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1. Introduction

Let I ⊂ R be the interval and f : I → R. The usual forward difference operator is denoted by

∆hf (x) = f (x + h) − f (x),

where x ∈ I and h ∈ R with x + h ∈ I. Its iterates we define by the usual way, i.e.

∆h1...hnhn+1 f (x) = ∆h1...hn(∆hn+1 f (x))

for n ∈ N, x ∈ I and h1, . . . , hn, hn+1 ∈ R with all needed arguments belonging to I (sometimes we will not write the
evident assumptions of this kind). If all increments are equal, h1 = · · · = hn = h, then we use the standard notation

∆n
hf (x) = ∆h...hf (x),

where the increment h is taken n times. It is not difficult to check that

∆h1...hn+1 f (x) = f (x + h1 + · · · + hn+1) −


16j1<···<jn6n+1

f (x + hj1 + · · · + hjn)

+


16j1<···<jn−16n+1

f (x + hj1 + · · · + hjn−1)

...

+ (−1)n


16j16n+1

f (x + hj1) + (−1)n+1f (x). (1.1)
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In this paper also the backward difference will be used. It is defined by

∇hf (x) = f (x) − f (x − h), (1.2)

where x ∈ I and h ∈ R with x − h ∈ I. Its iterates are defined similarly to those of the forward differences. Obviously
∇hf (x + h) = ∆hf (x) and using (1.1), by the induction argument we arrive at

∇h1...hn+1 f (x + h1 + · · · + hn+1) = ∆h1...hn+1 f (x). (1.3)

Recall that f is called Jensen-convex of order n (n-Jensen-convex for short), if

∆n+1
h f (x) > 0 (1.4)

for all x ∈ I and h > 0 with x + (n + 1)h ∈ I (cf. e.g. [1]). Obviously for n = 1 we arrive at the condition

∆2
hf (x) = f (x + 2h) − 2f (x + h) + f (x) > 0

for all x ∈ I and h > 0 with x + h ∈ I, which is equivalent to

f

x + y
2


6

f (x) + f (y)
2

, x, y ∈ I,

i.e. to the Jensen-convexity of f .
A function f is called Wright-convex (cf. [2]), if

f (tx + (1 − t)y) + f ((1 − t)x + ty) 6 f (x) + f (y)

for all x, y ∈ I, t ∈ [0, 1]. This condition is equivalent to

∆h1h2 f (x) > 0

for all x ∈ I, h1, h2 > 0 with x + h1 + h2 ∈ I (see [3]). Following this observation, in [4,3], higher order Wright-convexity
was defined: a function f is Wright-convex of order n (n-Wright-convex for short), if

∆h1...hn+1 f (x) > 0 (1.5)

for all x ∈ I and h1, . . . , hn+1 > 0 with x + h1 + · · · + hn+1 ∈ I. Of course, setting above h1 = · · · = hn+1 = h, we obtain
∆n+1

h f (x) > 0, which means that every n-Wright-convex function is n-Jensen-convex.
Then the natural question arises, whether the converse is also true, i.e. whether n-Jensen-convex functions are n-Wright-

convex. For n = 1 the negative answer is not too difficult to give. Namely, the function f : R → R given by f (x) = |a(x)|,
where a : R → R is a discontinuous additive function, is Jensen-convex and it is not Wright-convex (cf. [5]). Indeed,
by the well-known Ng’s representation (cf. [6]), if f was Wright-convex, it would be the sum of an additive function and
a convex one. Then either f would be continuous, or its graph would be dense on the whole plane (cf. e.g. [1]). But neither f
is continuous, nor the graph of f is dense on the whole plane.

In the series of papers [4,7,3] rather extensive study of higher-order Wright-convexity was given. However, the above
mentioned problemwas not considered. In this paper we fill this gap by delivering the negative answer for any odd positive
integer n. Let us emphasize that for (odd) n > 1 the appropriate counterexample is not easy to construct, as it was for n = 1,
i.e. in the case of the ordinary Jensen-convexity andWright-convexity. To reach our goal we develop new tools of measure-
theoretical nature, which, we hope, could be also useful for some future research. Let us also mention that for even natural
numbers n the considered problem still remains open.

The paper is organized in the following way. In Section 2 we formulate our main result and we prove a part of it. In the
next section, to throw some light to the nature of our main problem, we consider the case of n-Jensen-convexity and n-
Wright-convexity for n = 3. We also perform some considerations for n = 2 to show that for even values of n our problem
seems to be rather difficult. The nontrivial part of the proof of the main result is postponed to the last section.

2. Main result

Recall that, for x ∈ R, we have x+ = max{x, 0} =
x+|x|
2 and xn

+
= (x+)n. We start with the following, well-known,

lemma.

Lemma 2.1. Let n ∈ N, c > 0. The function ϕ : R → R given by ϕ(x) = cxn
+
is n-Jensen-convex.

Proof. It is easy to see that ϕ(n−1)(x) = cn!x+ is a convex function, whence ϕ is so-called n-convex function, which is
obviously n-Jensen-convex (cf. [1,8]). �

Corollary 2.2. If a : R → R is an additive function and n is an odd natural number, then f (x) = a(x)n
+
is n-Jensen-convex.
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Proof. Let ϕ(x) = xn
+
. Then f (x) = ϕ(a(x)). Using the well-known formula (cf. [1, Corollary 15.1.2]), see also (1.1) we

obtain

∆n+1
h f (x) =

n+1
i=0


n + 1

i


(−1)if (x + (n + 1 − i)h)

=

n+1
i=0


n + 1

i


(−1)iϕ(a(x) + (n + 1 − i)a(h)) = ∆n+1

a(h)ϕ(a(x)) > 0,

because ϕ is an n-convex function (for instance, by Lemma 2.1) and n is an odd number (if ϕ is n-convex and n is odd, then
∆n+1

k ϕ(y) > 0 for any y ∈ R and any increment k ∈ R, cf. [1, p. 429], a comment before Lemma 15.3.1). By virtue of (1.4)
the proof is finished. �

In the rest of this paper we use the following idea. An additive map a : R → R is a linear functional over the vector space
of real numbers over the field of rational numbers. Then the function a is uniquely determined by its values on a Hamel basis
(cf. e.g. [1]).

Now we are in a position to state our main result.

Theorem 2.3. Let n ∈ N be an odd number. Take a Hamel basis H containing positive numbers h1, . . . , hn+1. Let a : R → R be
any additive function satisfying

a(h1) = −1, a(h2) = · · · = a(hn+1) = 1.

The function f : R → R given by

f (x) = (a(x))n
+

is n-Jensen-convex whereas it is not n-Wright-convex.

Proof. By Corollary 2.2 the function f is n-Jensen convex. To prove that f is not n-Wright-convex, it is enough to show that
∆h1...hn+1 f (0) = −1 (see (1.5)). However, this is not a trivial job. It requires to develop new tools, and, on the other hand, it
is rather long. For these reasons we postpone the rest of the proof to the last section. �

Since every n-Wright convex function is n-Jensen convex, by the above theorem we obtain immediately the following.

Corollary 2.4. For any odd n ∈ N the class of n-Wright-convex functions is properly contained in the class of n-Jensen-convex
functions.

If n ∈ N is even, the question whether the above inclusion is proper, remains an open problem.

3. Two particular cases

3.1. The case n = 3

Aswementioned in the Introduction, in the general case the proof of Theorem2.3 is difficult. In this subsectionwe deliver
some simpler proof for the case n = 3.

Take the Hamel basis H such that h1, h2, h3, h4 ∈ H are distinct and positive. Let a : R → R be the additive function
such that a(h1) = −1, a(h2) = a(h3) = a(h4) = 1. Let f (x) = (a(x))3

+
. Due to Corollary 2.2 the function f : R → R is

3-Jensen-convex. We will show that f is not 3-Wright-convex. To this end we will check that ∆h1h2h3h4 f (0) = −1 < 0, so
the inequality (1.5) does not hold for n = 3. We have

f (0 + h1 + h2 + h3 + h4) = (a(0) + a(h1) + a(h2) + a(h3) + a(h4))
3
+

= 8.

Similarly

f (0 + h1 + h2 + h3) = f (0 + h1 + h2 + h4) = f (0 + h1 + h3 + h4) = 1,
f (0 + h2 + h3 + h4) = 27,
f (0 + h1 + h2) = f (0 + h1 + h3) = f (0 + h1 + h4) = 0,
f (0 + h2 + h3) = f (0 + h2 + h4) = f (0 + h3 + h4) = 8,
f (0 + h1) = 0,
f (0 + h2) = f (0 + h3) = f (0 + h4) = 1,
f (0) = 0.
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Then, having in mind the formula (1.1), we arrive at

∆4
h1h2h3h4 f (x) = f (0 + h1 + h2 + h3 + h4) − [f (0 + h1 + h2 + h3) + f (0 + h1 + h2 + h4)

+ f (0 + h1 + h3 + h4) + f (0 + h2 + h3 + h4)]

+ [f (0 + h1 + h2) + f (0 + h1 + h3) + f (0 + h1 + h4)

+ f (0 + h2 + h3) + f (0 + h2 + h4) + f (0 + h3 + h4)]

− [f (0 + h1) + f (0 + h2) + f (0 + h3) + f (0 + h4)]

+ f (0) = 8 − 30 + 24 − 3 + 0 = −1.

In a similar way this proof was also repeated for n ∈ {5, 7, 9, 11}, however, the computations were done by the computer.

3.2. The case n = 2

Nowwe discuss the case n = 2 to convince the reader that for even values of n our problem is not easy to solve. Precisely,
we will try to compare the classes of 2-Jensen-convex functions with the class of 2-Wright-convex ones.

Looking at the example given in the Introduction we could suppose that the function f : R → R given by f (x) = |Q (x)|,
where Q : R → R fulfils the quadratic functional equation

Q (x + y) + Q (x − y) = 2Q (x) + 2Q (y), (3.1)

could be a good example of a 2-Jensen-convex function which is not 2-Wright-convex. Unfortunately, f need not to be
2-Jensen-convex. To see this take the Hamel basis H containing the vectors 1,

√
2 and 4√2. Next take the additive function

a : R → R defined on H by a(1) = −9, a(
√
2) = 4 and a(h) = 0 for h ∈ H \ {1,

√
2}. Then the function Q (x) = a(x2)

fulfils (3.1). Finally, for x = 1, h =
4√2 − 1 > 0 we have Q (x) = −9, Q (x + h) = 4, Q (x + 2h) = 7, Q (x + 3h) = 0, whence

∆3
hf (x) = ∆3

h|Q (x)| = |Q (x + 3h)| − 3|Q (x + 2h)| + 3|Q (x + h)| − |Q (x)| = −18 < 0,

which, according to (1.4), proves our claim.
Having in mind Theorem 2.3, it is reasonable to expect that the function f (x) = (a(x))2

+
(for some properly chosen

additive function a : R → R) could be the nice example of a 2-Jensen-convex function which is not 2-Wright-convex.
However, such a function is not 2-Jensen-convex for any discontinuous additive function a and for any additive function of
the form a(x) = cxwith c < 0. If a(x) = cxwith some c > 0, then f is continuous and, as wewill show, f is 2-Jensen-convex.
Hence, by continuity, f is also 2-Wright-convex (cf. [1, Theorem15.7.1]), so it is not a good candidate for our counterexample.

Proposition 3.1. If a : R → R is a discontinuous additive function, then f (x) = (a(x))2
+
is not 2-Jensen-convex.

Proof. Since a is a discontinuous additive function, its graph is dense on the whole plane (cf. e.g. [1]). Then close to the point
(0, 1) there exists a point (x, a(x)). We can claim, for example, that

0.9 < a(x) < 1.1. (3.2)

Similarly, close to the point (1, −2) there exists the point (h, a(h)). We can claim that h > 0 and

−2.1 < a(h) < −1.9.

Therefore

−5.4 < a(x + 3h) = a(x) + 3a(h) < −4.6 =⇒ (a(x + 3h))+ = 0,
−3.3 < a(x + 2h) = a(x) + 2a(h) < −2.7 =⇒ (a(x + 2h))+ = 0,
−1.2 < a(x + h) = a(x) + a(h) < −0.8 =⇒ (a(x + h))+ = 0.

By (3.2) we get (a(x))+ = a(x) > 0. Hence, by f (x) = (a(x))2
+
,

∆3
hf (x) = f (x + 3h) − 3f (x + 2h) + 3f (x + h) − f (x) = −(a(x))2 < 0,

so the inequality (1.4) does not hold for n = 2 and for any x ∈ R, h > 0. �

Proposition 3.2. If a(x) = cx for some c > 0, then f (x) = (a(x))2
+
is 2-Jensen-convex.

Proof. Since

f (x) = (a(x))2
+

=


cx + |cx|

2

2

= c2

x + |x|

2

2

= c2x2
+
,

then f is 2-Jensen-convex by Lemma 2.1. �
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Proposition 3.3. If a(x) = cx for some c < 0, then f (x) = (a(x))2
+
is not 2-Jensen-convex.

Proof. If c < 0, then we have

f (x) = (a(x))2
+

=


cx + |cx|

2

2

=


cx − c|x|

2

2

= c2

x − |x|

2

2

.

Therefore

f (−x) = c2


−x − |x|
2

2

= c2

x + |x|

2

2

= c2x2
+

and f (x) = c2(−x)2
+
. Setting x = −1, h = 1 we obtain ∆3

hf (x) = −c2 < 0, so f is not 2-Jensen-convex. �

4. Proof of Theorem 2.3

In this section we develop new tools connected with the measure theory and we use them to prove that the function f
defined in Theorem 2.3 is not n-Wright-convex. According to our best knowledge this approach was not used so far.

4.1. Notations and basic facts

By B(R) we denote the σ -field of Borel subsets of R. By Borel measure we mean any measure defined on B(R). It is
known that the distribution function Fµ(x) = µ((−∞, x)) determines µ i.e. to know the value the Borel measure, it is
enough to know its values on the intervals (−∞, x) for any x ∈ R (cf. [9, Sections 12,14]).

Throughout this section we deal only with the functions f : R → R. In addition to the backward difference operator ∇h
given by (1.2) we also consider the backward translation operator

τhf (x) = f (x − h), x, h ∈ R.

Let M (R) be the set of all Borel measures ν on B(R) such that ν((−∞, x)) < ∞, x ∈ R.

Remark 4.1. If ν ∈ M (R), then limx→−∞ ν((−∞, x)) = 0.

Proof. It is an easy consequence of the general property of the measure: if (Ak : k ∈ N) is a descending sequence of
measurable sets with ν(A1) < ∞, then ν(


k∈N Ak) = limk→∞ ν(Ak). �

We will consider the operators τh and ∇h defined not only for the functions, but also for the measures ν ∈ M (R) (such
an approach is frequently used in the Measure Theory):

τhν(B) = ν(B − h), ∇hν(B) = ν(B) − τhµ(B) = ν(B) − ν(B − h)

for B ∈ B(R) with ν(B) < ∞.
Let ν ∈ M (R). We define

Jhν(B) =

∞
n=0

τ n
h ν(B), h > 0, B ∈ B(R),

where τ 0
h ν(B) = ν(B), τ n+1

h (B) = τh(τ
n
h ν)(B). It is not difficult to check that

Jhν ∈ M (R) ⇐⇒

∞
n=0

Fν(x − nh) < ∞, x ∈ R and lim
x→−∞

∞
n=0

Fν(x − nh) = 0.

For these notations, see also [10,11].

Proposition 4.2. Let µ ∈ M (R) and h > 0.

1. If

∇hµ > 0, (4.1)

then there exists ν ∈ M (R) such that µ has the form

µ = Jhν. (4.2)

Moreover,

ν = ∇hµ. (4.3)

2. If µ has the form (4.2) with ν ∈ M (R), then the conditions (4.1) and (4.3) hold.
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Proof. 1. Let µ fulfils (4.1). Using the definition of ∇h we have ∇hµ = µ − τhµ, whence µ = ∇hµ + τhµ. Then

τhµ = τh∇hµ + τ 2
h µ,

τ 2
h µ = τ 2

h ∇hµ + τ 3
h µ,

...

τ n
h µ = τ n

h ∇hµ + τ n+1
h µ.

Hence

µ = ν + τhν + · · · + τ n
h ν + τ n+1

h µ,

where ν = ∇hµ, n = 1, 2, . . .. Taking into account Remark 4.1 we infer that

τ n+1
h µ((−∞, x)) = ν((−∞, x − (n + 1)h)) −−−→

n→∞
0

whence the distribution function of themeasureµ, i.e. Fµ(x) = µ((−∞, x)) (x ∈ R), is equal to the distribution function
of a measure Jhν, where ν is given by (4.3). Then these measures are equal (cf. e.g. [9, Sections 12, 14]), which finishes
the proof of 1.

2. Let µ has the form (4.2) with ν ∈ M (R). Then

µ = Jhν =

∞
n=0

τ n
h ν = ν +

∞
n=1

τ n
h ν. (4.4)

Using the definition of τh and τ n
h we get

τh(Jhν)(B) = Jhν(B − h) =

∞
n=0

τ n
h ν(B − h)

=

∞
n=0

τh(τ
n
h ν)(B) =

∞
n=0

τ n+1
h ν(B) =

∞
n=1

τ n
h ν(B).

Therefore τhµ =


∞

n=1 τ n
h ν, which, together with (4.4), yields µ = ν + τhµ, which implies ν = µ − τhµ and the proof

of 2. is finished. �

For ν ∈ M (R) and h1, . . . , hn > 0 denote Jh1h2...hnν = Jh1 Jh2 . . . Jhnν. As the immediate consequence of Proposition 4.2
we obtain the following.

Proposition 4.3. Let h1, . . . , hn > 0.
(a) If ν ∈ M (R) fulfils the condition Jh1...hnν ∈ M (R), then ∇h1...hn(Jh1...hnν) = ν .
(b) If µ ∈ M (R) fulfils the condition ∇h1...hnµ > 0, then Jh1...hn(∇h1...hnµ) = µ.

4.2. Preparation to the proof of Theorem 2.3

Fix n ∈ N and consider the Hamel basis H ⊂ R such that h1, . . . , hn+1 ∈ H are distinct and positive. We keep this
convention throughout the whole section. Recall that if x ∈ R, then δx denotes the Dirac measure, i.e. δx(B) = 1 if x ∈ B and
δx(B) = 0, x ∉ B, where B ⊂ R. Define the measures µ1, . . . , µn+1 ∈ M (R) by

µi = Jh1...hn+1δhi , i = 1, . . . , n + 1. (4.5)

Then define the signed measure µ by

µ = µ2 + · · · + µn+1 − µ1. (4.6)

Being the elements of the Hamel basis, h1, . . . , hn+1 are incommensurable, and it is not difficult to check the formula

µi =

∞
j1,...,jn+1=0

δhi+j1h1+···+jn+1hn+1 , i = 1, . . . , n + 1. (4.7)

Next take the sets A, A1, . . . , An+1 ⊂ R defined by

Ai =

hi +

n+1
j=1
j≠i

εjhj : εj ∈ {0, 1}, j = 1, . . . , n + 1

 , i = 1, . . . , n + 1,

A = A1 ∪ · · · ∪ An+1.

We will use the frequent notation µ(x) = µ({x}).



K. Nikodem et al. / J. Math. Anal. Appl. 396 (2012) 261–269 267

Lemma 4.4. Let i ∈ {1, . . . , n + 1}. Then

(a) µi(x) = 1 for x ∈ Ai,
(b) µi(x) = 0 for x ∈ A \ Ai,
(c) µ|A(x) < 0 ⇐⇒ x = h1,
(d) µ(h1) = µ1(h1) = −1,
(e) µ+|A = µ|A + δh1 .

Proof. It is enough to use (4.5), (4.6), (4.7). We omit a standard and easy proof. �

Recall that in Theorem 2.3 we defined the function f (x) = (a(x))n
+
(x ∈ R), where a : R → R is the additive function

such that a(h1) = −1, a(h2) = · · · = a(hn+1) = 1. Now we prove the crucial property of this function f . Let us notice that
the function f could be, of course, defined for any n ∈ N and the result below is not dependent on the evenness of n.

Theorem 4.5. Let f : R → R be defined as above and µ be a signed measure given by (4.6). Then

f (x) = (µ + δh1)
n(x) for every x ∈ A. (4.8)

In particular,

∇h1...hn+1 f (h1 + · · · + hn+1) = ∇h1...hn+1(µ + δh1)
n(h1 + · · · + hn+1). (4.9)

Proof. To prove (4.8) it is enough to show that

a(x) = µ(x) for every x ∈ A. (4.10)

Indeed, then for any x ∈ A we have a+(x) = µ+(x) and trivially f (x) = (a+(x))n = (µ+(x))n. Taking into account
Lemma 4.4(e) we get (4.8).

To prove (4.10) fix x ∈ A. Then x = ε1h1 + · · · + εn+1hn+1, where εi ∈ {0, 1}, i = 1, . . . , n + 1 and ε1 + · · · + εn+1 > 0.
Two cases are possible.
Case 1. ε1 = 1

If ε2 = · · · = εn+1 = 0, then a(x) = a(h1) = −1 and by Lemma 4.4(d) µ(x) = µ(h1) = −1, so (4.10) holds. If εj ≠ 0 for
some j ∈ {2, . . . , n+ 1}, then without loss of generality wemay assume that x = h1 + · · ·+ hk for some k ∈ {2, . . . , n+ 1}.
Since x ∈ A1 ∩ · · · ∩ Ak and x ∉ Ak+1, . . . , x ∉ An+1, we have by Lemma 4.4(a), (b)

µ1(x) = · · · = µk(x) = 1, µk+1(x) = · · · = µn+1(x) = 0.

Hence, by virtue of (4.6), µ(x) = k − 2. By additivity

a(x) = a(h1 + · · · + hk) = a(h1) + · · · + a(hk) = k − 2,

which proves that a(x) = µ(x).
Case 2. ε1 = 0

Without loss of generality we may assume that x = h2 + · · · + hk for some k ∈ {2, . . . , n + 1}. Arguing exactly in the
same way as in the previous case, we arrive at µ(x) = k − 1 = a(x). �

4.3. Proof of Theorem 2.3

Theorem 4.5 allows us to workwithmeasures instead of the original function f . We present below three useful formulae.
We will prove them after the proof of Theorem 2.3.

Lemma 4.6. Let µ = µ2 + · · · + µn+1 − µ1 be the signed measure given by (4.6). Then

(µ + δh1)
n(x) = µn(x) − (−1)nδh1(x) for any x ∈ A, (4.11)

∇h1...hn+1µ
n(h1 + · · · + hn+1) = 0, (4.12)

∇h1...hn+1δh1(h1 + · · · + hn+1) = (−1)n. (4.13)

The Final Step of the Proof of Theorem 2.3. Recall that n ∈ N was odd and we have chosen the Hamel basis H ⊂ R
such that h1, . . . , hn+1 ∈ H were positive. We took the additive function a : R → R such that a(h1) = −1 and
a(h2) = · · · = a(hn+1) = 1. Then we defined the function f : R → R by f (x) = (a(x))n

+
and we have shown that f is

n-Jensen-convex. It was left to prove that f is not n-Wright-convex. It is enough to check that ∆h1...hn+1 f (0) = −1. By (1.3)
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this is equivalent to ∇h1...hn+1 f (h1 + · · · + hn+1) = −1. Using (4.9) and (4.11) we obtain

∇h1...hn+1 f (h1 + · · · + hn+1) = ∇h1...hn+1(µ + δh1)
n(h1 + · · · + hn+1)

= ∇h1...hn+1(µ
n(h1 + · · · + hn+1) − (−1)nδh1(h1 + · · · + hn+1))

= ∇h1...hn+1µ
n(h1 + · · · + hn+1) + ∇h1...hn+1δh1(h1 + · · · + hn+1) = −1

due to (4.12) and (4.13). This finishes the proof. �

4.4. Proof of Lemma 4.6

Proof of Formula (4.11). Let x ∈ A. Of course δ
j
h1

= δh1 (j ∈ N). Therefore

(µ + δh1)
n(x) = µn(x) + δn

h1(x) +

n−1
k=1

n
k


µk(x)δn−k

h1
(x)

= µn(x) + δh1(x) +

n−1
k=1

n
k


µk(x)δh1(x). (4.14)

Put λ = µ2 + · · · + µn+1. Then µ = λ − µ1 and for k = 1, . . . , n − 1 we get

µk(x) =

k−1
j=1


k
j


λj(x)(−µ

k−j
1 (x)) + λk(x) + (−1)kµk

1(x). (4.15)

It is easy to see that

(a) λj(x)δh1(x) = 0, j = 1, . . . , k,
(b) µk

1(x)δh1(x) = δh1(x).

For, notice that λ is concentrated on the set A2 ∩ · · · ∩ An+1 (see 4.4(a), (b)), which gives (a), while (b) is trivial. Then (4.15)
yields

µk(x)δh1(x) = (−1)kδh1(x), k = 1, . . . , n − 1,

and, consequently,
n−1
k=1

n
k


µk(x)δh1(x) =

n−1
k=1

n
k


(−1)kδh1(x) = δh1(x)


n−1
k=1

n
k


(−1)k



= δh1(x)


n

k=0

n
k


(−1)k −

n
0


(−1)0 −

n
n


(−1)n


= δh1(x)[0 − 1 − (−1)n].

We conclude the proof putting this last equation into (4.14). �

Proof of Formula (4.12). Let x ∈ A. Applying the Multinomial Theorem to µ = µ2 + · · · + µn+1 − µ1 we arrive at

µn(x) =


j1+···+jn+1=n


n

j1, j2, . . . , jn+1


µ

j2
2 (x) · . . . · µ

jn+1
n+1(x) · (−µ

j1
1 (x)), (4.16)

where
n

j1, j2, . . . , jn+1


=

n!
j1! · j2! · . . . · jn+1!

are themultinomial coefficients. Due to Lemma 4.4(a), (b) we have

µk
j (x) =


µj(x) for k = 1, 2, . . . ,
1 for k = 0 (4.17)

with the convention 00
= 1. Next we will prove that

µj1(x) · µj2(x) · . . . · µjk(x) = Jh1...hn+1δhj1+···+hjk
(x), (4.18)

where 1 6 j1 < j2 < · · · < jk 6 n + 1. For simplicity we will only check that

µ1(x) · µ2(x) = Jh1...hn+1δh1+h2(x), (4.19)
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the proof in the general case is analogous. By (4.7)

µ1(x) =

∞
j1,...,jn+1=0

δh1+j1h1+···+jn+1hn+1(x),

µ2(x) =

∞
j1,...,jn+1=0

δh2+j1h1+···+jn+1hn+1(x).

If x ∈ A1 ∩A2, then x = h1 + h2 + j1h1 +· · ·+ jn+1hn+1. Because h1, . . . , hn+1 belong to the Hamel basis, this representation
is unique and both the above sums are equal to 1. By the same argument, also

Jh1...hn+1δh1+h2(x) =

∞
j1,...,jn+1=0

δh1+h2+j1h1+···+jn+1hn+1(x) = 1.

By Lemma 4.4(a) we infer that µ1(x)µ2(x) = 1 and (4.19) holds. The remaining case x ∈ A \ (A1 ∪ A2) we handle in the
similar way, also using Lemma 4.4(b).

Taking into account (4.17) and (4.18) we obtain that

µ
j2
2 (x) · . . . · µ

jn+1
n+1(x) · (−µ1(x)j1) = (−1)j1 Jh1...hn+1δε2h2+···+εn+1hn+1+ε1h1(x), (4.20)

where

εk =


0 for jk = 0,
1 for jk > 0 (4.21)

for k = 1, . . . , n + 1. By Proposition 4.3(a) we have

∇h1...hn+1(Jh1...hn+1δε2h2+···+εn+1hn+1+ε1h1)(x) = δε2h2+···+εn+1hn+1+ε1h1(x). (4.22)

Consequently, by (4.16), (4.20) and (4.22) we get

∇h1...hn+1µ
n(x) =


j1+···+jn+1=n


n

j1, j2, . . . , jn+1


(−1)j1δε1h1+···+εn+1hn+1(x). (4.23)

Observe that, for x = h1+· · ·+hn+1, there is ε1 = · · · = εn+1 = 1, so, by (4.21), j1+· · ·+jn+1 > n+1 and, in the sum (4.23),
there is no component δh1+···+hn+1(h1 + · · · + hn+1). Since h1, . . . , hn+1 belong to the Hamel basis, every component of this
sum equals 0, so ∇h1...hn+1µ

n(h1 + · · · + hn+1) = 0 and the formula (4.12) is true. �

Proof of Formula (4.13). By (1.3) we have

∇h1...hn+1δh1(h1 + · · · + hn+1) = ∆h1...hn+1δh1(0).

We compute this term using (1.1). Notice that (by the choice of h1, . . . , hn+1 as distinct elements of the Hamel basis) the
only non-zero component of the sum occurring there is (−1)nδh1(h1) = (−1)n, which appears in the penultimate line. �
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