦ (z, 0) = (y, b) ◦ (z, 0) �⇒ (x, a) = (y, b).

6.2. Almost linear periodic matrices over dioids

LetD = (M, ⊕, ⊗) be a commutative dioid8 in the sense of [1, Definition 4.1, p. 154] with neutral

elements ε and e, respectively. 9 It is well known that the set Mr×r of r × r matrices over M yields a

dioid where addition and multiplication of matrices and multiplication of matrices by elements ofM
are defined in the usual way.

Lemma 6.7

(i) D is a commutative unital semiring of characteristic zero with idempotent sum (i.e., x ⊕ x = x

for all x ∈ D).

(ii) If D is entire 10 then D\ {ε} is a preprime of D.

(iii) Let D be entire and B ∈ Mr×r with Bij �= ε for some i, j ∈ [r]. Then B is irreducible if and only

if B is M\ {ε}-irreducible.
Example 6.8 [7, Definition 2.1]. Let (G, +, ≤) be a commutative linearly ordered divisible group and

G. = G ∪ {ε} where ε /∈ G is a new element which satisfies ε ≤ x and ε + x = x + ε = ε for

all x ∈ G.. In other words, (G., +) is a monoid and ε is minimal w.r.t. ≤ and absorbing11 w.r.t. +.

We call the dioid (G., ⊕, ⊗) with ⊕ = max and ⊗ = + the max-plus algebra generated by G. We

observe that the monoid (G, ⊗) is cancellative and enjoys property (.), and that the groups (G, +)

and (Ĝ, ⊗) are isomorphic (see Section 6.1). Furthermore, the max-plus algebra (G., ⊕, ⊗) is entire
with idempotent sum. The natural order (see [1, Definition 4.11, p. 155]) on this dioid coincides with

the linear order on the monoid (G., +).

8 By abuse of notation we sometimes use the symbolD instead ofM and tacitly imply the use of the two binary operations⊕ and

⊗.
9 Clearly, D is a semiring, however, D cannot always be embedded into a ring (see the discussion in [1, p. 210]). Lots of examples

are given in [9, Section 2.3]).
10 The dioid (M, ⊕, ⊗) is entire if for all x, y ∈ M the equation x ⊗ y = ε implies x = ε or y = ε (see [1, Definition 4.11, p. 155]).

Instead of “entire” one may find the expression “without zero divisors” in the literature.
11 The element a of the monoid (M, ◦) is called absorbing if for any x ∈ Mwe have a ◦ x = a.
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The most important example of dioids of this type is the standard max-plus algebra12

Rmax := (R ∪ {−∞} ,max, +)

generated by the real numbers with the usual addition and order relation.

We follow as closely as possibly the exposition given in [7].

Definition 6.9 (cf. [7, Definition 2.3, 2.4]). (i) The sequence B. = (Bn)n∈N ofmatrices inMr×r is called

almost linear periodic if for all i, j ∈ [r] the sequence

(B.)ij = ((Bn)ij)n∈N ∈ MN

is almost linear periodic. In this case, the numbers

lper B. := lcm
{
lper(B.)ij : i, j ∈ [r]

}
and

ldef B. := max
{
ldef (B.)ij : i, j ∈ [r]

}
are called the linear period and the linear defect, respectively, of B.. Further, a matrix Q ∈ Mr×r

given by linear factors Qij of the sequences ((Bn)ij)n∈N (i, j ∈ [r]) is called a linear factor matrix of B..

i, j ∈ [r] If for each i, j ∈ [r] there is a unique linear factor Qij we write

lfac (B.) = Q .

Let us now fix a matrix B ∈ Mr×r .

Definition 6.10 (cf. [7, Definition 2.3, 2.4]). We say that the matrix B is almost linear periodic if the

sequence (Bn)n∈N is almost linear periodic. In this case we simply write

ldef (B) = ldef ((Bn)n∈N), lper (B) = lper ((Bn)n∈N).

If there is a unique linear factor we write lfac (B) = lfac ((Bn)n∈N).

From now on we further assume that the monoid (M\ {ε} , ⊗) has the property (.).

Lemma 6.11. Let B ∈ Mr×r be irreducible.

(i) For all i ∈ [r], n ∈ N>0 there is some j ∈ [r] such that (Bn)ij �= ε.
(ii) For all j ∈ [r], n ∈ N>0 there is some i ∈ [r] such that (Bn)ij �= ε.
(iii) Let B be almost linear periodic and λ(B) ∈ M̂ be a linear factor of B. Then λ(B) �= ε, and if

M̂\ {ε} is cancellative then λ(B) is unique.

Proof. This can easily be checked using Lemmata 6.7 and 2.4. �

Let us now continue the study of the graph associated to a givenmatrix (see Section 2.1).We denote

by |π | the length of the path13 π in G(B) and by W(n)(i, j) the (possibly empty, but finite) set of all

paths of length n from i to j. The set W(0)(i, i) consists of the empty path (of length 0) which both

12 A comprehensive introduction to max-plus algebra is found in [1], applications are discussed in e.g. [3,4]. Sometimes these

semirings are also called tropical (see [17,24]).
13 We use the terminology of Lind–Marcus [14, Definition 2.2.11].
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starts and terminates at i. For convenience we set

W(i, j) = ⋃
n∈N>0

W(n)(i, j) and �(B) = ⋃
i,j∈[r]

W(i, j).

Let π = (i0, i1, . . . , in) be a path of positive length n in G(B). We call

v(π) = Bi0,i1 ⊗ · · · ⊗ Bin−1,in

the weight of π . For π ∈ W(0)(i, i) we set

v(π) = e.

We are interested in the function

v : �(B) → M̂
given by

v(π) = [v(π), |π |].
We call v(π) the average (or mean) weight of π . As we shall see below the mean weight of π reflects

the “real” size of the path π . In particular, we are interested in the cycles of G(B), and therefore we

denote by

CB = ⋃
i∈[r]

⋃
n∈N>0

W(n)(i, i)

the set of cycles of positive lengths in G(B).

For the remainder of this section we further assume that≤ is a linear order on the set M̂\ {ε}with

the following property: For all c, c′ ∈ CB we have

[v(c) ⊗ v(c′), |c| +
∣∣∣c′∣∣∣] ≤ max

{
v(c), v(c′)

}
. (6.2)

Lemma 6.12.

(i) Let i ∈ [r], L ∈ N>0 and π ∈ W(L)(i, i) with

v(π) = max

⎧⎨⎩v(ρ) : ρ ∈
L⋃

n=1

W(n)(i, i)

⎫⎬⎭ .

Then there is a subpath ρ of π with the following properties:

(a) ρ ∈ W(i, i),
(b) |ρ| ≤ r,

(c) v(ρ) = v(π).
(ii) Assume that either for all i ∈ [r] there is some j ∈ [r]with Bij �= ε or for all j ∈ [r] there is some

i ∈ [r] with Bij �= ε. Then CB �= ∅.
(iii) If CB �= ∅ then there is a cycle c in G(B) of positive length at most r with the property

v(c) = max {v(ρ) : ρ ∈ CB} .

In this case we call λ(B) := v(c) the maximal cycle mean weight 14 of B.

(iv) If B is irreducible then λ(B) ∈ M̂\ {ε}.
Proof. (i) Wemay assume L > r because otherwise there is nothing to prove. Let π = (i0, i1, . . . , iL)
with i0 = iL = i. Choose k ∈ [L] minimal with ik = i and pick a subpath ρ of (i0, i1, . . . , ik) which

14 Cf. [7, p. 169].
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starts at i and terminates at i and which does not intersect itself. Then clearly ρ ∈ W(i, i) and |ρ| ≤ r.

Let now τ be the path which extends ρ to π . By (6.2) we have

v(π) = [v(ρ) ⊗ v(τ ), |ρ| + |τ |] ≤ max {v(ρ), v(τ )} ,

hence

v(π) = max {v(ρ), v(τ )}
by our choice of π . Therefore ρ or τ is a cycle of positive length less than L and equal v-value as π . If

necessary we apply the same procedure to this cycle instead of π . After finitely many steps we arrive

at a cycle with the required properties.

(ii) Let us first assume that for all i ∈ [r] there is some j ∈ [r] with Bij �= ε. Then we can define a

function on [r] by
ι(i) := min

{
j ∈ [r] : Bij �= ε

}
.

The iterates of ι give a path in the finite set of vertices [r], hence there must be some k < mwith

ιk(i) = ιm(i).

Thus we can construct a path of positive length from ιk(i) to ιm(i), i.e., an element of CB. The second

part of the statement is shown analogously.

(iii) Clear by (i).

(iv) As CB �= ∅ this follows from (iii). �

In case of a max-plus algebra the asymptotic behavior of the sequence of powers of an irreducible

matrix is periodic and completely determined by the lengths and average weights of its cycles of

maximal cyclemeanweight 15 (see [7, Theorem 3.1]).We aim at exploiting this result for our purposes

here.

Following [7, p. 169] we say that the vertices i, j ∈ [r] are highly connected (and write i ≡h j) if i, j
are contained in a cycle c with maximal cycle mean weight, i.e., v(c) = λ(B). It is easy to check that

≡h defines a symmetric and transitive relation on the set of vertices of G(B). Note that in general high

connectivity is not reflexive16 (see Example 6.21 (i) below).

The subgraphs of G(B) induced by the classes of ≡h are called highly connected components of

G(B). A highly connected component in G(B) is called trivial if it contains no cycle of positive length

with cycle mean weight equal to λ(B). The set of all such components is denoted by C(B). Clearly,
K ∈ C(B) is not necessarily strongly connected. The high period of K ∈ C(B) is defined by

hper (K) := gcd {|c| : c cycle in K, v(c) = λ(B)} ,

if K is nontrivial, and hper (K) = 0, otherwise.

In the following sections we concentrate on a seemingly new dioid which is more adapted to our

goals explained in Section 1.

6.3. Description and properties of a particular dioid over the integers

We introduce a dioid which describes the behavior of the two highest coefficients of the entries of

thematrixA.More precisely, the elements of our dioid consist of pairswhere thefirst component keeps

book of the degree and the second component tells us whether or not the respective slc-coefficient is

‘positive’ or not. Clearly, in order to make statements about P+[X]-primitivity of polynomial matrices

more information is needed as we shall see below.

15 From the viewpoint of applications of the classical max-plus algebra the (unique) cycle of maximal cycle mean weight is the

‘slowest’ cycle and eventually imposes its ‘speed’ on the whole system (see e.g. [3, p. 17]).
16 The reflexive extension of this relation is an equivalence relation on the set of vertices of G(B) (cf. [21, p. 34]), but we do not need

this here.
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On the set

D := ((N ∪ {−∞}) × {0, 1}) \ {(−∞, 1), (0, 1)}
we introduce two binary operations:

(n, a)⊕(m, b)=(max {n,m} , δ+(n, a,m, b)) and (n, a)⊗(m, b)=(n+m, δ×(n, a,m, b)),

where the functions δ+, δ× : D × D → {0, 1} are defined as follows: First, δ+(n, a,m, b) = 1 if

one of the following three conditions is satisfied:

(i) max {|m − n|, a, b} = 1,
(ii) n > m + 1 and a = 1,

(iii) m > n + 1 and b = 1,

otherwise δ+(n, a,m, b) = 0. Second, δ×(n, a,m, b) = max {a, b} if n,m ∈ N, and δ×(n, a,m, b) =
0, otherwise. One may imagine that the first component stands for the arrival time of supply while

the second component stands for its successiveness. If the second component is 1 then we think that

the supply is stable, at least locally. The above definition of ⊕ models the situation that two unstable

supplies arrive at consecutive time units, say n and n + 1, and then we judge that the supply line

becomes stable. It is also assumed that once the supply line becomes stable then it will remain stable.

Lemma 6.13

(i) (D, ⊕, ⊗) is a commutative dioid in the sense of [1, Definition 4.1, p. 154] with neutral elements

ε = (−∞, 0) and e = (0, 0), respectively.
(ii) The element ε is absorbing for ⊗.

(iii) (D, ⊕, ⊗) is a commutative unital semiring of characteristic 0, and

Q := {(n, 1) ∈ D : n ∈ N>0}
is a preprime contained in the preprime Q ∪ {ε}.

(iv) The monoid (D\ {ε} , ⊗) has property (.), and (D̂\ {ε}, ⊗) is isomorphic to (Q≥0 ×
{0, 1})\ {(0, 1)} , ◦) (see Section 6.1) where the isomorphism is given by

[(n, a),m] �→
(
n

m
, a

)
.

Proof. This can easily be checked. �

Remark 6.14. D cannot be embedded into a max-plus algebra because otherwise we would have

α ⊕ β = max {α, β} , hence in particular

(1, 1) = (1, 0) ⊕ (0, 0) ∈ {(1, 0), (0, 0)}
which is impossible. 17 The natural order (see [1, Theorem 4.28, p. 160]) on D is not linear (e.g., the

elements (1, 1) and (2, 0) are incomparable).

For the remainder of this subsection we let B ∈ Dr×r .

Remark 6.15. If B is irreducible then B need not be Q-irreducible (e.g., take B = (e)). However, if B is

Q-irreducible then B is irreducible.

17 D satisfies the weak (but not the strong) stabilization condition (e.g., see [13] and the references therein), but we do not use this

fact here.
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By our conventions introduced above for the path π of positive length we have

v(π) =
(
v(π)1

|π | , v(π)2

)
∈ Q≥0 × {0, 1} ,

and using the lexicographical order on Q≥0 × {0, 1} (cf. Example 6.6) the paths of positive lengths

in the digraph G(B) are linearly ordered by their mean weights. In particular, the cycles of positive

lengths in G(B) enjoy property (6.2) and are linearly ordered by the cycle mean weights.

Lemma 6.16 below which is an analogue of [7, Lemma 2.1] describes the (i, j)-entry of the powers

of B by the weight of paths from vertex i to vertex j.

Lemma 6.16 (cf. 7, Lemma 2.1,9, p. 11). Let i, j ∈ [r], n ∈ N>0 and w ∈ W(n)(i, j).

(i) If

v(w) = max
{
v(π) : π ∈ W(n)(i, j)

}
(6.3)

we have

((Bn)ij)1 = v(w)1 and ((Bn)ij)2 ≥ v(w)2.

(ii) If v(w)1 = ((Bn)ij)1 and v(w)2 = 1 then w satisfies (6.3), and we have (Bn)ij = v(w).

Proof. (i) is clear by the definitions and (ii) is immediate by (i). �

Remark 6.17. Note that for r > 1 we might have

(Bn)ij �= max
{
v(π) : π ∈ W(n)(i, j)

}
,

e.g. for

B =
⎛⎝ (2, 0) (2, 0)

e (1, 1)

⎞⎠
we have two paths of length 2 from 1 to 2, namely π = (1, 1, 2) and ρ = (1, 2, 2). We have

v(π) = (4, 0) > (3, 1) = v(ρ),

but (B2)12 = (4, 1). Observe that (B2)12 /∈ v(W(2)(1, 2)), i.e., there is no path of length 2 from 1 to 2.

We denote by F ∈ Rr×r
max (Sn ∈ {0, 1}r×r , respectively) the matrix of first components of B (the

matrix of second components of Bn, respectively), more precisely

Fij = (
Bij
)
1
, (Sn)ij = (

(Bn)ij
)
2

(i, j ∈ [r]).
Clearly,

Fn = (Bn)1 (n ∈ N),

where addition and multiplication on the left hand side is performed in Rmax (see Example 6.8).

The graphs G(F) and G(B) coincide, and every cycle of maximummean weight in G(B) is a cycle of

maximummeanweight in G(F). However, the converse does not hold as the following example shows.

Example 6.18. For

B =
⎛⎝ (1, 0) e

e (1, 1)

⎞⎠
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we have

F =
⎛⎝ 1 0

0 1

⎞⎠ ,

thus 1 → 1 is a cycle of maximum mean weight in G(F), but not in G(B).

We now collect some important relations between the properties of B and its component matrices.

Proposition 6.19. Let B ∈ Dr×r be irreducible.

(i) F is almost linear periodic. We have lfac (F)ij = λ(B)1 > 0 for all i, j ∈ [r] and
p := lper (F) = lcm {hper K : K ∈ C(F), K nontrivial} ,

and λ(B) and p can be computed in O(r3) time. If K1, . . . ,Kt are the highly connected compo-

nents of G(F) which contain the nontrivial highly connected components of G(B) then
lcm {hper Kk : k ∈ [t]} divides lcm {hper K : K ∈ C(B), K nontrivial}.

(ii) B is almost linear periodic and λ(B)1 is the first component of a linear factor of B.

(iii) Letus assume that the sequenceof the secondcomponents of thepowers of B is ultimately constant,

i.e., there is some M ∈ N with

Sn = SM (n ≥ M). (6.4)

Then we have

ldef (F) ≤ ldef (B) ≤ max {M, ldef (F)} .

Proof. (i) Clear by [7, Theorem 3.1 and Theorem 3.6] and our remarks above.

(ii) Fix i, j ∈ [r]. It suffices to prove that there is some N > ldef (F) such that

(Bn+p)ij = (Bn)ij (λ(B)1, 0)
p

for all n > N. By (i) this equation holds for the first components, thus we are left to show

(Bn+p)ij2 = (Bn)ij2.

Assume first that we have

(Bn+p)ij2 = 0

for all n > ldef (F). Then we set N = p + ldef (F), and we are done.

Now, we suppose that

(Bm+p)ij2 = 1

for some m > ldef (F). Then we set N = p + m. By the proof of [7, Theorem 3.1] there is a path

π ∈ W(i, j) and a cycle c of maximum mean weight in G(F) such that

v(πct)1 = (Bm+p)ij1.

We distinguish two cases.

First, let v(πct)2 = 1. Then clearly v(πcs)2 = 1 for all s ≥ t, and our assertion follows by Lemma

6.23.

Second, let v(πct)2 = 0. Then there must be some path ρ ∈ W(i, j) with |ρ| = m + p and

v(ρ)1 = v(πct)1 − 1. Let n ≥ m. It suffices to establish (Bn+p)ij2 = 1. Again inspecting the proof of

[7, Theorem 3.1] we find s ≥ t with

v(πcs)1 = (Bn+p)ij1.
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Obviously,∣∣∣ρcs−t
∣∣∣ = m + p + (s − t) |c| = |π | + t |c| + (s − t) |c| = |π | + s |c| = ∣∣πcs

∣∣ ,
hence v(ρcs−t) is one of the summands occurring in the computation of (Bn+p)ij. Analogously we find

v(ρcs−t)1 = v(πcs)1 − 1

yielding (Bn+p)ij2 = 1 by adding v(πcs) and v(ρcs−t).
(iii) This is clear by (i). �

Remark 6.20. For small r Lemma 6.12 (ii) allows an easy calculation of λ(B) provided B is irreducible

(e.g., see Example 6.21). In general, Karp’s method [1, Chapter 2] allows the calculation of (λ(B))1.

The following simple example illustrates our results.

Example 6.21. We show that the maximal cycle mean weight is not necessarily a linear factor of an

irreducible matrix. For the matrix

B =
⎛⎝ e β

e ε

⎞⎠
with β = (1, 0) we have

F =
⎛⎝ 0 1

0 −∞

⎞⎠ .

The first few powers of B are

B2 =
⎛⎝ γ β

e β

⎞⎠ , B3 =
⎛⎝ γ ζ

γ β

⎞⎠ , B4 =
⎛⎝ ζ ζ

γ ζ

⎞⎠ , B5 =
⎛⎝ ζ ω

ζ ζ

⎞⎠ , B6 =
⎛⎝ ω ω

ζ ω

⎞⎠ ,

where we set γ = (1, 1), ζ = (2, 1) and ω = (3, 1). Thus B is Q-primitive of exponent 4, and F is

R>0-primitive of exponent 3. Further we note that the sequence of second components of the powers

of B is ultimately constant, andM = 4 is the minimal integer which satisfies (6.4).

By induction we easily check

Bn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(
(n − 3, 1) (n − 2, 1)

(n − 3, 1) (n − 3, 1)

)
(n odd)

(
(n − 3, 1) (n − 3, 1)

(n − 4, 1) (n − 3, 1)

)
(n even)

(6.5)

for n ≥ 5.

There is one cycle of length 1, and we have v(1 → 1) = e. For the cycle c (of length 2) given by

1 → 2 → 1 we have v(c) = β , and there are two other cycles of length 2. More explicitly, we have

v(1 → 1 → 1) = e, v(2 → 1 → 2) =
(
1

2
, 0

)
,

hence we have found

lfac (F) = λ(F) = 1

2
, λ(B) =

(
1

2
, 0

)
by Proposition 6.19. Further, our calculations above and (6.5) yield ldef (F) = 1.
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The cycle c yields the only nontrivial highly connected component K, and we have

lper (F) = hper (K) = 2

by Lemma 6.12. Using (6.5) we easily check

Bn+2 = Bn ⊗ λ(B)2 (n > 3), (6.6)

therefore B is almost linear periodic with ldef (B) ≤ 3.

Setting μ =
(
1
2
, 1
)
and using (6.6) we find

Bn+2 = Bn ⊗ μ2 (n > 1), (6.7)

hence we even have ldef (B) ≤ 1. Further, this shows ldef (B) = 1, because otherwise there would

be ν ∈ Q≥0 × {0, 1} and p ∈ N>0 such that

Bn+p = Bn ⊗ νp (n > 0)

in particular

(B1+p)22 = B22 ⊗ νp = ε ⊗ νp = ε,

contradicting (6.7) (note that p = 1 is impossible by our explicit calculations in the beginning of this

example). Further we have lper (B) ≤ 2 which yields lper (B) = 2 because otherwise we had

Bn+1 = Bn ⊗ ν (n > 1)

with some ν ∈ Q≥0 × {0, 1}, hence
β = (B2+1)22 = (B2)22 ⊗ ν = β ⊗ ν

and then ν = β which is impossible. We determine lfac (B) = μ, because

Bn+1 = Bn ⊗ (1, 0) (n > 1)

yields

(1, 1) = e ⊗ μ2 = (B2)21 ⊗ μ2 = (B2)21 ⊗ ν2 = ν2

and then ν = μ. Finally we observe that in this example the last inequality in (6.4) is strict.

6.4. Application to polynomial matrices

Nowwe connect our usual setting with the dioidD constructed in the previous section. Notice that

D does not depend on the semiring R.

For f ∈ R[X] we set δ(f ) = 1 if slc(f ) ∈ P+, and δ(f ) = 0, otherwise. Further, we define a map

s : R[X] → D by

s(f ) = (deg (f ), δ(f )),

thus the first entry stands for the degree and the second entry takes care of the slc-coefficient of f .

Lemma 6.22. Let f , g ∈ P[X].
(i) s(f + g) = s(f ) ⊕ s(g) and s(fg) = s(f ) ⊗ s(g), thus s is a semiring epimorphism.

(ii) If n ∈ N, p ∈ N>0 and q := s(f ) then
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s(f n+p) = s(f n) ⊗ q ⊗ · · · ⊗ q︸ ︷︷ ︸
p factors

,

thus s(f ) is almost linear periodic with linear defect 0 and linear period 1. Further, s(f ) is a linear
factor of s(f ), and in case δ(f ) = 0 we have lfac (s(f )) = s(f ).

Proof. This can easily be checked. �

Lemma 6.23. Let A, B ∈ P[X]r×r .

(i) We have

s(AB) = s(A) ⊗ s(B),

thus s is a monoid epimorphism.

(ii) If A is P+[X]-primitive and deg (A) > 0 then s(A) is Q-primitive.

(iii) If A is P+[X]-irreducible then s(A) is irreducible.

Proof. (i) This can easily be checked.

(ii) By Theorem 5.17 there is some N ∈ N>0 such that for all n ≥ N we have

An > 0 and deg (An)ij ≥ deg (A) (i, j ∈ [r]).
Thus s(A) is Q-primitive by (i).
(iii) Clear by (i). �

We aim at showing a different criterion for P+[X]-primitivity.

Theorem 6.24. Let R be a unital commutative semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+
and P = P+ ∪ {0}. Let r ∈ N>0 and A ∈ P[X]r×r with deg (A) > 0. Then A is P+[X]-primitive if and

only if the following conditions hold:

(i) κ0(A) is P+-primitive and κ1(A) is nonzero.
(ii) s(A) is Q-irreducible and Q-aperiodic.

Proof. Wefirst showsufficiency.Our assumption (i) andLemma5.1 assure that there is someN ∈ N>0

so that κ0(A
n)i,j and κ1(A

n)i,j are ‘positive’ for all i, j ∈ [r] and all n ≥ N.

By Theorem 2.6 there is some M ∈ N>0 with

s(An)ij ∈ Q (i, j ∈ [r], n ≥ M).

Thus, for some n ≥ max {N,M} we find that (An)ij is P+[X]-primitive for all i, j ∈ [r]. Therefore
Theorem 5.7 yields our assertion.

Conversely, if

(An)ij ∈ P+[X] (i, j ∈ [r])
is satisfied for some n ∈ N>0 then (i) holds, and s(A) is Q-primitive by Lemma 6.23, whence (ii)
follows by Theorem 2.6. �

Nowwe state our main result, namely a relation between the primitivity of thematrix A of positive

degree and the behavior of thematrix sequence (s(An))n∈N. To simplify the notationwewriteλ(A) :=
λ(s(A)).

Theorem 6.25. Let R be a unital commutative semiring of characteristic 0, P+ a preprime of R, 0 /∈ P+
and P = P+ ∪ {0}, r ∈ N>0 and A ∈ P[X]r×r with deg (A) > 0. Then the following statements are

equivalent:
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(i) A is P+[X]-primitive.

(ii) A has the following properties:

(a) κ0(A) is P+-primitive.

(b) κ1(A) is nonzero.
(c) A is P+[X]-irreducible.
(d) s(A) is almost linear periodic, (λ(A)1, 1) is a linear factor of s(A) and λ(A)1 > 0.

(iii) A has the following properties:

(a) κ0(A) is P+-primitive.

(b) κ1(A) is nonzero.
(c) s(A) is almost linear periodic, s(A) admits a linear factor in Q>0 × {1}.

(iv) A has the following properties:

(a) κ0(A) is P+-primitive.

(b) κ1(A) is nonzero.
(c) s(A) is Q-primitive.

Proof. (i) �⇒ (ii) By Theorem 5.17 there is some N ∈ N>0 such that for all n ≥ N we have

(An)ij ∈ P+[X] and deg (An)ij ≥ deg (A) (i, j ∈ [r]),
thus (a), (b), (c) are satisfied by Lemma 5.1 and the definition of P+[X]-irreducibility. By Proposi-

tion 6.19 s(A) is almost linear periodic. Now, (d) follows from Lemma 6.23 (iii) and Proposition 6.19

for n sufficiently large (note that we can replace the second component of λ(A) by 1 for large n).

(ii) �⇒ (iii) Obvious.

(iii) �⇒ (iv) By assumption there are N, p, a, m ∈ N>0 such that

s(A)n+p = s(A)n
(
a

m
, 1

)p

(n > N),

hence

s(An)ij ∈ Q (n > N + p, i, j ∈ [r]),
i.e., s(A) is Q-primitive.

(iv) �⇒ (i) By (b) we can pick ν, μ ∈ [r] such that κ1 (Aνμ) > 0. By (a) and (c) there exists N ∈ N>0

such that

lc ((An)ij), slc ((An)ij), κ0 ((An)ij) > 0 (n > N, i, j ∈ [r]). (6.8)

Now, let n > 2(N + 2), N < � < n − N − 1 and fix i, j ∈ [r]. Then clearly

κ0 ((An−1−�)iν) κ1 (Aνμ) κ0 ((A�)μj) > 0.

By Lemma 5.1 we have

κ1((A
n)ij) =

n−1∑
σ=0

(
κ0(A

n−1−σ ) κ1(A) κ0(A
σ )
)
ij
. (6.9)

One of the summands occurring on the right hand side is(
κ0(A

n−1−�)
(
κ1(A) κ0(A

�)
))

ij
=

r∑
ρ=1

κ0((A
n−1−�)iρ)

(
κ1(A) κ0(A

�)
)
ρj

.

The sum on the right hand side contains

κ0((A
n−1−�)iν)

(
κ1(A) κ0(A

�)
)
νj

= κ0((A
n−1−�)iν)

r∑
τ=1

κ1(Aντ )
(
κ0(A

�)
)
τ j

.

Thus on the right hand side of (6.9) we find the ‘positive’ summand

κ0((A
n−1−�)iν) κ1(Aνμ) (κ0(A

�))μj ,
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and we have shown κ1((A
n)ij) > 0. Together with (6.8) we infer from Theorem 4.3 that (An)ij is

primitive. Finally, an application of Theorem 5.7 concludes the proof. �

Remark 6.26. We loosely gather some observations which shed some more light on our settings.

(i) LetA ∈ P[X]r×r , deg (A) > 0and s(A) irreducible. IfA isP+[X]-primitive then s(Aldef(A)+lper(A))
∈ Qr×r . But the converse does not hold as the following example shows. Let A = X2 + X ∈
P[X]. Then s(A) = (2, 1) ∈ Q, ldef(A) = 0, lper(A) = 1, but A is not P+[X]-primitive.

(ii) If

A =
⎛⎝ 0 1

1 0

⎞⎠
then

s(A) =
⎛⎝ ε e

e ε

⎞⎠
is irreducible, and we have λ(A) = e, lper (A) = ldef (A) = 1. In the natural order of D
(see [1, Theorem 4.28]) we have

s(A2)12 = ε < e = s(A)12.

Thus, the sequence ((s(A)ij)
n)n∈N is not necessarily increasing. Certainly s(A) is not

Q-primitive.

(iii) For the non-P+[X]-primitive matrix

A =
⎛⎝ 1 X

1 0

⎞⎠
weknowthat s(A) isQ-primitiveof exponent4, andwehave ldef (A) = 1 (seeExample6.21).

(iv) It seems that for r > 1 [13, Theorem7] does not hold in full generality: The irreduciblematrix⎛⎝ e (1, 0)

e ε

⎞⎠ ∈ D2×2

over the dioid D defined in Section 6.3 does not have an eigenvalue.

In view of [7] we conjecture that our main result Theorem 6.25 can be extended to an algorithm.

Furthermore, we suspect that some other classical results on powers ofmatrices with nonnegative en-

tries can similarly be derived under the prerequisites of Theorem 2.6, but delay details to subsequent

work.

Appendix A

We collect some facts on families of integer sets which are used in our considerations thereby

giving a formal treatment of the characterization of primitive real matrices in the vein of Pták [19] or

Holladay–Varga [12].

Definition A.1. The family
{
Eij
}
i,j∈[r] of subsets of N is called suitable if it enjoys the following prop-

erties:

(i) For all i ∈ [r] the set Eii is additively closed.

(ii) For all i, j ∈ [r] with i �= j one has 0 /∈ Eij.
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For i ∈ [r]we let per (i) be the greatest common divisor of the set Eii ∩N>0 if this set is non-void, and

per (i) = ∞, otherwise (see [23]).

LemmaA.2. Let
{
Eij
}
i,j∈[r] be a suitable family of subsets ofNwith the following property: For all i, j ∈ [r]

with i �= j there are s ∈ Eij and t ∈ Eji with

s + n + t ∈ Eii

for all n ∈ Ejj ∪ {0}. Then
per (i) = per (j) ∈ N>0

for all i �= j.

Proof. Let i �= j. Clearly, s+ t ∈ Eii ∩N>0, hence per (i) ∈ N>0, and analogously per (j) ∈ N>0. Thus,

s + t, (s + t) + n ∈ Eii ∩ N>0

for all n ∈ Ejj ∩ N>0 which implies that per (i) divides every n ∈ Ejj ∩ N>0. Therefore,

per (i) | per (j).

Interchanging the roles of i and j our assertion follows. �

Definition A.3. Let E = {
Eij
}
i,j∈[r] be a suitable family of subsets of N.

(i) E is called aperiodic if

gcd (per (1), . . . , per (r)) = 1.

(ii) E is called properly irreducible if for all i, j ∈ [r] the following properties are satisfied:

(a) There exists m ∈ Eij such thatm + n ∈ Eij for all n ∈ Ejj .

(b) If i �= j then there are s ∈ Eij and t ∈ Eji with

s + n + t ∈ Eii

for all n ∈ Ejj ∪ {0}.
Theorem A.4. Let

{
Eij
}
i,j∈[r] be a suitable family of subsets of N and

E = ⋂
i,j∈[r]

Eij.

Then the following statements are equivalent.

(i) There exists some m ∈ N>0 ∩ E such that n ∈ E for all n ≥ m.
(ii) E is properly irreducible and aperiodic.

Proof. Let Di = Eii ∩ N>0 and assume that E is properly irreducible and aperiodic. Then per (i) = 1

for all i: This is trivial for r = 1, and for r > 1 it is clear by Lemma A.2. By [23, Lemma A.3] for all i

there is some ni ∈ Di such that n ∈ Di for all n ≥ ni. Pick kij ∈ Eij according to property (a) of the

definition of proper irreducibility and putm = N + K where

N = max {n1, . . . , nr} , K = max
{
kij : i, j ∈ [r]} .

For n ≥ m and i, j ∈ [r] we have

n − kij ≥ m − kij = N + (K − kij) ≥ N ≥ nj

which yields n − kij ∈ Ejj and

n = kij + (n − kij) ∈ Eij.
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On the other hand, observe m,m + 1 ∈ Di, hence per (i) = 1 for all i ∈ [r]. Thus, E is aperiodic,

and the proper irreducibility of E is obvious. �
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