Triple positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales

Zhimin He *, Xiaoming Jiang

Department of Applied Mathematics, Central South University, Changsha 410083, Hunan, People’s Republic of China

Received 3 August 2005
Available online 10 October 2005
Submitted by J. Henderson

Abstract

A new triple fixed-point theorem is applied to investigate the existence of at least three positive solutions of boundary value problems for p-Laplacian dynamic equations on time scales.

© 2005 Published by Elsevier Inc.

Keywords: Time scale; p-Laplacian; Boundary value problem; Positive solution; Fixed-point theorem

1. Introduction

Let T be a closed nonempty subset of R, and let T have the subspace topology inherited from the Euclidean topology on R. In some of the current literature, T is called a time scale (or measure chain). For notation, we shall use the convention that, for each interval J of R,

$$J_T = J \cap T.$$

The theory of dynamical systems on time scales is undergoing rapid development as it provides a unifying structure for the study of differential equations in the continuous case and the study of finite difference equations in the discrete case; see [1,3,4,8,9,14–16] and the references therein. In
this paper, we are concerned with the existence of positive solutions of the p-Laplacian dynamic equation on a time scale
\[\left[\phi_p(u^\Delta(t)) \right]^\nu + g(t)f(u(t)) = 0, \quad t \in [0,T], \]

satisfying the boundary conditions
\[u(0) - B_0(u^\Delta(0)) = 0, \quad u^\Delta(T) = 0, \] (2)
or
\[u^\Delta(0) = 0, \quad u(T) + B_1(u^\Delta(T)) = 0, \] (3)

where $\phi_p(s)$ is p-Laplacian operator, i.e., $\phi_p(s) = |s|^{p-2}s$, $p > 1$, $(\phi_p)^{-1} = \phi_q$, $\frac{1}{p} + \frac{1}{q} = 1$, and

\begin{itemize}
 \item [(H1)] $f : R \to R^+$ is continuous (R^+ denotes the nonnegative reals);
 \item [(H2)] $g : T \to [0, +\infty)$ is left dense continuous (i.e., $g \in \text{C}\text{ld}(T, [0, +\infty))$) and does not vanish identically on any closed subinterval of $[0,T]_T$, where $\text{C}\text{ld}(T, [0, +\infty))$ denotes the set of all left dense continuous functions from T to $[0, +\infty)$;
 \item [(H3)] $B_0(v)$ and $B_1(v)$ are both continuous odd functions defined on R and satisfy that there exist $A,B > 0$ such that
 \[Bv \leq Bj(v) \leq Av, \quad \text{for all } v \geq 0, \quad j = 0, 1. \]
\end{itemize}

We remark that by a solution u of (1) and (2) (respectively (1) and (3)), we mean $u : T \to R$ which is delta differentiable, u^Δ and $(|u^\Delta|^{p-2}u^\Delta)^\nu$ are both continuous on $T^k \cap T_k$, and u satisfies (1) and (2) (respectively (1) and (3)). If $u^\Delta(t) \leq 0$ on $[0,T] \cap T_k$, then we say u is concave on $[0,T]_T$.

p-Laplacian problems with boundary conditions for ordinary differential equations and finite difference equations have been studied extensively; see [2,6,7,10,13,17–23] and references therein. However, there are not much concerning the p-Laplacian problems on time scales, see [3,14]. In this paper, by using a new triple fixed-point theorem due to Ren et al. [20] in a cone, we prove that there exist at least three positive solutions of (1) and (2) (respectively (1) and (3)). If $u^\Delta(t) \leq 0$ on $[0,T]_T$, then we state the triple fixed-point theorem. In Sections 3 and 4, by defining an appropriate Banach space and cones, we impose the growth conditions on f which allow us to apply the triple fixed-point theorem in obtaining existence of at least three positive solutions of (1) and (2) (respectively (1) and (3)).

For convenience, we list the following well-known definitions which can be found in [1,4,8,9,15,16].

For $t < \sup T$ and $r > \inf T$, the forward jump operator σ and the backward jump operator ρ are well defined, respectively, by
\[\sigma(t) = \inf\{\tau \in T \mid \tau > t\} \in T, \quad \rho(r) = \sup\{\tau \in T \mid \tau < r\} \in T, \]

for all $t,r \in T$. If $\sigma(t) > t$, t is said to be right scattered, and if $\rho(r) < r$, r is said to be left scattered. If $\sigma(t) = t$, t is said to be right dense, and if $\rho(r) = r$, r is said to be left dense. If T has a right scattered minimum m, define $T_k = T - \{m\}$; otherwise set $T_k = T$. If T has a left scattered maximum M, define $T^k = T - \{M\}$; otherwise set $T^k = T$.

For \(x : T \to R \) and \(t \in T^k \), the delta derivative of \(x(t) \) is defined to be the number \(x/\Delta(t) \) \(\text{(provided it exists)} \) with the property that for any \(\varepsilon > 0 \) there is a neighborhood \(U \subset T \) of \(t \) such that
\[
\left| \left[x(\sigma(t)) - x(s) \right] - x/\Delta(t)[\sigma(t) - s] \right| < \varepsilon |\sigma(t) - s|,
\]
for all \(s \in U \). For \(x : T \to R \) and \(t \in T^k \), the nabla derivative of \(x(t) \) is defined to be the number \(x/\nabla(t) \) \(\text{(provided it exists)} \) with the property that for any \(\varepsilon > 0 \) there is a neighborhood \(V \subset T \) of \(t \) such that
\[
\left| \left[x(\rho(t)) - x(s) \right] - x/\nabla(t)[\rho(t) - s] \right| < \varepsilon |\rho(t) - s|,
\]
for all \(s \in V \).

If \(T = R \), then \(x/\Delta(t) = x'(t) \). If \(T = Z \), then \(x/\Delta(t) = x(t + 1) - x(t) \) is the forward difference operator while \(x/\nabla(t) = x(t) - x(t - 1) \) is the backward difference operator.

A function \(F : T^k \to R \) is called a delta-antiderivative of \(f : T \to R \) provided \(F/\Delta(t) = f(t) \) holds for all \(t \in T^k \). In this case we define the delta integral of \(f \) by
\[
\int_a^t f(s) \Delta s = F(t) - F(a),
\]
for all \(a, t \in T \). A function \(\Phi : T_k \to R \) is called a nabla-antiderivative of \(f : T \to R \) provided \(\Phi/\nabla(t) = f(t) \) holds for all \(t \in T_k \). In this case we define the nabla integral by
\[
\int_a^t f(s) \nabla s = \Phi(t) - \Phi(a),
\]
for all \(a, t \in T \).

Throughout this paper, we assume \(T \) is a closed subset of \(R \) with \(0 \in T_k, T \in T^k \).

2. Preliminaries

In this section, we provide some background materials from the theory of cones in Banach spaces, and we then state the triple fixed-point theorem for a cone preserving operator. The following definitions can be found in the book by Deimling [11] as well as in the book by Guo and Lakshmikantham [12].

Definition 2.1. Let \(E \) be a real Banach space. A nonempty, closed, convex set \(P \subset E \) is called a cone, if it satisfies the following two conditions:

(i) \(u \in P, \lambda \geq 0 \) implies \(\lambda u \in P \); and
(ii) \(u \in P, -u \in P \) implies \(u = 0 \).

Every cone \(P \subset E \) induces an ordering in \(E \) given by
\[
u \leq u \quad \text{if and only if} \quad v - u \in P.
\]

Definition 2.2. Given a cone \(P \) in a real Banach space \(E \), a functional \(\psi : P \to R \) is said to be increasing on \(P \), provided \(\psi(x) \leq \psi(y) \), for all \(x, y \in P \) with \(x \leq y \).
Definition 2.3. Given a nonnegative continuous functional γ on a cone P of a real Banach space E, we define for each $d > 0$ the set

$$P(\gamma, d) = \{ x \in P \mid \gamma(x) < d \}.$$

The following fixed-point theorem due to Ren et al. [20] (which is motivated by Avery and Henderson’s double fixed-point theorem [5]) will play an important role in the proof of our results. The origin in X is denoted by θ.

Theorem 2.1. Let P be a cone in a real Banach space E. Let α, β and γ be increasing, nonnegative, continuous functionals on P, such that for some $c > 0$ and $M > 0$,

$$\gamma(x) \leq \beta(x) \leq \alpha(x) \quad \text{and} \quad \|x\| \leq M \gamma(x),$$

for all $x \in \overline{P(\gamma, c)}$. Suppose that there exist positive numbers a and b with $a < b < c$ and

$$F: \overline{P(\gamma, c)} \to P$$

is a completely continuous operator such that:

\begin{enumerate}
 \item[(B1)] $\gamma(Fx) < c$, for all $x \in \partial P(\gamma, c)$;
 \item[(B2)] $\beta(Fx) > b$, for all $x \in \partial P(\beta, b)$;
 \item[(B3)] $P(\alpha, a) \neq \emptyset$, and $\alpha(Fx) < a$, for all $x \in \partial P(\alpha, a)$.
\end{enumerate}

Then F has at least three fixed points x_1, x_2 and x_3 belonging to $\overline{P(\gamma, c)}$ such that

$$0 \leq \alpha(x_1) < a < \alpha(x_2), \quad \text{with} \quad \beta(x_2) < b < \beta(x_3), \quad \gamma(x_3) < c.$$

Remark 2.1. If the restriction $F\theta \neq \theta$ is imposed in Theorem 2.1, then there is the slightly stronger conclusion as following:

F has at least three fixed points x_1, x_2 and x_3 belonging to $\overline{P(\gamma, c)}$ such that

$$0 < \alpha(x_1) < a < \alpha(x_2), \quad \text{with} \quad \beta(x_2) < b < \beta(x_3), \quad \gamma(x_3) < c.$$

3. Solutions of (1) and (2) in a cone

In this section, by defining an appropriate Banach space and cones, we impose the growth conditions on f which allow us to apply the triple fixed-point theorem in establishing the existence of at least three positive solutions of (1) and (2). We note that, from the nonnegativity of g, f, a solution of (1) and (2) is nonnegative and concave on $[0, T]_T$.

Let the Banach space $E = C_{id}([0, T]_T, \mathbb{R})$ with norm $\| u \| = \sup_{t \in [0, T]_T} |u(t)|$, and define the cone, $P \subset E$, by

$$P = \{ u \in E \mid u \text{ is concave and nonnegative valued on } [0, T]_T, \text{ and } u^A(T) = 0 \}.$$

Lemma 3.1. [14] If $u \in P$, then

$$u(t) \geq \frac{t}{T} \| u \|, \quad t \in [0, T]_T,$$

where $\| u \| = \sup_{t \in [0, T]_T} |u(t)|$.
\[\eta = \min \left\{ t \in T \mid t \geq \frac{T}{2} \right\}, \]

and fix \(l \in T \) such that
\[0 < \eta < l < T, \]

and define the increasing, nonnegative, continuous functionals \(\gamma \), \(\beta \), and \(\alpha \) on \(P \), by
\[\gamma(u) = \max_{t \in [0, \eta]} u(t) = u(\eta), \quad \beta(u) = \min_{t \in [\eta, l]} u(t) = u(\eta), \]

and
\[\alpha(u) = \max_{t \in [0, l]} u(t) = u(l). \]

We see that, for each \(u \in P \),
\[\gamma(u) = \beta(u) \leq \alpha(u). \]

In addition, for each \(u \in P \), Lemma 3.1 implies
\[\|u\| \leq \frac{T}{\eta} \gamma(u), \quad \text{for all } u \in P. \]

For notational convenience, we denote \(m, M \) and \(\lambda_l \), by
\[m = (B + \eta)\phi_q \left(\int_0^T g(r) \nabla r \right), \quad M = (A + \eta)\phi_q \left(\int_0^T g(r) \nabla r \right), \]
\[\lambda_l = (A + l)\phi_q \left(\int_0^T g(r) \nabla r \right). \]

We note that \(u(t) \) is a solution of (1) and (2), if and only if
\[u(t) = B_0 \left(\phi_q \left(\int_0^T g(r) f(u(r)) \nabla r \right) \right) + \int_0^t \phi_q \left(\int_s^T g(r) f(u(r)) \nabla r \right) \Delta s, \quad t \in [0, T]. \]

Theorem 3.1. Assume that conditions \((H_1), (H_2)\) and \((H_3)\) are satisfied. Let
\[0 < a < \frac{l}{T} b < b < \frac{lm}{TM} c, \]

and suppose that \(f \) satisfies the following conditions:

\((C_1) \) \(f(w) < \phi_p \left(\frac{T}{M} \right), \) for \(w \in [0, \frac{T}{\eta} c] \);
\((C_2) \) \(f(w) > \phi_p \left(\frac{b}{M} \right), \) for \(w \in [b, \frac{T}{\eta} b] \);
\((C_3) \) \(f(w) < \phi_p \left(\frac{a}{M} \right), \) for \(w \in [0, \frac{T}{T} a] \).

Then, there exist at least three positive solutions \(u_1, u_2, u_3 \) of (1) and (2) such that
\[0 \leq \alpha(u_1) < a < \alpha(u_2), \quad \text{with } \beta(u_2) < b < \beta(u_3), \quad \gamma(u_3) < c. \]
Proof. Define a completely continuous integral operator $F: P \to E$ by

$$(Fu)(t) = B_0 \left(\phi_q \left(\int_0^T g(r) f\left(u(r) \right) \nabla r \right) \right) + \int_0^t \phi_q \left(\int_s^T g(r) f\left(u(r) \right) \nabla r \right) \Delta s, \quad u \in P,$$

for $t \in [0, T]_T$, we will seek fixed points of F in the cone P. We note that from (4), if $u \in P$, then $(Fu)(t) \geq 0$ for $t \in [0, T]_T$. We now prove that the conditions of Theorem 2.1 hold with respect to F.

Let $u \in \overline{P(\gamma, c)}$, then $(Fu)(t) \geq 0$ for $t \in [0, T]_T$. It follows from (4) that

$$\frac{(Fu)}{\Delta_1}(t) = \phi_q \left(\int_t^T g(r) f\left(u(r) \right) \nabla r \right), \quad u \in P, \quad t \in [0, T]_T,$$

we see that $(Fu)/\Delta_1(t)$ is continuous and nonincreasing on $[0, T]_T$, and using Theorem 8.39 in [8] we obtain that $(Fu)/\Delta_1(t) \leq 0$ for $t \in [0, T]_T \cap T_\gamma$. Moreover, $(Fu)/\Delta_1(T) = 0$. This implies $Fu \in P$, and so $F: \overline{P(\gamma, c)} \to P$.

Now, if $u \in \partial P(\gamma, c)$, then $\gamma(u) = \max_{t \in [\eta, T]} u(t) = u(\eta) = c$. Recalling that $\|u\| \leq \frac{T}{\eta} \gamma(u) = \frac{T}{\eta} c$, we have

$$0 \leq u(t) \leq \frac{T}{\eta} c, \quad \text{for all } t \in [0, T]_T.$$

As a consequence of (C_1),

$$f\left(u(s) \right) < \phi_p \left(\frac{c}{M} \right), \quad \text{for } s \in [0, T]_T.$$

Since $Fu \in P$, we get

$$\gamma(Fu) = (Fu)(\eta) = B_0 \left(\phi_q \left(\int_0^T g(r) f\left(u(r) \right) \nabla r \right) \right) + \int_0^\eta \phi_q \left(\int_s^T g(r) f\left(u(r) \right) \nabla r \right) \Delta s \\
\leq A \phi_q \left(\int_0^T g(r) f\left(u(r) \right) \nabla r \right) + \int_0^\eta \phi_q \left(\int_s^T g(r) f\left(u(r) \right) \nabla r \right) \Delta s \\
< (A + \eta) \phi_q \left(\int_0^T g(r) \nabla r \right) \frac{c}{M} = c.$$

Then, condition (B_1) of Theorem 2.1 holds.

Let $u \in \partial P(\beta, b)$. Then $\beta(u) = \min_{t \in [\eta, T]} u(t) = u(\eta) = b$. This implies $u(t) \geq b$, $t \in [\eta, T]_T$, and since $u \in P$, we have $b \leq u(t) \leq \|u\| = u(T)$, for $t \in [\eta, T]_T$. Note that, $\|u\| \leq \frac{T}{\eta} \gamma(u) = \frac{T}{\eta} \beta(u) = \frac{T}{\eta} b$, for all $u \in P$. So,

$$b \leq u(t) \leq \frac{T}{\eta} b, \quad \text{for } t \in [\eta, T]_T.$$
From (C2), we have \(f(u(s)) > \frac{b}{m} \) for \(s \in [\eta, T] \), and so

\[
\beta(Fu) = (Fu)(\eta) = B_0 \left(\phi_q \left(\int_0^T g(r) f(u(r)) \, dr \right) \right) + \int_0^{\eta} \phi_q \left(\int_0^s g(r) f(u(r)) \, dr \right) \, ds
\]

\[
> (B + \eta) \phi_q \left(\int_0^\eta g(r) \, dr \right) = B.
\]

Then, condition (B2) of Theorem 2.1 holds.

We note that \(u(t) = \frac{a}{2} \), \(t \in [0, T] \), is a member of \(P(\alpha, a) \) and \(\alpha(u) = \frac{a}{2} < a \). So \(P(\alpha, a) \neq \emptyset \).

Now, let \(u \in \partial P(\alpha, a) \). Then \(\alpha(u) = \max_{t \in [0, l]} u(t) = u(l) = a \). This means that

\[
0 \leq u(t) \leq a, \quad t \in [0, l].
\]

Note that, \(\|u\| \leq \frac{T}{l} \gamma(u) \leq \frac{T}{l} \alpha(u) = \frac{T}{l} a \), for all \(u \in P \). So,

\[
0 \leq u(t) \leq \frac{T}{l} a, \quad t \in [0, T].
\]

From (C3), we get \(f(u(s)) < \frac{a}{\lambda l} \) for \(s \in [0, T] \), and so

\[
\alpha(Fu) = (Fu)(l) = B_0 \left(\phi_q \left(\int_0^T g(r) f(u(r)) \, dr \right) \right) + \int_0^{l} \phi_q \left(\int_0^s g(r) f(u(r)) \, dr \right) \, ds
\]

\[
\leq A \phi_q \left(\int_0^T g(r) f(u(r)) \, dr \right) + \int_0^{l} \phi_q \left(\int_0^s g(r) f(u(r)) \, dr \right) \, ds
\]

\[
< (A + l) \phi_q \left(\int_0^T g(r) \, dr \right) \frac{a}{\lambda l} = a.
\]

Then, condition (B3) of Theorem 2.1 holds.

Therefore, Theorem 2.1 implies that \(F \) has at least three fixed points which are positive solutions \(u_1, u_2 \) and \(u_3 \), belonging to \(P(\gamma, c) \), of (1) and (2) such that

\[
0 \leq \alpha(u_1) < a < \alpha(u_2), \quad \text{with} \quad \beta(u_2) < b < \beta(u_3), \quad \gamma(u_3) < c.
\]

The proof of Theorem 3.1 is complete. \(\square \)

4. Solutions of (1) and (3) in a cone

In this section, we use the triple fixed-point theorem to establish the existence of at least three positive solutions of (1) and (3).

Consider the Banach space \(E = C_{id}([0, T]_T, R) \) with norm \(\|u\| = \sup_{t \in [0, T]} |u(t)| \), and define the cone, \(P_1 \subseteq E \), by

\[
P_1 = \{ u \in E \mid u \text{ is concave and nonnegative valued on } [0, T]_T, \text{ and } u^\Delta(0) = 0 \}.
\]
Lemma 4.1. [14] If \(u \in P_1 \), then
\[
\begin{align*}
u(t) &\geq \frac{T-t}{T} \| u \|, \quad \text{for } t \in [0, T]_T,
\end{align*}
\]
where \(\| u \| = \sup_{t \in [0, T]_T} |u(t)| \).

Let \(h = \max \left\{ t \in T \mid 0 \leq t \leq \frac{T}{2} \right\} \),
and fix \(\tau \in T \) such that
\[
0 < \tau < h,
\]
and define the increasing, nonnegative and continuous functionals \(\gamma, \beta \) and \(\alpha \) on \(P \), by
\[
\gamma(u) = \max_{t \in [h, T]_T} u(t) = u(h), \quad \beta(u) = \min_{t \in [\tau, h]_T} u(t) = u(h),
\]
and
\[
\alpha(u) = \max_{t \in [\tau, T]_T} u(t) = u(\tau).
\]
It is easy to see that, for each \(u \in P \),
\[
\gamma(u) = \beta(u) \leq \alpha(u).
\]
In addition, for each \(u \in P \), Lemma 4.1 implies \(\gamma(u) = u(h) \geq \frac{T-h}{T} \| u \| \). Thus,
\[
\| u \| \leq \frac{T}{T-h} \gamma(u), \quad \text{for all } u \in P.
\]

Set
\[
m_1 = (B + T - \tau) \phi_q \left(\int_0^\tau g(r) \nabla r \right), \quad M_1 = (A + T - h) \phi_q \left(\int_0^T g(r) \nabla r \right),
\]
\[
\lambda_T = (A + T - \tau) \phi_q \left(\int_0^T g(r) \nabla r \right).
\]
We note that \(u(t) \) is a solution of (1) and (3), if and only if
\[
u(t) = B_1 \left(\phi_q \left(\int_0^T g(r) f(u(r)) \nabla r \right) \right) + \int_{t_0}^T \phi_q \left(\int_{t_0}^s g(r) f(u(r)) \nabla r \right) \Delta s, \quad t \in [0, T]_T.
\]

Theorem 4.1. Assume that conditions \((H_1)\), \((H_2)\) and \((H_3)\) are satisfied. Let
\[
0 < a < \frac{T - \tau}{T} b < b < \frac{(T - \tau)m_1}{TM_1} c,
\]
and suppose that \(f \) satisfies the following conditions:
\[
(D_1) \quad f(w) < \phi_p \left(\frac{\tau}{M_1} \right), \quad \text{for } w \in [0, \frac{T}{T-h} c];
\]
(D_2) \ f(w) > \varphi_P\left(\frac{b}{m_1}\right), \text{ for } w \in [b, \frac{T}{1-h}b];

(D_3) \ f(w) < \varphi_P\left(\frac{a}{m_1}\right), \text{ for } w \in [0, \frac{T}{1-h}a].

Then, there exist at least three positive solutions \(u_1, u_2, u_3 \) of (1) and (3) such that

\[0 \leq \alpha(u_1) < a < \alpha(u_2), \quad \text{with} \quad \beta(u_2) < b < \beta(u_3), \quad \gamma(u_3) < c. \]

Proof. Define a completely continuous integral operator \(F_1 : P_1 \to E \) by

\[
(F_1u)(t) = B_1\left(\phi_q\left(\int_0^T g(r)f(u(r))\nabla r\right)\right) + \int_t^T \phi_q\left(\int_0^s g(r)f(u(r))\nabla r\right)\Delta s, \quad u \in P,
\]

for \(t \in [0, T]_T \), the fixed point of \(F_1 \) in the cone \(P_1 \) is the solution of (1) and (3). In analogy to the proof of Theorem 3.1, we arrive at the conclusion. \(\Box \)

Remark 4.1. If adding in Theorem 3.1 (or Theorem 4.1) the restriction \(g(t)f(u) \neq 0 \) for \(t \in [0, T]_T \), then \(F \theta \neq \theta \) (or \(F_1 \theta \neq \theta \)). So by Remark 2.1, (1) and (2) (or (1) and (3)) has at least three positive solutions \(u_1, u_2 \) and \(u_3 \), belonging to \(P(\gamma, c) \) (or \(P_1(\gamma, c) \)), of (1) and (2) (or (1) and (3)) such that

\[0 < \alpha(u_1) < a < \alpha(u_2), \quad \text{with} \quad \beta(u_2) < b < \beta(u_3), \quad \gamma(u_3) < c. \]

References