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Let v1, . . . , vm be a finite set of unit vectors in R
n . Suppose that an

infinite sequence of Steiner symmetrizations are applied to a com-
pact convex set K in R

n , where each of the symmetrizations is
taken with respect to a direction from among the vi . Then the re-
sulting sequence of Steiner symmetrals always converges, and the
limiting body is symmetric under reflection in any of the direc-
tions vi that appear infinitely often in the sequence. In particular,
an infinite periodic sequence of Steiner symmetrizations always
converges, and the set functional determined by this infinite pro-
cess is always idempotent.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Denote n-dimensional Euclidean space by R
n , and let Kn denote the set of all compact convex

sets in R
n . Let K ∈ Kn , and let u be a unit vector. Viewing K as a family of line segments parallel

to u, slide these segments along u so that each is symmetrically balanced around the hyperplane u⊥ .
By Cavalieri’s principle, the volume of K is unchanged by this rearrangement. The new set, called the
Steiner symmetrization of K in the direction of u, will be denoted by su K . It is not difficult to show
that su K is also convex, and that su K ⊆ su L whenever K ⊆ L. A little more work verifies the following
intuitive assertion: if you iterate Steiner symmetrization of K through a suitable sequence of unit
directions, the successive Steiner symmetrals of K will approach a Euclidean ball in the Hausdorff
topology on compact (convex) subsets of R

n . A detailed proof of this assertion can be found in any
of [11, p. 98], [16, p. 172], or [31, p. 313], for example.

For well over a century Steiner symmetrization has played a fundamental role in answering ques-
tions about isoperimetry and related geometric inequalities [14,15,26,27]. Steiner symmetrization
appears explicitly in the titles of numerous papers (see e.g. [2,3,5,6,8–10,12,13,18–20,22,23,25,30])
and plays a key role in recent work such as [7,17,21,28,29].
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In spite of the importance of Steiner symmetrization throughout geometric analysis, many elemen-
tary questions about this construction remain open, including some concerning the following issue:
Given a convex body K , under what conditions on the sequence of directions ui does the sequence of
Steiner symmetrals

sui · · · su1 K (1)

converge? And if the sequence converges, what symmetries are satisfied by the limiting body?
The sequence of bodies (1) is called a Steiner process. If the limit

lim
i→∞

sui · · · su1 K (2)

exists, the resulting body K̃ is called the limit of that Steiner process. In [3] it is shown that not every
Steiner process converges, even if the directions ui are dense in the sphere.

This article addresses the case in which an infinite Steiner process of the form (1) uses only a finite
set of directions, each repeated infinitely often, whether in a periodic fashion, according to some more
complex arrangement, or even completely at random.

Let v1, . . . , vm be a finite set of unit vectors in R
n . Suppose that an infinite sequence of Steiner

symmetrizations is applied to a compact convex set K in R
n , where each of the symmetrizations is

taken with respect to a direction from among the vi . The main result of this article is Theorem 5.1,
which asserts that the resulting sequence of Steiner symmetrals always converges. The limiting body
is symmetric under reflection in any of the directions vi that appear infinitely often in the sequence.
In particular, an infinite periodic sequence of Steiner symmetrizations always converges, and the set
functional determined by this infinite process is always idempotent.

2. Background and basic properties of Steiner symmetrization

Given a compact convex set K and a unit vector u, we have su K = K (or respectively, up to
translation) if and only if K is symmetric under reflection across the subspace u⊥ (respectively, up to
translation). In particular, su K = K will hold for every direction u (or even a dense set of directions)
if and only if K is a Euclidean ball centered at the origin.

Let hK : R
n → R denote the support function of a compact convex set K ; that is,

hK (v) = max
x∈K

x · v.

The standard separation theorems of convex geometry imply that the support function hK character-
izes the body K ; that is, hK = hL if and only if K = L. If Ki is a sequence in Kn , then Ki → K in the
Hausdorff topology if and only if hKi → hK uniformly when restricted to the unit sphere in R

n .
Given compact convex subsets K , L ⊆ R

n and a,b � 0, denote

aK + bL = {ax + by | x ∈ K and y ∈ L}.

An expression of this form is called a Minkowski combination or Minkowski sum. Since K and L are
convex sets, the set aK + bL is also convex. Convexity also implies that aK + bK = (a + b)K for all
a,b � 0, although this does not hold for general sets. Support functions satisfy the identity haK+bL =
ahK + bhL . (See, for example, any of [4,24,31].)

The following is also easy to prove (see, for example, [16, p. 169] or [31, p. 310]).

Proposition 2.1.

su(K + L) ⊇ su K + su L.
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Denote by Vn(K ) the n-dimensional volume of a set K ⊆ R
n . Given K , L ∈ Kn and ε > 0, the

function Vn(K + εL) is a polynomial in ε, whose coefficients are given by Steiner’s formula [4,24,31].
In particular, the following derivative is well defined:

nVn−1,1(K , L) = lim
ε→0

Vn(K + εL) − Vn(K )

ε
= d

dε

∣∣∣∣
ε=0

Vn(K + εL). (3)

The expression Vn−1,1(K , L) is an example of a mixed volume of K and L. Important special cases
appear when either of K or L is a unit Euclidean ball B:

nVn−1,1(K , B) = Surface Area of K ,

2

ωn
Vn−1,1(B, L) = Mean Width of L (4)

where ωn denotes the n-volume of the Euclidean unit ball B . We will denote the mean width of L
by W (L).

It follows from Proposition 2.1 and the volume invariance of Steiner symmetrization that

Vn(K + εL) = Vn
(
su(K + εL)

)
� Vn(su K + εsu L),

so that

Vn(K + εL) − Vn(K )

ε
� Vn(su K + εsu L) − Vn(su K )

ε
,

for all ε > 0. Letting ε → 0+ , we have

Vn−1,1(K , L) � Vn−1,1(su K , su L) (5)

for all K , L ∈ Kn and all unit directions u.
For r � 0 denote by rB the closed Euclidean ball of radius r centered at the origin. Since su B = B ,

it follows from (4) and (5) that the surface area does not increase under Steiner symmetrization.
Similarly, the mean width satisfies W (su K ) � W (K ) for all u.

From monotonicity it is also clear that, if r, R ∈ R such that

rB ⊆ K ⊆ R B (6)

then

rB ⊆ su K ⊆ R B. (7)

Let R K denote the minimum radius of any Euclidean n-ball containing K , and let rK denote the
maximal radius of any Euclidean n-ball contained inside K . It follows that

Rsu K � R K and rK � rsu K . (8)

It can also be shown using elementary arguments that Steiner symmetrization does not increase the
diameter of a set [31, p. 310].
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The following lemma will be useful in Section 5.

Lemma 2.2. Suppose that {Ki} is a convergent sequence of compact convex sets whose limit K has non-empty
interior. Then, for all 0 < τ < 1, there is an integer N > 0 such that

(1 − τ )K ⊆ Ki ⊆ (1 + τ )K

for all i � N.

Proof. Since K has interior, it has positive inradius r. Without loss of generality (translating as
needed) we may assume that rB ⊆ K . For τ ∈ (0,1), choose N so that

Ki ⊆ K + rτ B and K ⊆ Ki + rτ B

for i � N . In this case,

Ki ⊆ K + rτ B ⊆ K + τ K = (1 + τ )K

and

K ⊆ Ki + rτ B ⊆ Ki + τ K ,

so that (1 − τ )K ⊆ Ki . �
It follows from Lemma 2.2 and the monotonicity property (7) that Steiner symmetrization is con-

tinuous with respect to K and u provided that K ∈ Kn has non-empty interior. (See also [16, p. 171]
or [31, p. 312].)

Note that the interior condition is needed to guarantee continuity: Steiner symmetrization is not
continuous at lower-dimensional sets. For example, consider a sequence of distinct unit line seg-
ments Ki with endpoints at ±ui , where ui → u. While the line segments Ki approach the line
segment with endpoints at ±u, their symmetrizations su Ki form a sequence of projected line seg-
ments in u⊥ whose lengths approach zero, so that su Ki → o, the origin. But su K = K �= o, since K is
already symmetric under reflection across u⊥ . See also [16, p. 170].

Denote by K n
r,R the set of compact convex sets in R

n satisfying (6). By the Blaschke selection
theorem K n

r,R is compact. Since S
n is also compact, the function

(K , u) 	→ su K

is uniformly continuous on K n
r,R × S

n−1.
Moreover, it follows from monotonicity that Steiner symmetrization does respect the limits of

decreasing sequences of sets, even if the limit has empty interior. More specifically, recall that if

K1 ⊇ K2 ⊇ K3 ⊇ · · · (9)

then

lim
m→∞ Km =

∞⋂
m=1

Km. (10)

This follows from the fact that a pointwise limit of support functions of compact convex sets is always
a uniform limit as well [24, p. 54]. We then have the following special case where continuity holds
for Steiner symmetrization of a descending sequence of convex bodies, even when the limiting body
is lower-dimensional.
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Proposition 2.3. Suppose that {Km} is a sequence of compact convex sets in R
n such that (9) holds, and let

K = lim
m→∞ Km =

∞⋂
m=1

Km.

If u is a unit vector in R
n, then

su K = lim
m→∞ su Km =

∞⋂
m=1

su Km.

Proof. Denote by πu L the orthogonal projection of a compact convex set L onto the subspace u⊥ ,
and note that πusu L = πu L for all L ∈ Kn . It follows from the monotonicity of su applied to the
sequence (9) that

su K1 ⊇ su K2 ⊇ su K3 ⊇ · · · ,
so that the limit

L = lim
m→∞ su Km =

∞⋂
m=1

su Km

exists. Moreover, since K ⊆ Km for all m, it follows that su K ⊆ su Km as well, so that su K ⊆ L. Note
also that both su K and L are symmetric under reflection across u⊥ .

From the continuity of orthogonal projection we also have

πusu K = πu K = lim
m→∞πu Km = lim

m→∞πusu Km = πu lim
m→∞ su Km = πu L,

so that su K and L have the same orthogonal projection into u⊥ .
Finally, for each x ∈ πu L, the linear slice of L perpendicular to x has length given by the infimum

over m of the length of the linear slice of su Km over the point x. Since Steiner symmetrization trans-
lates these slices (preserving their lengths), this is the same as the infimum over m of the length of
the linear slice of Km over the point x, which gives the length of linear slice of su K perpendicular
to x. Hence, L = su K . �
3. The layering function

Define the layering function of K ∈ Kn by

Ω(K ) =
∞∫

0

Vn(K ∩ rB)e−r2
dr.

Evidently the function Ω is monotonic and continuous on Kn . The layering function vanishes on sets
with empty interior and is strictly positive on sets with non-empty interior.

The following crucial property of Steiner symmetrization will be used in the sections that follow.

Theorem 3.1. Suppose that K ∈ Kn, and let u be a unit vector. Then

Ω(su K ) � Ω(K ). (11)

If K has non-empty interior, then equality holds in (11) if and only if su K = K .
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In the proof of Theorem 3.1 we will use the following elementary fact: If D is a ball centered at
the origin, and if X is a line segment, parallel to the unit vector u, having one endpoint in the interior
of D and the other endpoint outside D , then Steiner symmetrization will strictly increase the slice
length; that is,

|su X ∩ D| > |X ∩ D|. (12)

To see this, let � denote the line through X . Our conditions on the endpoints of X imply that |�∩ D| >
|X ∩ D|. Meanwhile, su fixes D and slides X parallel to u until it is symmetric about u⊥ . If |X | <

|� ∩ D|, then su X will lie wholly inside D , so that |su X ∩ D| = |X | > |X ∩ D| and (12) follows. If
|X | � |� ∩ D|, then su X will cover the slice � ∩ D completely, so that |su X ∩ D| = |� ∩ D| and (12)
follows once again.

Proof of Theorem 3.1. Let u be a unit vector. The monotonicity of su implies that

su(K ∩ rB) ⊆ su K ∩ surB = su K ∩ rB,

so that

Vn(su K ∩ rB) � Vn
(
su(K ∩ rB)

) = Vn(K ∩ rB),

whence Ω(su K ) � Ω(K ).
Evidently equality holds if su K = K . For the converse, suppose that K has non-empty interior, and

that su K �= K . Let ψ denote the reflection of R
n across the subspace u⊥ . Since ψ K �= K and K has

non-empty interior, there is a point x ∈ int(K ) such that ψx /∈ K . Let D denote the ball around the
origin of radius |x|, and let � denote the line through x and parallel to u. The slice K ∩ � meets the
boundary of D at x on one side of u⊥ , has an endpoint x + εu outside D and another endpoint x − δu
in the interior of D , where ε, δ > 0. It follows from (12) that

|su K ∩ � ∩ D| > |K ∩ � ∩ D|.

Moreover, this holds for parallel slices through points x′ in an open neighborhood of x. After integra-
tion of parallel slice lengths to compute volumes, we obtain

Vn(su K ∩ rB) > Vn(K ∩ rB)

for values of r in an open neighborhood of |x|. It follows that Ω(su K ) > Ω(K ). �
In [11, p. 90] Eggleston proves a result similar to Theorem 3.1 for the surface area function. If S(K )

denotes the surface area of a compact convex set K having non-empty interior, then S(su K ) � S(K ),
with equality if and only if K and su K are translates. The layering function Ω is more appropriate
for our purposes, because the equality case in Theorem 3.1 is more stringent (even translates are not
allowed).

4. Steiner processes

Let α = {u1, u2, . . .} be a sequence of unit vectors in R
n . Given K ∈ Kn , denote

Ki = sui · · · sui K (13)

for i = 1,2, . . . .
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Proposition 4.1. The sequence of bodies (13) is uniformly bounded and therefore always has a convergent
subsequence.

Proof. Since K is compact, there exists ρ � 0 such that K ⊆ ρB . Since Steiner symmetrization is
monotonic, we have

sui · · · su1 K ⊆ sui · · · su1ρB = ρB

as well, so that sequence is bounded. The Blaschke selection theorem [4,24,31] then implies that (13)
has a convergent subsequence. �

Note that the original sequence {Ki} defined by (13) does not necessarily converge to a limit. If
L = limi Ki exists, we write L = sα K . If L is the limit of some convergent subsequence of {Ki}, we say
that L is a subsequential limit of sα K .

Since the layering function Ω is weakly increasing under Steiner symmetrization by Theorem 3.1
and is also continuous and bounded above, the following is immediate.

Proposition 4.2. If L is a subsequential limit of sα K , then

Ω(L) = sup
i

Ω(Ki).

Proposition 4.3. If sα M exists, and if L is a subsequential limit of sα K , then

Vn−1,1(L, sα M) = inf
i

Vn−1,1(Ki, sα M).

Proof. We are given that L = lim j Ki j for some subsequence {Ki j } of (13). The continuity of mixed
volumes implies that the sequence

Vn−1,1(Ki j , sui j
· · · su1 M) (14)

converges to Vn−1,1(L, sα M). Since Vn−1,1(Ki, sui · · · su1 M) is decreasing with respect to i by (5), the
corresponding subsequence (14) is also decreasing, and the proposition follows. �

In particular, we have the following.

Proposition 4.4. Suppose that sα M exists. If sα K has a subsequential limits L1 and L2 , then

Vn−1,1(L1, sα M) = Vn−1,1(L2, sα M).

Because Steiner symmetrization may be discontinuous on sequences of bodies converging to lower-
dimensional limits, the next proposition is sometimes helpful.

Proposition 4.5. Suppose that

C1 ⊇ C2 ⊇ C3 ⊇ · · ·

is a descending sequence of compact convex sets in R
n, and denote

C =
⋂

Cm.
m
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If sαCm converges for each Cm, then sαC converges to the limit

sαC =
⋂
m

sαCm.

Proof. Let L be a subsequential limit of sαC . For each m let Dm = sαCm . Since C ⊆ Cm for each m, the
subsequential limit L of sαC lies inside each Dm , so that

L ⊆
⋂
m

Dm = D.

Meanwhile, since Steiner symmetrization does not increase mean width, the non-negative sequence
of values W (su j · · · su2 su1 C) is decreasing, so that

lim
j

W (su j · · · su2 su1 C) = inf
j

W (su j · · · su2 su1 C) = μ

exists. Since W is continuous, we must have W (L) = μ. It also follows from (10) that

W (D) = inf
m

W (Dm) = inf
m

inf
j

W (su j · · · su2 su1 Cm) = inf
j

inf
m

W (su j · · · su2 su1 Cm).

By Proposition 2.3,

su j · · · su2 su1 Cm → su j · · · su2 su1 C,

so that

W (su j · · · su2 su1 Cm) → W (su j · · · su2 su1 C).

Hence,

W (D) = inf
j

W (su j · · · su2 su1 C) = μ.

Since L ⊆ D and W (L) = W (D) = μ, it follows that L = D .
We have shown that every subsequential limit of sαC has the same limit D . If the full se-

quence sαC does not converge, there is a subsequence γ of sαC that stays some distance ε > 0
from D . Since the sequence sαC is uniformly bounded, so is the subsequence γ . The Blaschke selec-
tion theorem [31, p. 97] implies that γ , and therefore sαC , has a convergent subsequence γ ′ . By the
previous argument γ ′ has limit D , contradicting the construction of γ . It follows that the original
sequence sαC converges, and therefore must converge to the limit D . �

These results together lead to the following uniqueness theorem.

Theorem 4.6. Suppose that K ∈ Kn has non-empty interior. If sα L = L for all subsequential limits L of sα K
then sα K converges.

Proof. By the Blaschke selection theorem, every subsequence of sα K has a sub-subsequence converg-
ing to a limit. Suppose that L1 and L2 are two such limits.

We are given that sα L j = L j for each j. By Proposition 4.4 and the volume invariance of Steiner
symmetrization,

Vn−1,1(L1, L2) = Vn−1,1(L2, L2) = Vn(L2) = Vn(K ) = Vn(L1).
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Since Vn(K ) > 0, the same is true of all symmetrals of K . It follows from the equality conditions of
the Minkowski inequality for mixed volumes (see, for example, [24,31]) that L1 and L2 are translates,
so that L2 = L1 + x for some x ∈ R

n .
Since sα L j = L j for each j, it follows that sαx = x, so that x ∈ u⊥

i for each ui ∈ α. If the sequence α
contains a basis for R

n , then x = 0, and L1 = L2.
If the sequence α spans a proper subspace ξ of R

n , then x ∈ ξ⊥ . Since every symmetrizing direc-
tion ui of α lies in ξ , the supporting plane of K normal to x also supports each symmetral Ki , so that
hKi (x) = hK (x) for all i. After taking limits it follows that

hL1(x) = hK (x) = hL2(x) = hL1+x(x) = hL1(x) + x · x,

so that x · x = 0 and L2 = L1 once again.
We have shown that every convergent subsequence of sα K converges to L1. If the full se-

quence sα K does not converge, there is a subsequence γ of sα K that stays some distance ε > 0
from L1. Since the sequence sα K is uniformly bounded, so is the subsequence γ . The Blaschke selec-
tion theorem [31, p. 97] implies that γ , and therefore sα K , has a convergent subsequence γ ′ . By the
previous argument γ ′ has limit L1, contradicting the construction of γ . It follows that the original
sequence sα K converges, and therefore must converge to the limit L1. �

The condition that sα L = L for every subsequential limit L is required for the proof of Theorem 4.6
and does not hold for Steiner processes in general. Indeed, even when a Steiner process converges, it
may not be the case that the limit is invariant under sα . In other words, the converse of Theorem 4.6
is false.

A simple counterexample to the converse is constructed as follows. Let u and v be distinct non-
orthogonal unit vectors in R

2, and let α denote the sequence {u, v, v, . . .}, where v is repeated
forever. If K is any compact convex set in R

2, then sα K = sv su K , since sv is idempotent. But
sv su K �= sv susv su K in general (for example, if K is any line segment of positive length), so that
sαsα K �= sα K .

5. Steiner processes using a finite set of directions

Suppose that α = {u1, u2, . . .} is a sequence of unit vectors such that each ui is chosen from a
given finite list of permitted directions {v1, . . . , vm}.

Theorem 5.1. Let K ∈ Kn. The sequence sα K has a limit L ∈ Kn. Moreover, L is symmetric under reflection
in each of the directions vi occurring infinitely often in the sequence.

In other words, a Steiner process using a finite set of directions always converges.

Proof of Theorem 5.1. To begin, suppose that K has non-empty interior. Without loss of generality
(passing to a suitable tail of the sequence), we may assume that each of the directions vi occurs
infinitely often. In view of Theorem 4.6 it is then sufficient to show that every subsequential limit
of sα K is invariant under svi for each i.

Let L denote the limit of some convergent subsequence of sα K . Since the list of distinct vec-
tors vi is finite, some vi occurs infinitely often as the final iterate in this subsequence. Without loss
of generality, relabel the directions {vi} so that v1 is this recurring final direction. Passing to the
sub-subsequence {Ki j } where this occurs, we are left with a sequence of the form

{Ki j } = {sv1 sui j−1 · · · su1 K }

where each ui j = v1.
Since every Ki j is an sv1 symmetral, it is immediate that L = lim j Ki j is symmetric under reflection

across v⊥
1 .
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Note that each successor to Ki j in the original sequence Ki has the form

Ki j+1 = sui j+1 sv1 sui j−1 · · · su1 K .

The direction ui j+1 must attain one of the values vi infinitely often. Since sv1 sv1 = sv1 , we may
(without loss of generality) suppose this new direction is v2, and that v2 �= v1. Let us pass further to
the sub-subsequence where every ui j+1 = v2. It now follows that

sv2 L = lim
j

sv2 Ki j = lim
j

Ki j+1.

Suppose that sv2 L �= L. In this case the strict monotonicity of Ω yields

Ω(sv2 L) − Ω(L) > ε > 0

for some ε > 0. By the continuity of Ω and the definition of L there is an integer M > 0 such that

Ω(sv2 Ki j ) − Ω(Kit ) >
ε

2
> 0

for all j, t > M . But the monotonicity of Ω implies that

Ω(Kit ) � Ω(Ki j+1) = Ω(sv2 Ki j )

when it > i j , a contradiction. It follows that

sv2 L = L.

More generally, suppose that L = sv1 L = · · · = svk L, where L is the limit of the subsequence Ki j .
For each j, let Q j be the first successor of Ki j in the original sequence Ki whose final iterated Steiner
symmetrization uses a direction vt for t > k. Again some particular vt must appear infinitely often as
the final direction for the symmetrals Q j . Without loss of generality, and passing to subsequences as
needed, suppose this direction is always vk+1. Let Q̃ j denote the immediate predecessor of each Q j

in the original sequence Ki , so that Q j = svk+1 Q̃ j .
Again, passing to subsequences as needed, we may assume (by omitting repetitions) that each Q j

corresponds to a distinct entry of the original sequence Ki , so that Q t appears strictly later than Q j
in the original sequence whenever t > j.

Since the subsequence Ki j → L and L has non-empty interior, Lemma 2.2 implies that, for any
given τ ∈ (0,1),

(1 − τ )L ⊆ Ki j ⊆ (1 + τ )L

for sufficiently large i j . Since each Q̃ j is a finite iteration of Steiner symmetrals of Ki j using only di-
rections from the list {v1, . . . , vk}, and because L = sv1 L = · · · = svk L, it follows from the monotonicity
of Steiner symmetrization that

(1 − τ )L ⊆ Q̃ j ⊆ (1 + τ )L

for sufficiently large j, so that Q̃ j → L as well. It then follows from the monotonicity of svk+1 that

(1 − τ )svk+1 L ⊆ Q j ⊆ (1 + τ )svk+1 L.

In other words, Q j → svk+1 L.
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Suppose that svk+1 L �= L. In this case the strict monotonicity of Ω yields

Ω(svk+1 L) − Ω(L) > ε > 0

for some ε > 0. Since Q j → svk+1 L and Q̃ j → L, the continuity of Ω implies that

Ω(Q j) − Ω(Q̃ t) >
ε

2
> 0

for all j, t > M , provided M is sufficiently large. But the monotonicity of Ω over the original se-
quence Ki implies that

Ω(Q̃ t) � Ω(Q j) = Ω(svk+1 Q̃ j)

when t > j, a contradiction. It follows that

svk+1 L = L.

It now follows that L is symmetric under reflection in each of the directions vi , so that sα L = L. In
other words L is a fixed point for the process sα . Since this argument applies to every subsequential
limit L of sα K , it follows from Theorem 4.6 that these subsequential limits are identical, and that the
original sequence Ki converges to L.

Finally, suppose that K has empty interior. For each integer m > 0, the parallel body Cm = K + 1
m B

has interior, so the limit of sαCm exists, by the previous argument. Since each Cm ⊇ Cm+1, and

K =
⋂
m

Cm,

it follows from Proposition 4.5 that the limit of sα K exists, and is given by

sα K =
⋂
m

sαCm.

Since each sαCm is symmetric under reflection in each of the directions vi , the limit sα K is also
symmetric under each of those reflections. �

Recall that if K ∈ Kn and u ∈ S
n−1, then susu K = su K . This is a trivial consequence of the fact

that su K is symmetric under reflection across u⊥ , so that any subsequent iteration of su makes no
difference. On the other hand, given two non-identical and non-orthogonal directions u and v , it may
easily happen that

susv K �= susv susv K .

More generally, there is no reason to believe that a Steiner process sα (whether finite or infinite)
is idempotent. However, the previous theorem implies that certain families of Steiner processes are
indeed idempotent.

Corollary 5.2. Let v1, . . . , vm be unit directions in R
n, and let α be a sequence of directions, each of whose

entries is taken from among the vi , and in which each of the vi occurs infinitely often.
The map sα :Kn → Kn given by K 	→ sα K is well defined and idempotent.
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Note that every direction in α must repeat infinitely often in the sequence to guarantee idempo-
tence.

Proof of Corollary 5.2. It is an immediate consequence of Theorem 5.1 that the map K 	→ sα K is
well defined. Since each sα K is symmetric under reflection across each subspace v⊥

i , it follows that
svi sα K = sα K for each i, so that sαsα K = sα K . �

It follows from Theorem 5.1 that periodic Steiner processes always converge to bodies that are sym-
metric under the subgroup of O (n) generated by reflections through a given repeated set of directions
{v1, . . . , vm}. More precisely, we have the following.

Corollary 5.3. Let v1, . . . , vm be unit directions in R
n, and let α be the periodic sequence of directions given

by

α = { v1, . . . , vm︸ ︷︷ ︸, v1, . . . , vm︸ ︷︷ ︸, . . .}. (15)

Then the limit of sα K exists for every K ∈ Kn, and this limit is symmetric under reflection across each sub-
space v⊥

i , so that the Steiner process sα is idempotent.

A basis for R
n is said to be irrational if the angles between any two vectors in the basis are

irrational multiples of π . The set of reflections across the coordinate planes of an irrational basis
generate a dense subgroup of O (n). Consequently, if a compact convex set K is symmetric under
reflections across all of the directions from an irrational basis, then K must be symmetric under all
reflections through the origin, so that K must be a Euclidean ball, centered at the origin.

Applying the previous results to an irrational basis of directions leads to the following generaliza-
tion of a periodic construction described in [11, p. 98].

Corollary 5.4. Let v1, . . . , vm be a set of unit directions in R
n that contains an irrational basis for R

n. Suppose
that α = {u1, u2, . . .} is a sequence of unit vectors such that each ui is chosen from the list of permitted direc-
tions {v1, . . . , vm}, and such that each element of the irrational basis appears infinitely often in the sequence α.
Then the limit of sα K exists and is a Euclidean ball for every K ∈ Kn.

In particular, if a periodic sequence of the form (15) contains an irrational basis for R
n , then sα K

is a Euclidean ball for every K ∈ Kn . For a generalization of this special case to arbitrary compact
sets, see also [7].

6. Open questions

1. Rate of convergence

While Theorem 5.1 guarantees convergence of infinite Steiner processes using a finite set of distinct
directions, there remain questions about the rate of convergence for different distributions of the
permitted set of directions. For example, given three normal vectors u, v , w to the edges of an
equilateral triangle in R

2 and various choices of α such as

α = { u, v, w︸ ︷︷ ︸, u, v, w︸ ︷︷ ︸, . . .},
α = { u, v, w︸ ︷︷ ︸, v, u, v, w, u, v, w︸ ︷︷ ︸, v, u, v, w, u, v, w, u, v, w︸ ︷︷ ︸, v, . . .},
α = {u, v, w, u, v, u, v︸ ︷︷ ︸, w, u, v, u, v, u, v︸ ︷︷ ︸, w, . . .},
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how does the rate of convergence of sα K vary? If instead α is determined by a sequence of random
choices from the set {u, v, w}, how is the rate of convergence related to the probability distribution
for the choices of directions?

2. More general classes of sets

For most theorems regarding Steiner processes on convex bodies it is natural to ask whether sim-
ilar results hold when the initial convex body is replaced by a more general kind of set, such as an
arbitrary compact set in R

n (see, for example, [6,7,28–30]). While the proof of Theorem 5.1 above
makes use of certain constructions that rely on convexity (such as mixed volumes, and the equality
condition for the Brunn–Minkowski inequality), one can still ask whether Theorem 5.1 can be gener-
alized to Steiner processes on arbitrary compact sets in R

n . In [7] Burchard and Fortier show that this
is the case when the finite set of repeated directions contains an irrational basis (as in Corollary 5.4).
What happens if instead the finite set of directions generates a finite subgroup of reflections?

3. Cases of non-convergence

There also remain many questions about the cases in which Steiner processes fail to converge.
In [3] a convex body K and a sequence of directions ui are described for which the sequence of
Steiner symmetrals

Ki = sui · · · su1 K

fails to converge in the Hausdorff topology. (For more such examples, see also [7].) More recently [1]
it has been shown that such examples converge in shape: there is a corresponding sequence of isome-
tries ψi such that the sequence {ψi Ki} converges. However, many related questions remain open. How
does this limiting shape depend on the initial body K and the sequence α of symmetrizing directions?
What happens if K is permitted to be an arbitrary (possibly non-convex) compact set?
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