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The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited neurodegenerative disorders that mainly
affect children and are grouped together by similar clinical features and the accumulation of autofluorescent
storage material. More than a dozen genes containing nearly 400 mutations underlying human NCLs have
been identified. Most of the mutations in these genes are associated with a typical disease phenotype, but

some result in variable disease onset, severity and progression. There are still disease subgroups with un-
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known molecular genetic backgrounds. This article is part of a Special Issue entitled: The Neuronal Ceroid
Lipofuscinoses or Batten Disease.
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The common clinical features of the neuronal ceroid lipofuscinoses
are epileptic seizures, progressive psychomotor decline, visual failure,
and premature death. NCL disease usually begins in childhood, and
most types are inherited in an autosomal recessive manner. Mutations
in more than a dozen genes have now been described in families diag-
nosed with NCL disease (Table 1). Many of the genes that cause typical
NCL disease with onset in childhood have been identified, and in very
recent years the genetic basis of many of the later onset cases has
been delineated, including the dominant adult onset NCL disease. How-
ever, there remain families diagnosed with NCL of all ages of onset in
which the underlying genetic cause has not been described. Mutations
in other genes that cause NCL-like disease in animals do not appear to
be a main cause of NCL in these remaining cases.

The aim of this review is to briefly summarize the genetic basis of
NCL and correlations with disease phenotype in a readily accessible
and useful format. Further details can be found in the recently ex-
panded NCL mutation database (http://www.ucl.ac.uk/ncl).

Since the late 1960s NCL disease has been divided broadly into
four ages of onset: infantile, late infantile, juvenile and adult, leading
to the initial simple supposition that there are four genes responsible
for NCL disease, CLN1, CLN2, CLN3 and CLN4, respectively. The first

Abbreviations: NCL, Neuronal ceroid lipofuscinosis; EPMR, progressive epilepsy with
mental retardation
* This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or
Batten Disease.

* Corresponding author at: MRC Laboratory for Molecular Cell Biology, University
College London, Gower Street, London WC1E 6BT, UK. Tel.: +44 207 679 7257, fax: +44
207 679 7805.

E-mail address: s.mole@ucl.ac.uk (S.E. Mole).

0925-4439/% - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.bbadis.2013.03.017

three were the initial NCL genes to be identified, and many more
were described before CLN4 was found. Genes carrying mutations
that cause NCL have been discovered by a variety of experimental ap-
proaches, largely reflective of the available technology at the time of
identification (Table 1). The first genes were discovered in 1995 by
applying classic and time-consuming genetic linkage approaches to
large numbers of similarly affected families followed by positional
cloning of the genes (CLN1/PPT1 and CLN3). In contrast, CLN2/TPP1
was identified using a biochemical approach to detect mannose-6-
phosphate tagged lysosomal enzymes and subsequently identifying
one that was absent in a patient. As sequencing of the human genome
progressed and was completed, allowing more informative sequence
variants to be identified, fewer families were required to provide
sufficient power for genetic linkage. This was especially relevant
when recognition of the stretches of homozygosity that are present
in consanguineous families was used to narrow down the candidate
gene region. These advances allowed the identification of genes re-
sponsible for increasingly smaller proportions of cases (e.g. CLN5,
CLN6, CLN7/MFSD8, CLN8). Finally, the most recent identification of
NCL disease gene has used the latest sequencing technology that
permits massively parallel sequencing of the whole exome in a rela-
tively short space of time and allows the identification of the disease
gene in single families (e.g. CLN4/DNAJC5, CLN11/GRN, CLN12/ATP13A2,
CLN13/CTSF, CLN14KCTD7?).

All NCL genes so far identified lie on autosomes and, in most cases,
disease is inherited in a recessive manner, being caused when there
are deleterious mutations in both disease gene alleles. There are two no-
table exceptions or points of interest: (1) the dominant inheritance for
adult onset NCL caused by mutations in CLN4/DNAJC5 [1]; (2) A patient
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Table 1

Summary of the identification of genes that cause NCL.
Gene Year of identification Main approaches used for locus identification Other approaches used Reference
CLN1/PPT1 1995 Linkage Linkage disequilibrium [17]
CLN2/TPP1 1997 Biochemical Linkage [18]
CLN3 1995 Linkage Linkage disequilibrium [19]
CLN4/DNAJC5 2011 Linkage, Exome sequencing Gene expression [1]
CLN5 1998 Linkage Linkage disequilibrium [20]
CLN6 2002 Linkage Homozygosity mapping [21]
CLN7/MFSD8 2007 Linkage Homozygosity mapping [22]
CLN8 1999 Linkage, Animal model Homozygosity mapping [23]
CLN9 Not known
CLN10/CTSD 2006 Animal model [24,25]
CLN11/GRN 2012 Linkage, Exome sequencing [4]
CLN12/ATP13A2 2012 Exome sequencing [10]
CLN13/CTSF 2012 Linkage, Exome sequencing [26]
CLN14/KCTD7 2012 Exome sequencing [6]

with complete isodisomy of chromosome 8, leading to homozygosity of
a maternally-inherited deletion in CLN8 [2]. This is the only published
report of uniparental disomy in the NCLs.

For most NCL genes there is a known typical disease phenotype
associated with complete loss of function (Table 2) but there is also
often disease that is more protracted or has a later age of onset when
mutations are presumed to have ‘milder’ effects on gene function. In
contrast, similar NCL disease can be caused by mutations in several
genes (e.g. late infantile variant NCL can be caused by mutations in
CLN5, CLN6, CLN7, or CLN8). This has led to the recognition of the need
for a new classification system that is genetically based but takes into
account these significant phenotypic consequences, and its develop-
ment and subsequent clinical auditing [3].

There are also an increasing number of instances where different
mutations in a single gene can give rise to different diseases (Table 2),
such as: (1) CLN8 disease where different recessive mutations lead to
quite different disease including progressive epilepsy with mental re-
tardation (EPMR). Indeed EPMR was the first disease identified caused
by mutations in this gene; (2) recessive CLN11 disease caused by muta-
tions in GRN, since heterozygous mutations in GRN are a major cause of
frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP),
the second most common type of early-onset dementia. One family ho-
mozygous for a frameshift mutation was diagnosed with NCL disease,
consistent with the rectilinear profiles typical of NCL recently recog-
nized in progranulin-deficient mice [4]. The age-at-onset and neuropa-
thology of FTLD-TDP and NCL are markedly different and represent the
long suspected link that may exist between the rare NCL and a common
neurological disorder; (3) CLN3 disease, where the most common and
very widespread mutation in the CLN3 gene, a 1 kb deletion, may not
cause total loss of CLN3 function, leading to the hypothesis that disease
caused by complete loss of function has not been recognized or is lethal,
and that disease associated with mutations in this gene could have a
much wider phenotype than currently accepted [5]; (4) CLN4 disease,
includes the only autosomal dominant type of NCL, although disease
caused by complete loss of CLN4 function is not known, though
animal models would predict very severe and early onset disease;
(5) CLN14 disease, since mutations in CLN14/KCTD7 have now been
reported to cause three different diseases [6-9]; (6) CLN12 disease, in
one family diagnosed with NCL, albeit recognized as atypical [10],
whereas all other mutations in CLN12/ATP13A2 cause Kufor-Rakeb syn-
drome; (7) a case diagnosed with adult onset NCL that was found to
have mutations in SGSH which usually underlies the late infantile
onset disease mucopolysaccharidosis type IIIA (MPSIIIA) [11].

Many of the mutations in NCL genes are more common in certain
populations, probably representing a local founder effect, and a few
are even more widespread across several continents, probably caused
by an ancient founder effect (Table 2). The common mutation causing
juvenile CLN3 disease is the best example of this. Whether this global
spreading represents any genetic advantage is not known. In either

instance diagnostic testing can be targeted to these common
mutations.

There are an increasing number of reports of patients carrying
changes in more than one NCL gene, although the contribution of these
sequence variations to their disease phenotype is not clear. For example,
two unrelated patients were described who carry single mutations in the
CLCNG6 gene, but one of these patients was later found to be compound
heterozygous for mutations in CLN5. In both families, the CLCN6 carrier
parents did not have the same disease phenotype as their affected off-
spring. Since a mouse model lacking CLCN6 clearly has an NCL-like
disease this gene is included in Table 2. Similarly some patients carry mu-
tations in more than one gene that underlie variant late infantile NCL
(e.g. changes in CLN5 have been found alongside those in CLN6 or CLN7
or CLN8). These may be examples in the NCLs of a mutation or specific al-
lele of one gene enhancing or ameliorating the disease phenotype.

There are several intriguing reports that implicate NCL genes in a
wider biology of disease: (1) One patient with disease that presented
shortly after birth was found to carry heterozygous mutations in CLN5,
which would normally have been expected to cause disease that began
in late infancy, together with a mutation in POLG1 that acts to maintain
mitochondrial DNA integrity, suggesting that this combination of muta-
tions resulted in a markedly modified disease course [12]. (2) Increased
expression of CLN8 may act as a modifier of Gaucher disease [13]. (3) A
study of somatic mutations acquired in human cancer cells (COSMIC)
has revealed changes in all known NCL genes (CLN1/PPT1, CLN2/TPP1,
CLN3, CLN4/DNAJC5, CLN5, CLN6, CLN7/MFSD8, CLN8, CLN10/CTSD, CLN11/
GRN, CLN12/ATP13A2, CLN13/CISF, CLN14/KCTD7, as well as SGSH and
CLCN6) (http://www.sanger.ac.uk/genetics/CGP/cosmic/) [14] and it is
postulated that some of these may confer a growth advantage to these
cells.

Several genes have been identified recently as a result of the ad-
vances in DNA sequencing technology. This new technology will no
doubt present more new NCL genes in the future, and whilst the
gene identification will not be in doubt, a diagnosis using well defined
criteria may become increasingly important to be sure that the dis-
ease falls within the NCL family of diseases. Thus, some patients diag-
nosed with NCL may turn out to really have atypical forms of other
diseases, such as cases diagnosed with NCL but caused by mutations
in SGSH. However, in other cases it may be that the distinction be-
tween disease phenotypes is not so clear cut, such as the family diag-
nosed with NCL carrying mutations in CLN13/ATP13A2.

One gene that is not included in the tables is CLCN7 which, like some
other genes, causes disease that has similarities to NCL in mice but in
humans is only known to cause the severe autosomal recessive disease
infantile malignant osteopetrosis. Since patients develop blindness and
CNS degeneration even when the osteopetrosis is treated with bone
marrow transplantation, specific mutations or alleles in this gene may
also cause NCL-like disease or modify that caused by mutations in
other genes, as suggested for CLCNG.
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Correlation between genotype and phenotype in NCL cases.
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Gene No. mutations Widespread common mutations Country-specific mutations Genotype-phenotype correlation®
CTSD/CLN10 7 Not known Not known Congenital
Late infantile
Juvenile
Adult
PPT1/CLN1 64 p.Arg122Trp p.Thr75Pro and Infantile
p.Arg151X p.Leu10X in Scotland Late infantile
Juvenile
Adult
TPP1/CLN2 105 ¢.509-1G>C p.Glu284Val in Canada Late infantile
p.Arg208X Juvenile
Protracted
CLN3 57 1 kb intragenic deletion in 1 kb deletion in many countries Juvenile
Caucasian populations 2.8 kb intragenic deletion in Finland Protracted
CLN5 36 None p.Tyr392X and Late infantile
p.Trp75X in Finland Juvenile
Protracted
Adult
CLN6 68 None p.lle154del in Portugal Late infantile
Protracted
Adult Kufs type A
MFSD8/CLN7 31 None P.Thr294Lys in Roma Gypsies; ¢.724+2T>A Late infantile
in Eastern Europe Juvenile protracted
CLN8 24 None p.Arg24Gly in Finland causing EPMR Late infantile
p.Arg204Cys and pTrp263Cys in Turkey Protracted
EPMR/Northern epilepsy
CLN4/DNAJC5 2 p.Leul16del N/A Adult autosomal dominant
p.Leul115Arg
CLN11/GRN 1° N/A N/A Adult
Frontotemporal lobar dementia
(when heterozygous)
CLN12/ATP13A2 1° N/A N/A Juvenile
Kufor-Rakeb syndrome
CLN13/CTSF 5 N/A N/A Adult Kufs type B
CLN14/KCTD7 14 N/A N/A Infantile
Progressive myoclonic epilepsy-3
Opsoclonus-myoclonus ataxia-like syndrome
SGSH 2¢ N/A N/A Adult
Late infantile MPSIIIA
CLCN6 2f Not known Not known Adult (only found in heterozygous

form to date)

2 Bold = phenotype caused by complete loss of gene function. Italics = non-NCL disease phenotype that in some cases may be more typically associated with this gene.

5 Only the mutation that causes NCL when present on both disease alleles is indicated; this mutation, and other mutations in this gene, cause later onset frontotemploral lobar
dementia when present in heterozygous form.

¢ Only the mutation that causes NCL is indicated; this mutation, other mutations cause Kufor-Rakeb syndrome.

4 Only the mutation that causes NCL is indicated; this mutation, other mutations cause PME-3 or opsoclonus-myoclonus ataxia-like syndrome.

€ Only the mutations described in a patient diagnosed with NCL are indicated; all other known mutations cause MPSIIIA.

' These mutations in CLCN6 may modify disease phenotype.

Table 3

Summary of mutation and sequence variants in NCL genes contained within the NCL Mutation Database (Jan 2013).

Gene CLN1 CLN2 CLN3 CLN4 CLN5 CLN6 CLN7 CLN8 CLN10 CLN11 CLN12 CLN13 CLN14 Grand total®
Total changes 73 129 70 2 45 72 33 26 12 1 1 5 1 471
Mutations 64 105 57 2 36 68 31 24 7 1 1 5 1 403
Sequence variations 9 24 13 - 9 4 2 2 5 - - - - 68
Missense 27 48 13 1 16 37 17 19 7 0 1 4 1 189
Nonsense 11 16 12 - 8 8 6 - 1 - - - 0 63
Small deletions® 7 12 8 1 8 9 1 5 1 1 - - - 53
Small insertion or duplication® 4 6 5 - 3 4 - - - - - 1 - 23
Splice defects 11 15 14 - - 6 6 4 - - - - 56
Large deletions” 1 1 4 - 1 1 - 0 - - - - 10
Large insertions” - - - - - - - - - - - - - 0
Delins 1 2 - - - 3 1 - - - - - - 7
Promoter change 3 4 2 - - 2 - - - - - - - 11
3" UTR changes 2 1 - - - - - - - - - - - 3
Initiation site change 1 - - - - - - - - - - - - 1
No. patients 216 326 403 7 85 125 73 70 11 2 4 1329
No. families 163 317 383 7 79 106 65 65 10 1 1 3 1 1202

2 Only data that causes NCL is included (see Table 2).
b Small deletions/insertions are <100 b. Large deletions/insertion are >100 b.
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All known mutations and sequence variations in NCL genes are listed
in the NCL Mutation Database (http://www.ucl.ac.uk/ncl) (Table 3).403
mutations that cause NCL are currently known. This NCL Mutation Data-
base has recently been updated to also include the genetic basis of NCL
disease in patients and families reported in clinical or scientific publica-
tions to allow better correlation between gene changes and disease
phenotype. This of course leads to an under representation of the occur-
rence of the most common mutations since diagnostic laboratories tend
to submit novel mutations only to the database. 69 sequence variants
are also listed in this database that generally reflect those that have
been found in the course of sequencing NCL genes diagnostically and
so will be an underestimate. Correlations between genotype, phenotype
and morphological changes in patients have been reviewed previously
[15,16].

The exact number of NCL genes is still uncertain, and not just because
some families do not have a genetic diagnosis. Although numerically
CLN14 has been reached (albeit without an identity for CLN9), mutations
that cause NCL in some of the most recently identified genes are found
only in single families. Whilst there is no disputing that these novel
genes cause disease, it may be timely to revisit the criteria for a diagnosis
of NCL. The new gene-based classification scheme for the NCL [3] leads
readily into updating diagnostic algorithms that take into account these
rare as well as more common genetic bases for NCL. Genes remaining
to be identified include those causing the so-called ‘CLN9’ variant which
causes disease of juvenile onset, and also cases still of late infantile
onset and adult onset.

In conclusion, a full understanding of the molecular genetics of
NCL is nearer with the recent identification of four new genes in fam-
ilies diagnosed with NCL, and especially the further delineation of the
genetic cause of adult onset NCL. Certainly the genetic picture is more
complex than was first envisioned in the 1990s, and even five years
ago. The connection between the function of each gene, the disease
phenotype and the characteristic autofluorescent storage material is
still not fully established. However, the continued study of NCL genes
at both a cellular level and in model organisms should lead eventually
to a fuller understanding.
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