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Abstract

It is well known that irreducible algebraic plane curves having a singularity of maximum
multiplicity are rational and can be parametrized by lines. In this paper, given a tolerance �¿ 0
and an �-irreducible algebraic plane curve C of degree d having an �-singularity of multiplicity
d−1, we provide an algorithm that computes a proper parametrization of a rational curve that is
exactly parametrizable by lines. Furthermore, the error analysis shows that under certain initial
conditions that ensures that points are projectively well de4ned, the output curve lies within the
o5set region of C at distance at most 2

√
2�1=(2d) exp(2).
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1. Introduction

Over the past several years, many authors have approached computer algebra prob-
lems by means of symbolic-numeric techniques. For instance, among others, methods
for computing greatest common divisors of approximate polynomials (see [6,9,15,29]),
for determining functional decomposition (see [10]), for testing primality (see [21]),
for 4nding zeros of multivariate systems (see [9,16,18]), for factoring approximate
polynomials (see [11,20,30,31]), or for numerical computation of GrCobner basis (see
[28,36]) have been developed.
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Similarly, hybrid (i.e. symbolic and numeric) methods for the algorithmic treatment
of algebraic curves and surfaces have been presented. For instance, computation of
singularities have been treated in [3,5,13,22,26], implicitization methods have been pro-
posed in [12,14], and the numerical condition of implicitly given algebraic curves and
surfaces have been analyzed (see [17]). Also, piecewise parametrizations are provided
(see [11,23,19]) by means of combination of both algebraic and numerical techniques
for solving di5erential equations and rational B-spline manipulations.

However, although many authors have addressed the problem of globally and sym-
bolically parametrizing algebraic curves and surfaces (see, [1,24,25,32–34]), only few
results have been achieved for the case of approximate algebraic varieties. The state-
ment of the problem for the approximate case is slightly di5erent than the classical
symbolic parametrization question. Intuitively speaking, one is given an irreducible
aIne algebraic plane curve C, that may or not be rational, and a tolerance �¿0, and
the problem consists in computing a rational curve JC, and its parametrization, such
that almost all points of the rational curve JC are in the “vicinity” of C. The notion of
vicinity may be introduced as the o5set region limited by the external and internal
o5set to C at distance � (see Section 4 for more details, and [2] for basic concept on
o5sets), and therefore the problem consists in 4nding, if it is possible, a rational curve
JC lying within the o5set region of C. For instance, let us suppose that we are given a
tolerance �= 0:001, and that we are given the quartic C de4ned by

16:001 + 24:001x + 8y − 2y2 + 12yx + 14:001x2 + 2y2x

+ x2y + x4 − y3 + 6:001x3:

Note that C has genus 3, and therefore the input curve is not rational. Our method
provides as an answer the quartic JC de4ned by

16:008 + 24:012x + 8y − 2y2 + 12yx + 14:006x2 + 2y2x + x2y

+ x4 − y3 + 6:001x3:

Now, it is easy to check that the new curve JC has an aIne triple point at (−2;−2),
and hence it is rational. Furthermore, it can be parametrized by

P(t) = (t3 − 0:001 − t − 2t2; t4 + 1:999t − t2 − 2t3 − 2):

In Fig. 1 one may check that C and JC are close (see Example 2 in Section 3 for more
details).

The notion of vicinity is geometric and in general may be diIcult to deduce it
directly from the coeIcients of the implicit equations; in the sense that two implicit
equations f1 and f2 may satisfy that ‖f1 −f2‖ is small, and however they may de4ne
algebraic curves that are not close; i.e. none of them lie in the vicinity of the other.
For example, if we consider the line f1 = x + y and the conic f2 = x + y + 1

1000x
2 +

1
1000y

2 − 1
1000 , we have that ‖f1 − f2‖∞ = 1

1000 . Nevertheless, the curves de4ned by
f1 and f2 are not close.

The problem of relating the tolerance with the vicinity notion, may be approached
either analyzing locally the condition number of the implicit equations (see [17]) or
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Fig. 1. Curve C (left) and curve JC (right).

studying whether for almost every point P on the original curve, there exists a point
Q on the output curve such that the Euclidean distance of P and Q is signi4cantly
smaller than the tolerance. In this paper our error analysis will be based on the second
approach. From this fact, and using [17], one may derive upper bounds for the distance
of the o5set region.

In [4], the problem described above is studied for the case of approximate irreducible
conics, rational cubics and quadrics, and the error analysis for the conic case is pre-
sented. In this paper, although we do not give an answer for the general case, we extend
the results in [4] by showing how to solve the question for the special case of curves
parametrizable by lines. More precisely, we provide an algorithm that parametrizes
approximate irreducible algebraic curves of degree d having an �-singularity of multi-
plicity d−1 (see Section 2). We illustrate the results by some examples (see Section 3),
and we analyze the numerical error showing that the output rational curve lies within
the o5set region of the input perturbated curve at distance at most 2

√
2�1=(2d) exp(2)

(see Section 4).

2. Numerical parametrization by lines

It is well known that irreducible algebraic curves having a singularity of maximum
multiplicity are rational, and that they can be parametrized by lines. Examples of curves
parametrizable by lines are irreducible conics, irreducible cubics with a double point,
irreducible quartics with a triple point, etc. In this section, we show that this property is
also true if one considers approximate irreducible algebraic curves that “almost” have
a singularity of maximum multiplicity.

Before describing the method for the approximate case, and for reasons of com-
pleteness, we brieQy recall here the algorithmic approach for symbolically parametrize
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curves having a singularity of maximum multiplicity. The geometric idea for these type
of curves is to consider a pencil of lines passing through the singular point if the curve
has degree bigger than 2, or through a simple point if the curve is a conic. In this
situation, all but 4nitely many lines in the pencil intersect the original curve exactly
at two di5erent points: the base point of the pencil and a free point on the curve.
The free intersection point depends rationally on the parameter de4ning the line, and it
yields a rational parametrization of the curve. More precisely, the symbolic algorithm
for parametrizing curves by lines (where the trivial case of lines is excluded) can be
outlined as follows (see [33,34] for details):
Symbolic parametrization by lines
• Given an irreducible polynomial f(x; y) ∈K[x; y] (K is an algebraically closed 4eld

of characteristic zero), de4ning an irreducible aIne algebraic plane curve C of
degree d¿1, with a (d− 1)-fold point if d¿3.

• Compute a rational parametrization P(t) = (p1(t); p2(t)) of C.
1. If d= 2 take a point P on C, else determine the (d− 1)-fold point P of C.
2. If P is at in4nity, consider a linear change of variables such that P is transformed

into an aIne point. Let P= (a; b).
3. Compute

A(x; y; t) =

@(d−1)f
@(d−1)x

1
(d− 1)!

+
@(d−1)f
@(d−2)x@y

t
(d− 2)!

+ · · · +
t(d−1)

(d− 1)!
@(d−1)f
@(d−1)y

@df
@dx

1
d!

+
@ df

@(d−1)x@y
t

(d− 1)!
+ · · · +

t d

d!
@ df
@dy

:

and return

P(t) = (−A(P; t) + a;−tA(P; t) + b):

Remark. The parametrization can also be obtained as

P(t) =
(−gd−1(1; t)

gd(1; t)
+ a;

−tgd−1(1; t)
gd(1; t)

+ b
)
;

where gd(x; y) and gd−1(x; y) are the homogeneous components of g(x; y) =f(x + a;
y + b) of degree d and d − 1, respectively. Observe that both components of P(t)
have the same denominator.

Now, we proceed to describe the method to parametrize by lines approximate alge-
braic curves. For this purpose, we distinguish between the conic case and the general
case. The main di5erence between these two cases is that in the case of conics, if
the approximate curve is irreducible, the rationality is preserved. As we will see, the
results obtained for conics are similar to those presented in [4]. Afterwards, the ideas
for the 2-degree case will be generalized to any degree and therefore results in [4]
will be extended. Throughout this section, we 4x a tolerance �¿0 and we will use the
polynomial ∞-norm; i.e if p(x; y) =

∑
i; j∈I ai; jx

iy j ∈C[x; y] then ‖p(x; y)‖ is de4ned
as max{|ai; j|=i; j∈ I}. In particular if p(x; y) is a constant coeIcient ‖p(x; y)‖ will
denote its module.
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2.1. Parametrization of approximate conics

Let C be a conic de4ned by an �-irreducible (over C) polynomial f(x; y) ∈C[x; y];
that is f(x; y) cannot be expressed as f(x; y) = g(x; y)h(x; y) + E(x; y) where g; h;
E∈ C[x; y] and ‖E(x; y)‖¡�‖f(x; y)‖ (see for instance [11]). In particular, this implies
that f(x; y) is irreducible and therefore C is rational. Thus, one may try to apply the
symbolic parametrization algorithm to C. In order to do that one has to compute a
simple point on C. Furthermore, one may check whether the simple point can be taken
over R and, if possible, compute it. This can be done either symbolically, for instance
introducing algebraic numbers with the techniques presented in [35], or numerically
by root 4nding methods. If one works symbolically then the direct application of
the algorithm will provide an exact answer. Let us assume that the simple point is
approximated. For this purpose, we introduce the notion of �-point.

De�nition 1. We say that JP= ( Ja; Jb) ∈C2 is an �-aIne point of an algebraic plane
curve C de4ned by a polynomial f(x; y) ∈C[x; y] if it holds that

|f( JP)|
‖f(x; y)‖ ¡ �;

that is, JP is a simple point on C computed under 4xed precision �‖f(x; y)‖.

Note that we required the relative error w.r.t ‖f(x; y)‖ because for any non-zero
complex number � the polynomial �f(x; y) also de4nes C.

In this situation, let JP= ( Ja; Jb) be an �-aIne point of C, and let us consider the
conic JC de4ned by the polynomial

Jf(x; y) = f(x; y) − f( JP):

Now, JP is really a point on JC. Furthermore, JC is irreducible. Indeed, if Jf factors
as Jf= Jg Jh then f= Jg Jh + f( JP) and |f( JP)|¡�‖f(x; y)‖, that is f is not �-irreducible,
which is impossible. Therefore, we have constructed a rational conic, namely JC on
which we know a simple point, namely JP. Hence, we may directly apply the symbolic
algorithm to C to get the rational parametrization

JP(t) = (−A( JP; t) + Ja;−tA( JP; t) + Jb);

where

A(x; y; t) =
@f=@x + t(@f=@y)

(@2f=@2x)1=2! + t (@2f=@x@y) + (t2=2!)@2f=@2y
:

2.2. Parametrization of approximate curves

In this subsection we deal with approximate curves of degree bigger than 2. In this
case, the main diIculty is that the given approximate algebraic curve is, in general,
non-rational even though it might correspond to the perturbation of a rational curve.
The idea to solve the problem is to generalize the construction done for conics. For
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this purpose, we observe that the output curve in the 2-degree case is the original
polynomial minus its Taylor expansion up to order 1 at the �-point, i.e. the evaluation
of the polynomial at the point. We will see that for curves of degree d having “almost”
a singularity of multiplicity d−1 one may subtract to the original polynomial its Taylor
expansion up to order d− 1 at the quasi-singularity to get a rational curve close to the
given one.

To be more precise, we 4rst introduce the notion of �-singularity.

De�nition 2. We say that JP= ( Ja; Jb) ∈C2 is an �-aIne singularity of multiplicity r of
an algebraic plane curve de4ned by a polynomial f(x; y) ∈C[x; y] if, for 06i+j6r−1,
it holds that

‖(@i+jf=@ix@jy) ( JP)‖
‖f(x; y)‖ ¡ �:

Note that an �-singularity of multiplicity 1 is an �-point on the curve. Similarly, one
may introduce the corresponding notion for �-singularities at in4nity. However, here we
will work only with �-aIne singularities taking into account that the user can always
prepare the input, by means of a suitable linear change of coordinates, in order to be
in the aIne case. Alternatively, one may also use the method described in [9].

In this situation, we denote by L d
� the set of all �-irreducible (over C) real algebraic

curves of degree d having an �-singularity of multiplicity d − 1, that we assume is
real. In the previous subsection we have seen how to parametrize by lines elements in
L2
� . In the following, we assume that d¿2 and we show that also elements in L d

�
can be parametrized by lines.

In order to check whether a given curve C of degree d, de4ned by a polynomial
f(x; y), belongs to L d

� , one has to check the �-irreducibility of f(x; y) as well as
the existence of an �-singularity of multiplicity d − 1. For this purpose, to analyze
the �-irreducibility, one may use any of the existing algorithms (e.g. [11,21,20,31]).
The algorithm given in [11] has polynomial complexity. However, although the algo-
rithm given in [21] has exponential complexity, in practice has very good performance.
Furthermore, algorithms in [20,31] provide improvements to the methods described
in [21].

For checking the existence and computation of �-singularities of multiplicity d − 1
one has to solve the system of algebraic equations:

@i+jf
@ix@jy

(x; y) = 0; i + j = 0; : : : ; d− 2;

under 4xed precision � ·‖f(x; y)‖, by applying root 4nding techniques (see [9,22,26,27]).
Nevertheless, one may accelerate the computation by reducing the number of equations
and degrees involved in the system. More precisely, for some i0; j0; i1; j1, such that
i0 + j0 = i1 + j1 =d− 2, one computes the solutions of the system

@i0+j0f
@i0x@j0y

(x; y) =
@i1+j1f
@i1x@j1y

(x; y) = 0;
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Fig. 2. Real part of the curve C.

under 4xed precision �‖f(x; y)‖. Note that the two equations involved are quadratic.
For this purpose, one may use well known methods (see for instance [9,22,26,27]).
Once these solutions have been approximated, one may proceed as follows: if any of
the roots obtained above, say JP, satis4es that∣∣∣∣

∣∣∣∣ @i+jf@ix@jy
( JP)
∣∣∣∣
∣∣∣∣6 �‖f(x; y)‖; i + j = 0; : : : ; d− 3;

then JP is an �-singularity of multiplicity d−1; otherwise, C does not have �-singularities
of multiplicity d− 1.

As an example (see Example 3 in Section 3), let �= 0:001, and let C be the real
�-irreducible quartic de4ned by

f(x; y) = x4 + 2y4 + 1:001x3 + 3x2y − y2x − 3y3 + 0:00001y2

− 0:001x − 0:001y − 0:001:

Applying the process described above one gets that C has a 3-fold �-singularity at
JP= (−0:1248595915 10−6; 0:1249844199 10−6). In Fig. 2 appears the plot of the real
part of C, and one sees that JP is “almost” a triple point of the curve.

Alternatively to the approach described above one may use the techniques presented
in [5] in combination with the Gap Theorem (see [8]), and the Test Criterion.

Now, in order to parametrize the approximate algebraic curve C∈L d
� we consider

a pencil of lines Ht passing through the �-singularity JP= ( Ja; Jb) of multiplicity d− 1.
That is, Ht is de4ned by the polynomial

Ht(x; y; t) = y − tx − Jb+ Jat:

If JP had been really a singularity, then the above symbolic algorithm would have
output the parametrization ( Jp1(t); Jp2(t)) ∈R(t)2, where Jp1(t) is the root in R(t) of
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the polynomial

f(x; tx + Jb− Jat)
(x − Ja)d−1

and Jp2(t) = t Jp1(t) + Jb − t Ja. However, in our case JP is not a singularity but an
�-singularity. Then, the idea consists in computing the root in R(t) of the quotient of
f(x; tx+Jb− Jat) and (x− Ja)d−1 w.r.t. x (note that degx(f(x; tx+Jb− Jat)) =d, and therefore
the quotient has degree 1 in x), say Jp1(t), to 4nally consider JP(t) = ( Jp1(t); t Jp1(t) +
Jb− t Ja) as approximate parametrization of C. In the next lemma we prove that JP(t) is
really a rational parametrization, and in Section 4, we will see that the error analysis
shows that this construction generates a rational curve close to the original one.

Lemma 1. Let f(x; y) be the implicit equation of a curve C∈L d
� and let JP= ( Ja; Jb)

be the �-singularity of multiplicity d − 1 of C. Let Jp1(t) be the root in R(t) of the
quotient of f(x; tx + Jb − Jat) and (x − Ja)d−1, and let Jp2(t) = t Jp1(t) + Jb − t Ja. Then
JP(t) = ( Jp1(t); Jp2(t)) is a rational parametrization.

Proof. To prove the lemma one has to show that at least one of the components of
JP(t) is not a constant. Let g(x; t) =f(x; tx + Jb − Jat). We see that Jp1(t) �= Ja. Indeed,
if Jp1(t) = Ja, since Jp1(t) is the root of quotient of g(x; t) and (x− Ja)d−1, one has that
g(x; t) = �(x − Ja) d + R(t), where �∈R?, and R(t) ∈R(t). Moreover, since R(t) is the
remainder and (x− Ja)d−1 is monic in x, one has that R(t) is a polynomial. Let us say
that R(t) = ast s + · · · + a0, with as �= 0. Thus,

f(x; y) = g
(
x;
y − Jb
x − Ja

)

= �(x − Ja) d +
as(y − Jb)s + as−1(y − Jb)s−1(x − Ja) + · · · + a0(x − Ja)s

(x − Ja)s
:

However, if s¿0 this implies that (x − Ja) divides as(y − Jb)s which is impossible
because as �= 0. Hence s= 0; i.e. R(t) is a constant �. That is, f(x; y) = �(x− Ja) d+�.
Therefore, since f(x; y) is a univariate of polynomial of degree bigger than 1, it is
reducible and hence it is not �-irreducible which is impossible.

Lemma 2. The parametrization JP(t) = ( Jp1(t); Jp2(t)) in Lemma 1 is proper.

Proof. Note that t= ( Jp2 − Jb)=( Jp1 − Ja). Thus, JP(t) is proper and its inverse is (y− Jb)=
(x − Ja).

In the next lemma, for P ∈R2 and �¿0, we denote by D(P; �) the Euclidean disk

D(P; �) = {(x; y) ∈ R2 | ‖(x; y) − P‖2 6 �}:
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Lemma 3. Let C be an a:ne algebraic curve, de;ned by a polynomial f(x; y) ∈
R[x; y], having a real �-singularity JP of multiplicity r. Then, there exists �¿0 such
that any point Q∈D( JP; �) is also an �-singularity of multiplicity r of C.

Proof. We denote by fi; j the partial derivative @i+jf=@ix@jy. Since JP is an
�-singularity of multiplicity r, for i+j= 1; : : : ; r−1, it holds that |fi; j( JP)|¡�‖f(x; y)‖.
Let us denote |fi; j( JP)| = �i; j for i+j= 1; : : : ; r−1. Then, for each �i; j there exist �i; j¿0
such that

�i; j = �‖f(x; y)‖ − �i;j ¡ �‖f(x; y)‖:

We consider �= min{�i; j, i + j= 1; : : : ; r − 1} (note that �¿0). On the other hand,
since all partial derivatives are continuous, let M bound all partial derivatives up to
order r in the compact set D( JP; �), and let � be strictly smaller than min{�=(2M); �};
note that M¿0 since otherwise it would imply that C contains a disk of points which
is impossible. Now, take Q∈D( JP; �). Then, by applying the Mean Value Theorem, we
have that for i + j= 1; : : : ; r − 1

|fi; j(Q)| 6 |fi; j( JP)| + |fi; j( JP) − fi; j(Q)| 6 �i; j + |∇(fi; j(!i; j)) · ( JP − Q)T |;

where !i; j is on the segment joining Q and JP. Then, one concludes that

|fi; j(Q)| 6 �‖f(x; y)‖ − �i; j + 2�M 6 �‖f(x; y)‖ − �+ 2�M ¡ �‖f(x; y)‖:

Therefore, Q is an �-singularity of multiplicity r of C.

Now, let C∈L d
� be de4ned by the polynomial f(x; y). Then by Lemma 3, one

deduces that C has in4nitely many (d − 1)-fold �-singularities. For our purposes, we
are interested in choosing the singularity appropriately. More precisely, we say that
JP= ( Ja; Jb) is a proper (d− 1)-fold �-singularity of C if the polynomial

d∑
j1+j2=d−1

@j1+j2f
@j1x@j2y

( JP)(x − Ja)j1 (y − Jb)j2
1

j1!j2!
;

is irreducible over C. Note that this is always possible because a small perturbation of
the coeIcients of a polynomial transforms it onto an irreducible polynomial.

The following theorem shows that the implicit equation of the rational curve de4ned
by the parametrization generated by the above process can be obtained also, as in the
conic case, by Taylor expansions at the �-singularity. In fact, the theorem includes as
a particular case the result for conics. This result will avoid quotient computations and
will be used to analyze the error.

Theorem 1. Let f(x; y) be the implicit equation of a curve C∈L d
� and let JP= ( Ja; Jb)

be a proper �-singularity of multiplicity d − 1 of C. Let Jp1(t) be the root in R(t)
of the quotient of f(x; tx + Jb − Jat) and (x − Ja)d−1, and let Jp2(t) = t Jp1(t) + Jb − t Ja.
Then the implicit equation of the rational curve JC de;ned by the parametrization
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JP(t) = ( Jp1(t); Jp2(t)) is

Jf(x; y) = f(x; y) − T (x; y);

where T (x; y) is the Taylor expansion up to order d− 1 of f(x; y) at JP.

Proof. Let

f(x; y) = f( JP) +
d∑

j1+j2=1

@j1+j2f
@j1x@j2y

( JP)(x − Ja)j1 (y − Jb)j2
1

j1!j2!

be the Taylor expansion of f(x; y) at JP. Thus,

f(x; tx + Jb− t Ja) =f( JP) +
d∑

j1+j2=1

@j1+j2f
@j1x@j2y

( JP)(x − Ja)j1+j2 tj2
1

j1!j2!

= (x − Ja)d−1

(
d∑

j1+j2=d−1

@j1+j2f
@j1x@j2y

( JP)(x − Ja)j1+j2−d+1tj2
1

j1!j2!

)

+

(
f( JP) +

d−2∑
j1+j2=1

@j1+j2f
@j1x@j2y

( JP)(x − Ja)j1+j2 tj2
1

j1!j2!

)

= (x − Ja)d−1M (x; t) + N (x; t);

where

N (x; t) = T (x; tx + Jb− t Ja); M (x; t) =
S(x; tx + Jb− t Ja)

(x − Ja)d−1

and S(x; y) is the Taylor expansion from order d− 1 up to order d at JP. We observe
that degx(M) = 1, and degx(N )6d − 2. On the other hand, let U (x; t) and V (x; t) be
the quotient and the remainder of f(x; tx+ Jb− t Ja) and (x− Ja)d−1 w.r.t. x, respectively.
Then,

f(x; tx + Jb− t Ja) = (x − Ja)d−1U (x; t) + V (x; t)

with degx(V )6d− 2. Therefore,

(x − Ja)d−1(M (x; t) − U (x; t)) =V (x; t) − N (x; t):

Thus, since the degree w.r.t. x of V − N is smaller or equal d − 2, and (x − Ja)d−1

divides V − N , one gets that M =U and V =N . In this situation,

Jf( JP(t)) =f( JP(t)) − T ( JP(t)) = f( Jp1(t); t Jp1(t) + Jb− t Ja) − T ( JP(t))

= ( Jp1(t) − Ja)d−1U ( Jp1(t); t) + N ( Jp1(t); t) − T ( JP(t))

= T ( JP(t)) − T ( JP(t)) = 0:

Moreover, since JP is a proper �-singularity of multiplicity d− 1 of C, one has that Jf
is irreducible, and thus JP(t) parametrizes JC.
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This result can be applied to derive a similar algorithm for parametrizing approximate
algebraic curves by lines similar to the symbolic algorithm.

Numerical parametrization by lines
• Given the de4ning polynomial f(x; y) of C∈L d

� , d¿2.
• Compute a rational parametrization JP(t) of a rational curve JC close to C.

1. If d= 2 compute an aIne �-point JP of C, else compute a proper �-singularity
JP of C of multiplicity d− 1.

2. Compute Jf(x; y) =f(x; y) − T (x; y) where T (x; y) is the Taylor expansion of
f(x; y) up to order d− 1 at JP.

3. Apply step 3 of the symbolic algorithm to Jf and JP.

3. Examples

In this section, we illustrate the numerical parametrization algorithm developed in
Section 2 by some examples where one can check that the output rational curve JC
is close to the original curve C. This behavior will be clari4ed in the error analysis
section.

We give an example in detail, where we explain how the algorithm is performed,
and we summarize seven other examples in di5erent tables. In these tables we show
the input curve C, the tolerance � considered, the �-singularity, the output curve JC, the
output parametrization JP(t) de4ning the curve JC, and a 4gure representing C and JC.

Example 1. We consider �= 0:001 and the curve C of degree 6 de4ned by the poly-
nomial

f(x; y) = y6 + x6 + 2:yx4 − 2:y4x + 10−3x + 10−3y + 2 · 10−3 + 10−3x4:

First of all, by applying the algorithm developed in [11], we observe that the polyno-
mial f(x; y) is �-irreducible. Now, we apply the 4rst step of the Algorithm Numerical
Parametrization by Lines, and we compute the �-singularity. For this purpose, we de-
termine the solutions of the system (see [9,27])

@4f
@4x

(x; y) =
@4f
@4y

(x; y) = 0;

under 4xed precision �‖f(x; y)‖ = 0:002. We get four solutions

JP1 = (−0:06650062380 + 0:1157587268I; 0:06683312414 + 0:1154704132I);
JP2 = (−0:06650062380 − 0:1157587268I; 0:06683312414 − 0:1154704132I);
JP3 = (0:1875000000 · 10−5;−0:50000002 · 10−3);
JP4 = (0:1329993725;−0:1331662483):

Only the root JP3, satis4es that∣∣∣∣
∣∣∣∣ @i+jf@ix@jy

( JP3)
∣∣∣∣
∣∣∣∣6 0:002; i + j = 0; : : : ; 3:
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Then JP= JP3 = (0:1875000000 · 10−5;−0:50000002 · 10−3) is an �-singularity of multi-
plicity 5, and therefore C∈L6

0:001.
Applying the second step of the Algorithm Numerical Parametrization by Lines, we

compute

Jf(x; y) = f(x; y) − T (x; y);

where T (x; y) is the Taylor expansion of f(x; y) up to order 5 at JP,
T (x; y) = 0:001000000000x + 0:0010000000000y + 0:1000000173 · 10−8yx +
0:1300000000 · 10−10x4 + 0:7500000034 · 10−8x3 − 0:2499999700 · 10−8y3 +
0:4000000160 · 10−2xy3 + 0:1500000000 · 10−4x3y − 0:2109375027 · 10−13x2 +
0:3000000000 · 10−12y4 − 0:2812500001 · 10−11y2 − 0:4218750000 · 10−10yx2 +
0:3000000240 · 10−5y2x + 0:2000000000 · 10−2:
One gets the curve JC de4ned by
Jf(x; y) = −0:1250000464 · 10−12x+ 0:1125000100 · 10−14y+ 0:9999999873 · 10−3x4 +

2:yx4−2:y4x−0:1000000173·10−8yx+y6 +x6−0:7500000036·10−8x3 +0:2499999700·
10−8y3 + 0:2109375029 ·10−13x2 −0:3000000180 ·10−12y4 + 0:2812500000 ·10−11y2 −
0:1500000000 · 10−4x3y − 0:4000000160 · 10−2xy3 − 0:3000000240 · 10−5y2x +
0:4218750000 · 10−10yx2 + 0:1562500311 · 10−18:

Now, we apply step 3 of the symbolic algorithm to Jf and JP. Thus, we compute

A(x; y; t) =

@5 Jf
@5x

1
5!

+
@5 Jf
@4x@y

t
4!

+ · · · +
t5

5!
@5 Jf
@5y

@6 Jf
@6x

1
6!

+
@6 Jf
@5x@y

t
5!

+ · · · +
t6

6!
@6 Jf
@6y

=
6x + 2:000000000t − 2:000000000t4 + 6yt5

1 + t6

and we return

P(t) = (−A( JP; t) + 0:1875000000 · 10−5;−tA( JP; t) − 0:50000002 · 10−3)

= ( Jp1(t); Jp2(t));

where

Jp1(t) =
−2:000000000t + 0:3000000120 · 10−2t5 + 0:1875000000 · 10−5t6

1 + t6

+
2:000000000t4 − 0:9375000000 · 10−5

1 + t6

and

Jp2(t) =
−0:4887500200 · 10−3 − 2:000000000t4 − 0:3000000120 · 10−2t5

1 + t6

+
2:000000000t − 0:5000000200 · 10−3t6

1 + t6
:

See Fig. 3 to compare the input curve and the rational output curve.
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Fig. 3. Input curve C (left) and output curve JC (right).

Example 2.

Input curve C
16:001 + 24:001x + 8y − 2y2 + 12yx + 14:001x2

+ 2y2x + x2y + x4 − y3 + 6:001x3

Tolerance � 0:001

�-Singularity (−2; −2)

Output curve JC
16:008 + 24:012x + 8y − 2y2 + 12yx

+14:006x2 + 2y2x + x2y + x4 − y3 + 6:001x3

Parametrization
JP(t) = ( Jp1(t); Jp2(t))

Jp1 = t3 − 0:001 − t − 2t2; Jp2 = t4 + 1:999t − t2 − 2t3 − 2

Figures
Curve C(left)
Curve JC(right)
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Example 3.

Input curve C
x4 + 2y4 + 1:001x3 + 3x2y − y2x − 3y3 + 0:00001y2

− 0:001x − 0:001y − 0:001

Tolerance � 0:001

�-Singularity (−0:1248595915 10−6; 0:1249844199 · 10−6)

Output curve JC

x4 + 2:y4 + 1:001x3 + 3:x2y − y2x − 3:y3 + 10−6y2

− 0:6243761996 · 10−13x − 0:6260915576 · 10−13y
+ 0:9744187291 · 10−23 − 0:3522924910 · 10−16x2

+ 0:9991263887 · 10−6xy

Parametrization
JP(t) = ( Jp1(t); Jp2(t))

Jp1 = −0:487671 · 2:0526−2:05055t2+6:15167t+0:512063·10−6t4−6:15167t3

1+2:t4 ;

Jp2 = 0:487671 · −2:05260t+2:05055t3−6:15167t2+6:15167t4+0:256287·10−6

1+2:t4 :

Figures
Curve C(left)
Curve JC(right)

Example 4.

Input curve C
y5 + x5 + x4 + 0:001x + 0:001y + 0:002 + 0:001x2

+ 0:005y2 + 0:001x3

Tolerance � 0:01

�-Singularity (− 0:0002501; 0)

Output curve JC
y5 + x5 + x4 + 0:6255863298·10−10x + 0:9999998183·10−3x3

+ 0:3912115701 · 10−14 + 0:3751562603 · 10−6x2

Parametrization
JP(t) = ( Jp1(t); Jp2(t)) Jp1 = − 41902244·10−6· 2384119+597t5

1+t5 ; Jp2 = −0:9987492180 t
1+t5 :

Figures
Curve C (left)
Curve JC (right)
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Example 5.

Input curve C

−10:x + 2:y + xy4 + 862:x4y − 359:x3y2 + 3:099

− 859:967x3y + 39:x2y3 + 299:011x2y2

+ 52:x2y − 3:xy3 + 5:xy2 − 7:901xy + 687:x4

− 642:x5 − 67:989x3 + 14:x2 − 9:989y4 + y5 − 4:y3 − y2

Tolerance � 0:1

�-Singularity (0:999067678; 1:99734)

Output curve JC

10:12701492x + 1:548607302y + xy4 + 862:x4y

− 359:x3y2 − 859:9670000x3y + 39:x2y3

+ 299:0110000x2y2 + 52:18519488x2y − 3:xy3

+ 4:626307400xy2 − 7:063248589xy − 642:x5

− 67:98172465x3 + 13:33333837x2 − 9:989000000y4 + y5

− 3:999974822y3 − 0:9012712980y2 + 687:x4 + 3:247948193

Parametrization
JP(t) = ( Jp1(t); Jp2(t))

Jp1 = 0:22545229 · 0:69592866·103−0:128422685·104t+0:0102:t4+4:4313t5

t5+t4+862:t+39:t3−642−359:t2

+ 0:22545229 · 0:81893515·103t2−0:19495476·103t3

t5+t4+862:t+39:t3−642−359:t2 ;

Jp2 = 0:22545229 · 0:111775629·105t−0:82845609·104t2+4:4380666t5

t5+t4+862:t+39:t3−642−359:t2

+ 0:22545229 · 0:27553162·104t3−0:35891982·103t4−0:56876434·104

t5+t4+862:t+39:t3−642−359:t2

Figures
Curve C(left)
Curve JC(right)
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Example 6.

Input curve C
x3 + x2y + x2 + xy2 + y3 + y2−
0:999990x − 0:999980y − 0:9999600

Tolerance � 0:01

�-Singularity (−0:99000000; 0)

Output curve JC
x3 + x2y + x2 + xy2 + y3 + y2

− 0:9603000x − 0:9801000y − 0:9604980

Parametrization
JP(t) = ( Jp1(t); Jp2(t)) Jp1 = 0:99t+0:98−t2−0:99t3

1+t+t2+t3 ; Jp2 = t(1:98t+1:97−0:01t2)
1+t+t2+t3

Figures
Curve C(left)
Curve JC(right)

Example 7.

Input Curve C
y5 + x5 + x4 − 2:y4 + 10−3x + 10−3y + 10−3

+ 10−3x2 + 10−3x3 + 2 · 10−3y2x + 10−3y3

Tolerance � 0:01

�-Singularity (−0:2501564001 · 10−3; 0:1250195 · 10−3)

Output curve JC

0:6255863298 · 10−10x + 0:1562864926 · 10−10y
+y5 + x5 + x4 − 2:y4 + 0:9999998183 · 10−3x3

+ 0:3751562603 · 10−6x2 + 0:9999997015 · 10−3y3

− 0:1875194239 · 10−6y2 + 0:3423651857 · 10−14

Parametrization
JP(t) = ( Jp1(t); Jp2(t))

Jp1 = −0:114881528 · 8:695909548−0:1740379799·102t4+0:2177516307·10−2t5

1+t5

Jp2 = 0:2297630556 · 8:702443119t5−4:346866016t+0:544123596·10−3

1+t5 :

Figures
Curve C(left)
Curve JC(right)
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Example 8.

Input curve C

291:9690000x − 17:00300000y − 100:9940000y2

+ 20:y4x − 511:9760000x2 + x7 − 14:x6

+ 82:x5 − 259:9990000x4 + 479:9920000x3 + 29:y5

− 74:99900000y4 − 40:y3x + 40:y2x − 160:x2y
+ 140:xy + 2:x5y − 20:x4y + 80:x3y + y7 − 7:y6

+ 114:9960000y3 − 72:98400000 − 4:y5x

Tolerance � 0:001

�-Singularity (2; 1)

Output curve JC

−73 + 292:x − 17:y − 101:y2 − 512:x2 + x7 − 14:x6

−260:x4 + 480:x3 + 29:y5 − 75:y4 − 40:y3x
−160:x2y + 140:xy + 2:x5y − 20:x4y + 80:x3y + y7

−7:y6 + 115:y3 − 4:y5x + 20:y4x + 82:x5 + 40:y2x:

Parametrization
JP(t) = ( Jp1(t); Jp2(t)) Jp1 = 2(t7+1+2t5−t)

t7+1 ; Jp2 = 4t6−2t2+t7+1
t7+1

Figures
Curve C(left)
Curve JC(right)

4. Error analysis

Examples in Section 3 show that, in practice, the output curve of our algorithm is
quite close to the input one. In this section we analyze how far these two aIne curves
are.

To be more precise let C∈L d
� be de4ned by f(x; y). In addition, we will denote

by

JP(t) =
(

Jp1(t)
Jq(t)

;
Jp2(t)
Jq(t)

)
;

where gcd( Jpi; Jq) = 1, the generated parametrization of the output curve JC. Moreover,
since we will measure distances, we may assume that the �-singularity of C is the
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origin, otherwise one can apply a translation such that it is moved to the origin and
distances are preserved. Also we assume that ‖f(x; y)‖ = 1, otherwise we consider
f(x; y)=‖f(x; y)‖. If one does not normalize the input polynomial f(x; y), a similar
treatment with relative errors can be done.

In this situation, the general strategy we will follow is to show that almost any aIne
real point on JC is at small distance of an aIne real point on C. For this purpose, we
observe that JP(t) is an exact parametrization of JC obtained by lines, and therefore all
aIne real points on JC are obtained as the intersection of a line of the form y= tx, for
t real, with JC. Then, if one intersects the curve C with the same line one gets d points
on C, counted properly, and we show that at least one of these intersection points on
C is close to the initial point on JC. Also, we observe that it is enough to reason with
slope parameter values of t in the interval [−1; 1] because if |t|¿1 one may apply a
similar strategy intersecting with lines of the form x= ty. Therefore, let t0 ∈R be such
that |t0|61 and Jq(t0) �= 0. Then, the corresponding point JQ on JC is JQ= JP(t0). Let us
expressed JQ as

JQ = ( Ja; Jb) =
(

Ja1

Jc
;

Jb1

Jc

)
;

where Ja1 = Jp1(t0), Ja2 = Jp2(t0) and Jc= Jq(t0). Observe that, since we are cutting with
the line y= t0x, it holds that Jb= t0 Ja. Thus, if we write the aIne point JQ projectively
one has that ( Ja1 : t0 Ja1 : Jc). Now, observe that if | Ja1| and | Jc| are simultaneously very
small, i.e. very close to �, this point is not well de4ned as an element in P2(R). For
this reason, we will assume that either | Ja1| or | Jc| is bigger than a certain bound that
depends on the tolerance. In fact, for our error analysis, we 4x that

| Ja1|¿ �1=d or | Jc|¿ �1=d:

Furthermore, we observe that the de4ning polynomials of JC and C have the same
homogeneous form of maximum degree, and hence both curves have the same points
at in4nity.

Now, let Q= (a; b) be any aIne point in C∩{y= t0x}; note that here it also holds
that b= t0a. We want to compute the Euclidean distance between JQ and Q. In order
to do that, we observe that

‖ JQ − Q‖2 =
√

( Ja− a)2 + ( Jb− b)2 =
√

( Ja− a)2(1 + t20) 6
√

2| Ja− a|:

Therefore, we focus on the problem of computing a good bound for | Ja− a|. For this
purpose we 4rst prove two di5erent lemmas that will be used as general strategies in
our reasonings.

Lemma 2. It holds that

| Ja− a| 6 � · C;
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where

C =

∑d−2
j1+j2=0 | Ja|j1+j2 |t0|j21=j1!j2!

| Ja|d−1| Jc| :

Proof. First of all, we note that Ja is a root of the univariate polynomial Jf(x; t0x) = xd−1

( Jcx − Ja1), and that a is a root of the univariate polynomial

f(x; t0x) = xd−1( Jcx − Ja1) +
d−2∑

j1+j2=0

@j1+j2f
@j1x@j2y

(0; 0)xj1 (t0x)j2
1

j1!j2!
:

Since (0; 0) is the (d− 1)-fold �-singularity of JC it holds that

‖f(x; t0x) − Jf(x; t0x)‖ = max
j1+j2=0;:::;d−2

{∣∣∣∣ @j1+j2f
@j1x@j2y

(0; 0)
∣∣∣∣ |t0|j2 1

j1!j2!

}

6 max
j1+j2=0;:::;d−2

{∣∣∣∣ @j1+j2f
@j1x@j2y

(0; 0)
∣∣∣∣
}
¡ �‖f(x; y)‖ = �

and thus Jf(x; t0x) can be written as

Jf(x; t0x) = f(x; t0x) + R(x) where R ∈ R[x] and ‖R(x)‖¡ �:

Therefore, by applying standard numerical techniques to measure | Ja− a| by means of
the condition number (see for instance [7, p. 303]), one deduces that

| Ja− a| 6 � · C;
where

C =

∑d−2
j1+j2=0 | Ja|j1+j2 |t0|j21=j1!j2!

|@ Jf=@x( Ja; t0 Ja)| =

∑d−2
j1+j2=0 | Ja|j1+j2 |t0|j21=j1!j2!

| Ja|d−1| Jc| :

Lemma 3. Let

h(x) = c
n∏
i=1

(x − ci) ∈ C[x] with deg(h) = n

and let �∈C be such that |h(�)|6�. Then, there exists a root ci0 of h(x) such that

|�− ci0 | 6
(
�
|c|
)1=n

:

Proof. Let us assume that for i= 1; : : : ; n, |�− ci|¿(�=|c|)1=n. Then,

|h(�)| = |c|
n∏
i=1

|�− ci|¿ �;

which contradicts that |h(�)|6�.
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Now, we proceed to analyze | Ja−a| by using the previous lemmas. For this purpose,
we distinguish di5erent cases depending on the values of | Ja1| and | Jc|:

Lemma 4. Let | Jc|¿1. Then, it holds that:
1. If | Ja|¿1, then | Ja− a|6� exp(2).
2. If | Ja|61, then | Ja− a|6(� exp(2))1=d.

Proof.
1. If | Ja|¿1, we have that the constant C in Lemma 2 can be bounded as

C =

∑d−2
j1+j2=0 | Ja|j1+j2 |t0|j2 1=j1!j2!

| Ja|d−1| Jc| =
∑d−2
k=0 (| Ja| + | Ja‖t0|)k =k!

| Ja|d−1| Jc|

6
d−2∑
k=0

(1 + |t0|)k
k!| Ja|d−1−k 6

d−2∑
k=0

(1 + |t0|)k
k!

6 exp(1 + |t0|) 6 exp(2):

Therefore, by Lemma 2 we deduce that

| Ja− a| 6 � exp(2):

2. If | Ja|61, we have that

|f( Ja; Jat0)| =

∣∣∣∣∣ Jf( Ja; Jat0) +
d−2∑

j1+j2=0

@j1+j2f
@j1x@j2y

(0; 0) Jaj1 (t0 Ja)j2
1

j1!j2!

∣∣∣∣∣
=

∣∣∣∣∣
d−2∑

j1+j2=0

@j1+j2f
@j1x@j2y

(0; 0) Jaj1 (t0 Ja)j2
1

j1!j2!

∣∣∣∣∣
6

d−2∑
j1+j2=0

∣∣∣∣ @j1+j2f
@j1x@j2y

(0; 0)
∣∣∣∣ | Ja|j1 |t0|j2 | Ja|j2 1

j1!j2!
6 � exp(| Ja|(1 + |t0|))

6 � exp(2):

In this situation, by Lemma 3 we deduce that there exists a root of the univariate
polynomial f(x; t0x), that we can assume w.l.o.g. that is a, such that

| Ja− a| 6
(
� exp(2)

| Jc|
)1=d

6 (� exp(2))1=d:

Lemma 5. Let | Jc|¡1 and | Ja1|¿1. Then, it holds that | Ja− a|6� exp(2).
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Proof. Since | Jc|¡1 and | Ja1|¿1, we have that the constant C in Lemma 2 can be
bounded as

C =

∑d−2
j1+j2=0 | Ja|j1+j2 |t0|j21=j1!j2!

| Ja|d−1| Jc| =
∑d−2
k=0 (| Ja1| + | Ja1‖t0|)k | Jc|(d−2−k)=k!

| Ja1|d−1

6
d−2∑
k=0

(1 + |t0|)k
k!| Ja1|d−1−k 6

d−2∑
k=0

(1 + |t0|)k
k!

6 exp(1 + |t0|) 6 exp(2):

Therefore, by Lemma 2 we deduce that

| Ja− a| 6 � exp(2):

Finally, it only remains to analyze the case where | Jc|¡1 and | Ja1|¡1. In order to
do that, we recall that we have assumed that either | Ja1| or | Jc| is bigger than �1=d. In
the next lemma, we study these cases.

Lemma 6. It holds that:
1. If | Jc|¡1 and �1=d¡| Ja1|¡1, then | Ja− a|6�1=d exp(2).
2. If | Ja1|¡1 and �1=d¡| Jc|¡1, then | Ja− a|6(�1=2 exp(2))1=d.

Proof.
1. If | Jc|¡1 and | Ja1|¿�1=d, we have that the constant C in Lemma 2 can be bounded

as

C =

∑d−2
j1+j2=0 | Ja|j1+j2 |t0|j21=j1!j2!

| Ja|d−1| Jc| =

∑d−2
j1+j2=0 | Ja1|j1+j2−d+1|t0|j21=j1!j2!

| Jc|j1+j2−d+2

=

∑d−2
j1+j2=0 | Jc|d−j1−j2−2|t0|j21=j1!j2!

| Ja1|d−j1−j2−1

6

∑d−2
j1+j2=0 |t0|j21=j1!j2!

| Ja1|d−1 6
exp(2)
| Ja1|d−1 6 exp(2) �−1+1=d

Therefore, by Lemma 2 we deduce that

| Ja− a| 6 �1=d exp(2):

2. Let �1=d¡| Jc|¡1 and | Ja1|¡1. First we assume that | Ja1|6�1=d. Otherwise we would
reason as in [1]. Thus, one has that | Ja1|6�1=d¡| Jc|¡1. In these conditions, we deduce
that

|f( Ja; Jat0)| =

∣∣∣∣∣ Jf( Ja; Jat0) +
d−2∑

j1+j2=0

@j1+j2f
@j1x@j2y

(0; 0) Jaj1 (t0 Ja)j2
1

j1!j2!

∣∣∣∣∣
=

∣∣∣∣∣
d−2∑

j1+j2=0

@j1+j2f
@j1x@j2y

(0; 0) Jaj1 (t0 Ja)j2
1

j1!j2!

∣∣∣∣∣
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6
d−2∑

j1+j2=0

∣∣∣∣ @j1+j2f
@j1x@j2y

(0; 0)
∣∣∣∣ | Ja|j1 |t0|j2 | Ja|j2 1

j1!j2!

6 � exp(| Ja|(1 + |t0|)) 6 � exp(2):

Now, by Lemma 3 we deduce that there exists a root of the univariate polynomial
f(x; t0x), that we can assume w.l.o.g. that is a, such that

| Ja− a|6
(
� exp(2)

| Jc|
)1=d

= (� · exp(2))1=d 1
| Jc|1=d 6 (� exp(2))1=d 1

�1=d2

6 (� exp(2))1=d 1
�1=2d

= (�1=2 exp(2))1=d:

From the previous lemmas, one deduces the following theorem.

Theorem 2. For almost all a:ne real point JQ∈ JC there exists an a:ne real point
Q∈C such that

‖ JQ − Q‖26
√

2�1=2d exp(2):

Proof. Applying Lemmas 4–6 one deduces that

‖ JQ − Q‖2 =
√

( Ja− a)2 + ( Jb− b)2 =
√

( Ja− a)2(1 + t20)

6
√

2| Ja− a| 6
√

2�1=2d exp(2):

Now, let JQ= ( Ja; Jb) be a regular point on JC such that there exists Q= (a; b) ∈C
with ‖ JQ − Q‖26

√
2�1=2d exp(2) (see Theorem 2). In this situation, we consider the

tangent line to JC at JQ; i.e. T (x; y) = nx(x− Ja)+ny(y− Jb), where (nx; ny) is the unitary
normal vector to JC at JQ. Then, we bound the value ‖T (Q)‖:

‖T (Q)‖6 ‖nx‖ · |a− Ja| + ‖ny‖ · |b− Jb| 6 ‖ JQ − Q‖2(‖nx‖ + ‖ny‖)

6 2
√

2�1=2d exp(2):

Therefore, reasoning as in Section 2.2 of [17] one deduces the following theorem.

Theorem 3. C is contained in the o<set region of JC at distance 2
√

2�1=2d exp(2):
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